MYCOBACTERIUM - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
75900.9945The WblC/WhiB7 Transcription Factor Controls Intrinsic Resistance to Translation-Targeting Antibiotics by Altering Ribosome Composition. Bacteria that encounter antibiotics can efficiently change their physiology to develop resistance. This intrinsic antibiotic resistance is mediated by multiple pathways, including a regulatory system(s) that activates specific genes. In some Streptomyces and Mycobacterium spp., the WblC/WhiB7 transcription factor is required for intrinsic resistance to translation-targeting antibiotics. Wide conservation of WblC/WhiB7 within Actinobacteria indicates a critical role of WblC/WhiB7 in developing resistance to such antibiotics. Here, we identified 312 WblC target genes in Streptomyces coelicolor, a model antibiotic-producing bacterium, using a combined analysis of RNA sequencing and chromatin immunoprecipitation sequencing. Interestingly, WblC controls many genes involved in translation, in addition to previously identified antibiotic resistance genes. Moreover, WblC promotes translation rate during antibiotic stress by altering the ribosome-associated protein composition. Our genome-wide analyses highlight a previously unappreciated antibiotic resistance mechanism that modifies ribosome composition and maintains the translation rate in the presence of sub-MIC levels of antibiotics.IMPORTANCE The emergence of antibiotic-resistant bacteria is one of the top threats in human health. Therefore, we need to understand how bacteria acquire resistance to antibiotics and continue growth even in the presence of antibiotics. Streptomyces coelicolor, an antibiotic-producing soil bacterium, intrinsically develops resistance to translation-targeting antibiotics. Intrinsic resistance is controlled by the WblC/WhiB7 transcription factor that is highly conserved within Actinobacteria, including Mycobacterium tuberculosis Here, identification of the WblC/WhiB7 regulon revealed that WblC/WhiB7 controls ribosome maintenance genes and promotes translation in the presence of antibiotics by altering the composition of ribosome-associated proteins. Also, the WblC-mediated ribosomal alteration is indeed required for resistance to translation-targeting antibiotics. This suggests that inactivation of the WblC/WhiB7 regulon could be a potential target to treat antibiotic-resistant mycobacteria.202032291305
65710.9945Mycobacterial HflX is a ribosome splitting factor that mediates antibiotic resistance. Antibiotic resistance in bacteria is typically conferred by proteins that function as efflux pumps or enzymes that modify either the drug or the antibiotic target. Here we report an unusual mechanism of resistance to macrolide-lincosamide antibiotics mediated by mycobacterial HflX, a conserved ribosome-associated GTPase. We show that deletion of the hflX gene in the pathogenic Mycobacterium abscessus, as well as the nonpathogenic Mycobacterium smegmatis, results in hypersensitivity to the macrolide-lincosamide class of antibiotics. Importantly, the level of resistance provided by Mab_hflX is equivalent to that conferred by erm41, implying that hflX constitutes a significant resistance determinant in M. abscessus We demonstrate that mycobacterial HflX associates with the 50S ribosomal subunits in vivo and can dissociate purified 70S ribosomes in vitro, independent of GTP hydrolysis. The absence of HflX in a ΔMs_hflX strain also results in a significant accumulation of 70S ribosomes upon erythromycin exposure. Finally, a deletion of either the N-terminal or the C-terminal domain of HflX abrogates ribosome splitting and concomitantly abolishes the ability of mutant proteins to mediate antibiotic tolerance. Together, our results suggest a mechanism of macrolide-lincosamide resistance in which the mycobacterial HflX dissociates antibiotic-stalled ribosomes and rescues the bound mRNA. Given the widespread presence of hflX genes, we anticipate this as a generalized mechanism of macrolide resistance used by several bacteria.202031871194
78120.9937Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: unanswered questions. Pseudomonas aeruginosa is an opportunistic human pathogen exhibiting innate resistance to multiple antimicrobial agents. This intrinsic multidrug resistance is caused by synergy between a low-permeability outer membrane and expression of a number of broadly-specific multidrug efflux (Mex) systems, including MexAB-OprM and MexXY-OprM. In addition to this intrinsic resistance, these and three additional systems, MexCD-OprJ, MexEF-OprN and MexJK-OprM promote acquired multidrug resistance as a consequence of hyper-expression of the efflux genes by mutational events. In addition to antibiotics, these pumps export biocides, dyes, detergents, metabolic inhibitors, organic solvents and molecules involved in bacterial cell-cell communication. Homologues of the resistance-nodulation-division systems of P. aeruginosa have been found in Burkholderia cepacia, B. pseudomallei, Stenotrophomonas maltophilia, and the nonpathogen P. putida, where they play roles in resistance to antimicrobials and/or organic solvents. Despite intensive studies of these multidrug efflux systems over the past several years, their precise molecular architectures, their modes of regulation of expression and their natural functions remain largely unknown.200312917802
79630.9936The internal gene duplication and interrupted coding sequences in the MmpL genes of Mycobacterium tuberculosis: Towards understanding the multidrug transport in an evolutionary perspective. The multidrug resistance has emerged as a major problem in the treatment of many of the infectious diseases. Tuberculosis (TB) is one of such disease caused by Mycobacterium tuberculosis. There is short term chemotherapy to treat the infection, but the main hurdle is the development of the resistance to antibiotics. This resistance is primarily due to the impermeable mycolic acid rich cell wall of the bacteria and other factors such as efflux of antibiotics from the bacterial cell. The MmpL (Mycobacterial Membrane Protein Large) proteins of mycobacteria are involved in the lipid transport and antibiotic efflux as indicated by the preliminary reports. We present here, comprehensive comparative sequence and structural analysis, which revealed topological signatures shared by the MmpL proteins and RND (Resistance Nodulation Division) multidrug efflux transporters. This provides evidence in support of the notion that they belong to the extended RND permeases superfamily. In silico modelled tertiary structures are in homology with an integral membrane component present in all of the RND efflux pumps. We document internal gene duplication and gene splitting events happened in the MmpL genes, which further elucidate the molecular functions of these putative transporters in an evolutionary perspective.201525841626
77040.9935Mutations in the efflux pump regulator MexZ shift tissue colonization by Pseudomonas aeruginosa to a state of antibiotic tolerance. Mutations in mexZ, encoding a negative regulator of the expression of the mexXY efflux pump genes, are frequently acquired by Pseudomonas aeruginosa at early stages of lung infection. Although traditionally related to resistance to the first-line drug tobramycin, mexZ mutations are associated with low-level aminoglycoside resistance when determined in the laboratory, suggesting that their selection during infection may not be necessarily, or only, related to tobramycin therapy. Here, we show that mexZ-mutated bacteria tend to accumulate inside the epithelial barrier of a human airway infection model, thus colonising the epithelium while being protected against diverse antibiotics. This phenotype is mediated by overexpression of lecA, a quorum sensing-controlled gene, encoding a lectin involved in P. aeruginosa tissue invasiveness. We find that lecA overexpression is caused by a disrupted equilibrium between the overproduced MexXY and another efflux pump, MexAB, which extrudes quorum sensing signals. Our results indicate that mexZ mutations affect the expression of quorum sensing-regulated pathways, thus promoting tissue invasiveness and protecting bacteria from the action of antibiotics within patients, something unnoticeable using standard laboratory tests.202438519499
75150.9934Global transcriptomics and targeted metabolite analysis reveal the involvement of the AcrAB efflux pump in physiological functions by exporting signaling molecules in Photorhabdus laumondii. In Gram-negative bacteria, resistance-nodulation-division (RND)-type efflux pumps, particularly AcrAB-TolC, play a critical role in mediating resistance to antimicrobial agents and toxic metabolites, contributing to multidrug resistance. Photorhabdus laumondii is an entomopathogenic bacterium that has garnered significant interest due to its production of bioactive specialized metabolites with anti-inflammatory, antimicrobial, and scavenger deterrent properties. In previous work, we demonstrated that AcrAB confers self-resistance to stilbenes in P. laumondii TT01. Here, we explore the pleiotropic effects of AcrAB in this bacterium. RNA sequencing of ∆acrA compared to wild type revealed growth-phase-specific gene regulation, with stationary-phase cultures showing significant downregulation of genes involved in stilbene, fatty acid, and anthraquinone pigment biosynthesis, as well as genes related to cellular clumping and fimbrial pilin formation. Genes encoding putative LuxR regulators, type VI secretion systems, two-partner secretion systems, and contact-dependent growth inhibition systems were upregulated in ∆acrA. Additionally, exponential-phase cultures revealed reduced expression of genes related to motility in ∆acrA. The observed transcriptional changes were consistent with phenotypic assays, demonstrating that the ∆acrA mutant had altered bioluminescence and defective orange pigmentation due to disrupted anthraquinone production. These findings confirm the role of stilbenes as signaling molecules involved in gene expression, thereby shaping these phenotypes. Furthermore, we showed that AcrAB contributes to swarming and swimming motilities independently of stilbenes. Collectively, these results highlight that disrupting acrAB causes transcriptional and metabolic dysregulation in P. laumondii, likely by impeding the export of key signaling molecules such as stilbenes, which may serve as a ligand for global transcriptional regulators.IMPORTANCERecent discoveries have highlighted Photorhabdus laumondii as a promising source of novel anti-infective compounds, including non-ribosomal peptides and polyketides. One key player in the self-resistance of this bacterium to stilbene derivatives is the AcrAB-TolC complex, which is also a well-known contributor to multidrug resistance. Here, we demonstrate the pleiotropic effects of the AcrAB efflux pump in P. laumondii TT01, impacting secondary metabolite biosynthesis, motility, and bioluminescence. These effects are evident at transcriptional, metabolic, and phenotypic levels and are likely mediated by the efflux of signaling molecules such as stilbenes. These findings shed light on the multifaceted roles of efflux pumps and open avenues to better explore the complexity of resistance-nodulation-division (RND) pump-mediated signaling pathways in bacteria, thereby aiding in combating multidrug-resistant infections.202540920493
75360.9934A multidrug efflux system is involved in colony growth in Streptomyces lividans. Multidrug resistance (MDR) genes are abundant in Streptomyces genomes, and yet these bacteria are generally drug sensitive under routine laboratory conditions, indicating low or no expression of these genes. Drug-resistant mutations have been isolated that lie in regulatory genes adjacent to the MDR genes, suggesting that resistance arises by derepression. This study identified a divergently oriented pair consisting of a TetR-family regulator (ebrS) and a major facilitator-family MDR pump (ebrC) gene in Streptomyces lividans, which is widely conserved in Streptomyces species. EbrS represses transcription of ebrC as well as its own transcription. Deletion of ebrS causes overexpression of ebrC, resulting in elevated resistance to many drugs. The ebrS and ebrC promoters were used in a reporter system to test inducibility by various chemicals. Among the 15 compounds (including five EbrC target drugs) tested, none induced ebrC transcription. On the other hand, the ebrS promoter was induced by rifampicin and high concentrations of calcium and magnesium. Deletion of ebrS-ebrC did not change rifampicin sensitivity, indicating that the EbrC pump is not involved in rifampicin efflux. Moreover, deletion of ebrC caused retardation of colony growth on selected media, and the defect could be suppressed by supplementation with high concentrations of Ca(2+), Mg(2+), Na(+) or K(+). Based on these results, it is proposed that the primary biological role of most MDR systems in Streptomyces species is not removal of extrinsic drugs, but rather export of specific toxic compounds endogenously synthesized during growth.200717379703
76070.9934The underling mechanism of bacterial TetR/AcrR family transcriptional repressors. Bacteria transcriptional regulators are classified by their functional and sequence similarities. Member of the TetR/AcrR family is two-domain proteins including an N-terminal HTH DNA-binding motif and a C-terminal ligand recognition domain. The C-terminal ligand recognition domain can recognize the very same compounds as their target transporters transferred. TetRs act as chemical sensors to monitor both the cellular environmental dynamics and their regulated genes underlying many events, such as antibiotics production, osmotic stress, efflux pumps, multidrug resistance, metabolic modulation, and pathogenesis. Compounds targeting Mycobacterium tuberculosis ethR represent promising novel antibiotic potentiater. TetR-mediated multidrug efflux pumps regulation might be good target candidate for the discovery of better new antibiotics against drug resistance.201323602932
902580.9934BING, a novel antimicrobial peptide isolated from Japanese medaka plasma, targets bacterial envelope stress response by suppressing cpxR expression. Antimicrobial peptides (AMPs) have emerged as a promising alternative to small molecule antibiotics. Although AMPs have previously been isolated in many organisms, efforts on the systematic identification of AMPs in fish have been lagging. Here, we collected peptides from the plasma of medaka (Oryzias latipes) fish. By using mass spectrometry, 6399 unique sequences were identified from the isolated peptides, among which 430 peptides were bioinformatically predicted to be potential AMPs. One of them, a thermostable 13-residue peptide named BING, shows a broad-spectrum toxicity against pathogenic bacteria including drug-resistant strains, at concentrations that presented relatively low toxicity to mammalian cell lines and medaka. Proteomic analysis indicated that BING treatment induced a deregulation of periplasmic peptidyl-prolyl isomerases in gram-negative bacteria. We observed that BING reduced the RNA level of cpxR, an upstream regulator of envelope stress responses. cpxR is known to play a crucial role in the development of antimicrobial resistance, including the regulation of genes involved in drug efflux. BING downregulated the expression of efflux pump components mexB, mexY and oprM in P. aeruginosa and significantly synergised the toxicity of antibiotics towards these bacteria. In addition, exposure to sublethal doses of BING delayed the development of antibiotic resistance. To our knowledge, BING is the first AMP shown to suppress cpxR expression in Gram-negative bacteria. This discovery highlights the cpxR pathway as a potential antimicrobial target.202134108601
879990.9933The membrane-active polyaminoisoprenyl compound NV716 re-sensitizes Pseudomonas aeruginosa to antibiotics and reduces bacterial virulence. Pseudomonas aeruginosa is intrinsically resistant to many antibiotics due to the impermeability of its outer membrane and to the constitutive expression of efflux pumps. Here, we show that the polyaminoisoprenyl compound NV716 at sub-MIC concentrations re-sensitizes P. aeruginosa to abandoned antibiotics by binding to the lipopolysaccharides (LPS) of the outer membrane, permeabilizing this membrane and increasing antibiotic accumulation inside the bacteria. It also prevents selection of resistance to antibiotics and increases their activity against biofilms. No stable resistance could be selected to NV716-itself after serial passages with subinhibitory concentrations, but the transcriptome of the resulting daughter cells shows an upregulation of genes involved in the synthesis of lipid A and LPS, and a downregulation of quorum sensing-related genes. Accordingly, NV716 also reduces motility, virulence factors production, and biofilm formation. NV716 shows a unique and highly promising profile of activity when used alone or in combination with antibiotics against P. aeruginosa, combining in a single molecule anti-virulence and potentiator effects. Additional work is required to more thoroughly understand the various functions of NV716.202236008485
291100.9933Deregulation of translation due to post-transcriptional modification of rRNA explains why erm genes are inducible. A key mechanism of bacterial resistance to macrolide antibiotics is the dimethylation of a nucleotide in the large ribosomal subunit by erythromycin resistance methyltransferases. The majority of erm genes are expressed only when the antibiotic is present and the erythromycin resistance methyltransferase activity is critical for the survival of bacteria. Although these genes were among the first discovered inducible resistance genes, the molecular basis for their inducibility has remained unknown. Here we show that erythromycin resistance methyltransferase expression reduces cell fitness. Modification of the nucleotide in the ribosomal tunnel skews the cellular proteome by deregulating the expression of a set of proteins. We further demonstrate that aberrant translation of specific proteins results from abnormal interactions of the nascent peptide with the erythromycin resistance methyltransferase-modified ribosomal tunnel. Our findings provide a plausible explanation why erm genes have evolved to be inducible and underscore the importance of nascent peptide recognition by the ribosome for generating a balanced cellular proteome.201323749080
6181110.9933Two distinct major facilitator superfamily drug efflux pumps mediate chloramphenicol resistance in Streptomyces coelicolor. Chloramphenicol, florfenicol, and thiamphenicol are used as antibacterial drugs in clinical and veterinary medicine. Two efflux pumps of the major facilitator superfamily encoded by the cmlR1 and cmlR2 genes mediate resistance to these antibiotics in Streptomyces coelicolor, a close relative of Mycobacterium tuberculosis. The transcription of both genes was observed by reverse transcription-PCR. Disruption of cmlR1 decreased the chloramphenicol MIC 1.6-fold, while disruption of cmlR2 lowered the MIC 16-fold. The chloramphenicol MIC of wild-type S. coelicolor decreased fourfold and eightfold in the presence of reserpine and Phe-Arg-beta-naphthylamide, respectively. These compounds are known to potentiate the activity of some antibacterial drugs via efflux pump inhibition. While reserpine is known to potentiate drug activity against gram-positive bacteria, this is the first time that Phe-Arg-beta-naphthylamide has been shown to potentiate drug activity against a gram-positive bacterium.200919687245
765120.9933Yeast ATP-binding cassette transporters: cellular cleaning pumps. Numerous ATP-binding cassette (ABC) proteins have been implicated in multidrug resistance, and some are also intimately connected to genetic diseases. For example, mammalian ABC proteins such as P-glycoproteins or multidrug resistance-associated proteins are associated with multidrug resistance phenomena (MDR), thus hampering anticancer therapy. Likewise, homologues in bacteria, fungi, or parasites are tightly associated with multidrug and antibiotic resistance. Several orthologues of mammalian MDR genes operate in the unicellular eukaryote Saccharomyces cerevisiae. Their functions have been linked to stress response, cellular detoxification, and drug resistance. This chapter discusses those yeast ABC transporters implicated in pleiotropic drug resistance and cellular detoxification. We describe strategies for their overexpression, biochemical purification, functional analysis, and a reconstitution in phospholipid vesicles, all of which are instrumental to better understanding their mechanisms of action and perhaps their physiological function.200516399365
681130.9933Global transcriptional response to vancomycin in Mycobacterium tuberculosis. In order to gain additional understanding of the physiological mechanisms used by bacteria to maintain surface homeostasis and to identify potential targets for new antibacterial drugs, we analysed the variation of the Mycobacterium tuberculosis transcriptional profile in response to inhibitory and subinhibitory concentrations of vancomycin. Our analysis identified 153 genes differentially regulated after exposing bacteria to a concentration of the drug ten times higher than the MIC, and 141 genes differentially expressed when bacteria were growing in a concentration of the drug eightfold lower than the MIC. Hierarchical clustering analysis indicated that the response to these different conditions is different, although with some overlap. This approach allowed us to identify several genes whose products could be involved in the protection from antibiotic stress targeting the envelope and help to confer the basal level of M. tuberculosis resistance to antibacterial drugs, such as Rv2623 (UspA-like), Rv0116c, PE20-PPE31, PspA and proteins related to toxin-antitoxin systems. Moreover, we also demonstrated that the alternative sigma factor sigma(E) confers basal resistance to vancomycin, once again underlining its importance in the physiology of the mycobacterial surface stress response.200919332811
4696140.9933High-throughput transcriptomics of 409 bacteria-drug pairs reveals drivers of gut microbiota perturbation. Many drugs can perturb the gut microbiome, potentially leading to negative health consequences. However, mechanisms of most microorganism-drug responses have not been elucidated at the genetic level. Using high-throughput bacterial transcriptomics, we systematically characterized the gene expression profiles of prevalent human gut bacteria exposed to the most frequently prescribed orally administered pharmaceuticals. Across >400 drug-microorganism pairs, significant and reproducible transcriptional responses were observed, including pathways involved in multidrug resistance, metabolite transport, tartrate metabolism and riboflavin biosynthesis. Importantly, we discovered that statin-mediated upregulation of the AcrAB-TolC efflux pump in Bacteroidales species enhances microbial sensitivity to vitamin A and secondary bile acids. Moreover, gut bacteria carrying acrAB-tolC genes are depleted in patients taking simvastatin, suggesting that drug-efflux interactions generate collateral toxicity that depletes pump-containing microorganisms from patient microbiomes. This study provides a resource to further understand the drivers of drug-mediated microbiota shifts for better informed clinical interventions.202438233648
8353150.9932Adaptive loss of tRNA gene expression leads to phage resistance in a marine Synechococcus cyanobacterium. Synechococcus is a significant primary producer in the oceans, coexisting with cyanophages, which are important agents of mortality. Bacterial resistance against phage infection is a topic of significant interest, yet little is known for ecologically relevant systems. Here we use exogenous gene expression and gene disruption to investigate mechanisms underlying intracellular resistance of marine Synechococcus WH5701 to the Syn9 cyanophage. The restriction-modification and Gabija defence systems possessed by Synechococcus WH5701 did not contribute to resistance. Instead, resistance was primarily driven by insufficient levels of Leu(TAA) tRNA, preventing translation of key phage genes in a passive, intracellular mode of resistance. Restoring cellular tRNA expression rendered the cyanobacterium sensitive to infection. We propose an evolutionary scenario whereby changes in cell codon usage, acquisition of tRNAs by the phage and loss of cell and phage tRNA expression resulted in an effective means of resistance, highlighting the dynamic interplay between bacteria and phages in shaping their co-evolutionary trajectories.202539753669
564160.9932Mycobacterium tuberculosis possesses an unusual tmRNA rescue system. Trans-translation is a key process in bacteria which recycles stalled ribosomes and tags incomplete nascent proteins for degradation. This ensures the availability of ribosomes for protein synthesis and prevents the accumulation of dysfunctional proteins. The tmRNA, ssrA, is responsible for both recovering stalled ribosomes and encodes the degradation tag; ssrA associates and functions with accessory proteins such as SmpB. Although ssrA and smpB are ubiquitous in bacteria, they are not essential for the viability of many species. The Mycobacterium tuberculosis genome has homologues of both ssrA and smpB. We demonstrated that ssrA is essential in M. tuberculosis, since the chromosomal copy of the gene could only be deleted in the presence of a functional copy integrated elsewhere. However, we were able to delete the proteolytic tagging function by constructing strains carrying a mutant allele (ssrADD). This demonstrates that ribosome rescue by ssrA is the essential function in M. tuberculosis, SmpB was not required for aerobic growth, since we were able to construct a deletion strain. However, the smpBΔ strain was more sensitive to antibiotics targeting the ribosome. Strains with deletion of smpB or mutations in ssrA did not show increased sensitivity (or resistance) to pyrazinamide suggesting that this antibiotic does not directly target these components of the tmRNA tagging system.201424145139
229170.9932Molecular basis underlying Mycobacterium tuberculosis D-cycloserine resistance. Is there a role for ubiquinone and menaquinone metabolic pathways? INTRODUCTION: Tuberculosis remains a formidable threat to global public health. Multidrug-resistant tuberculosis presents increasing burden on the control strategy. D-Cycloserine (DCS) is an effective second-line drug against Mycobacterium tuberculosis (M. tuberculosis), the causative agent of tuberculosis. Though less potent than isoniazid (INH) and streptomycin, DCS is crucial for antibiotic-resistant tuberculosis. One advantage of DCS is that less drug-resistant M. tuberculosis is reported in comparison with first-line antituberculosis drugs such as INH and rifampin. AREAS COVERED: In this review, we summarise our current knowledge of DCS, and review the drug target and low-level resistance of DCS in M. tuberculosis. We summarise the metabolism of D-alanine (D-Ala) and peptidoglycan biosynthesis in bacteria. We first compared the amino acid similarity of Mycobacterium alanine racemase and D-Ala:D-alanine ligase and quite unexpectedly found that the two enzymes are highly conserved among Mycobacterium. EXPERT OPINION: We summarise the drug targets of DCS and possible mechanisms underlying its low-level resistance for the first time. One significant finding is that ubiquinone and menaquinone metabolism-related genes are novel genes underlying DCS resistance in Escherichia coli and with homologues in M. tuberculosis. Further understanding of DCS targets and basis for its low-level resistance might inspire us to improve the use of DCS or find better drug targets.201424773568
8354180.9932Are inflammatory phagocytes responsible for resistance to facultative intracellular bacteria? At least 38 deaths from listeriosis in the United States in recent months have drawn attention to how little we know about resistance to facultative intracellular bacteria. Much more is known about resistance to obligate intracellular parasites. Macrophages, activated by T cell-derived macrophage activating factors (MAF), are able to kill obligate intracellular parasites and tumor cells(1-10) including Leishmania, certain trypanosomes, Toxoplasma, the obligate intracellular bacterium Rickettsia, and perhaps bacteria such as mycobacteria and Legionella. However, macrophages, stimulated by MAF, may not be the only host cells which can defend against infection by facultative intracellular bacteria such as Salmonella typhimurium or Listeria monocytogenes. Six different observations made by Priscilla Campbell and colleagues, and by others, suggest that it is not the so-called 'activated' macrophage which is primarily responsible for resistance against facultative intracellular bacteria. Rather, she proposes that an early inflammatory cell recently recruited in response to an inflammatory stimulus - a cell whose presence seems to be under the control of immunologically-specific T cells - plays a critical role in resistance to infection by these organisms.198625289573
563190.9932Exit tunnel modulation as resistance mechanism of S. aureus erythromycin resistant mutant. The clinical use of the antibiotic erythromycin (ery) is hampered owing to the spread of resistance genes that are mostly mutating rRNA around the ery binding site at the entrance to the protein exit tunnel. Additional effective resistance mechanisms include deletion or insertion mutations in ribosomal protein uL22, which lead to alterations of the exit tunnel shape, located 16 Å away from the drug's binding site. We determined the cryo-EM structures of the Staphylococcus aureus 70S ribosome, and its ery bound complex with a two amino acid deletion mutation in its ß hairpin loop, which grants the bacteria resistance to ery. The structures reveal that, although the binding of ery is stable, the movement of the flexible shorter uL22 loop towards the tunnel wall creates a wider path for nascent proteins, thus enabling bypass of the barrier formed by the drug. Moreover, upon drug binding, the tunnel widens further.201931391518