# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3063 | 0 | 0.9684 | Antibiotic resistance among coliform and fecal coliform bacteria isolated from the freshwater mussel Hydridella menziesii. Freshwater mussels (Hydridella menziesii) collected from Lakes Rotoroa, Rotoiti, and Brunner, South Island, New Zealand, contained coliform and fecal coliform bacteria. The majority of these bacteria were resistant to one or more antibiotics, but none transferred streptomycin, tetracycline, or kanamycin resistance to an antibiotic-susceptible strain of Escherichia coli K-12. | 1976 | 779633 |
| 3623 | 1 | 0.9612 | Multiresistant bacteria: Invisible enemies of freshwater mussels. Freshwater mussels are among the most endangered groups of fauna anywhere in world. The indiscriminate use of antibiotics has led to the emergence of resistant strains. These antibiotic-resistant bacteria play a key role in increasing the risk allied with the use of surface water and in spread of resistance genes. Two endangered freshwater mussel species, Margaritifera margaritifera and Potomida littoralis, were sampled at 4 sampling sites along a 50 km stretch of River Tua. Water samples were taken at same sites. Of the total of 135 isolates, 64.44% (39.26% from water and 25.19% from mussels) were coliform bacteria. Site T1, with the lowest concentration of coliform bacteria, and site T2 were the only ones where M. margaritifera was found. No E. coli isolates were found in this species and the pattern between water and mussels was similar. P. littoralis, which was present at T3/T4 sites, is the one that faces the highest concentration of bacterial toxins, which are found in treated wastewater effluents and around population centers. Sites T3/T4 have the isolates (water and mussels) with the highest resistance pattern, mainly to β-lactams. Water and P. littoralis isolates (T3/T4) showed resistance to penicillins and their combination with clavulanic acid, and to cephalosporins, precisely to a fourth generation of cephalosporin antibiotics. The analysis provides important information on the risk to water systems, as well as the need to investigate possible management measures. It is suggested that future studies on the health status of freshwater bivalves should incorporate measures to indicate bacteriological water quality. | 2022 | 34902528 |
| 3734 | 2 | 0.9606 | Changes in the prevalence of resistant Escherichia coil in cattle receiving subcutaneously injectable oxytetracycline in addition to in-feed chlortetracycline compared with cattle receiving only in-feed chlortetracycline. Information about the prevalence of antibiotic resistance in commensal enteric bacteria is of interest because these bacteria are potential indicators of selection pressure on enteric bacteria and represent a reservoir of resistance genes in potentially pathogenic bacteria. This study reports changes in the prevalence of resistance to antibiotics in commensal Escherichia coli from cattle receiving either subcutaneously injectable oxytetracycline in addition to in-feed chlortetracycline or only in-feed chlortetracycline. Resistance to 19 antibiotics was examined. The use of injectable oxytetracycline in addition to in-feed chlortetracycline was significantly associated (P < 0.05) with an increase in the prevalence of resistance only to chloramphenicol and sulfisoxazole. | 2002 | 12146885 |
| 3672 | 3 | 0.9606 | Multiple antibiotic resistance of heterotrophic bacteria in the littoral zone of Lake Shira as an indicator of human impact on the ecosystem. Resistance to Ampicillin and Kanamycin displayed by heterotrophic bacteria isolated in Summer and in Spring from the littoral and the central parts of Lake Shira (a therapeutic lake in the Khakasia Republic, Russia) has been investigated. It has been found that in Summer, human and animal microflora featuring multiple antibiotic resistance (to Ampicillin and Kanamycin) predominates in all the studied stations of the littoral zone of the lake. In Spring, concentrations of bacteria featuring multiple antibiotic resistance decrease significantly and bacteria sensitive to antibiotics predominate in the lake. Emergence of multiple antibiotic resistance in bacteria of Lake Shira is caused by the input of allochthonous bacteria into the lake; this feature of heterotrophic bacteria of Lake Shira can be used to monitor the impact on the ecosystem made by health resorts. | 2008 | 16762536 |
| 8129 | 4 | 0.9604 | Pesticide contamination and antimicrobial resistance: Two threats to the Neotropical Otter (Lontra longicaudis) in the Peñas Blancas River Basin, Costa Rica. The effects of synthetic pesticides on antibiotic-resistance genes (ARGs) in bacterial communities from contaminated waters are unclear. Otters in the Peñas Blancas basin encounter various anthropogenic residues, including pesticides. In 2022, we analyzed the presence of pesticides in six water samples and ARGs in eight otter fecal samples. Thirteen pesticides (herbicides, insecticides, fungicides, and multi-target) and seven ARGs (qnrS, tetA, tetB, tetQ, tetW, sulI, sulII) were detected. Regulated pesticides such as chlorpyrifos and ethoprophos, along with diazinon, diuron, imidacloprid, and terbutryn were found. These pesticides have been implicated in promoting antimicrobial resistance (AMR) in bacteria, particularly when combined with sub-lethal doses of antibiotics. Elevated levels of ethoprophos (0.67 ng/L) and a fecal sample containing four ARGs (tetA, tetB, sulI, and sulII) came from the upper basin. Our findings reveal pesticide application practices in the region, and highlight the potential risk of pesticide exposure to wildlife, including development of AMR. | 2025 | 40473152 |
| 3863 | 5 | 0.9603 | Antibiotic resistance in mucosal bacteria from high Arctic migratory salmonids. Two related salmonids, Arctic char (Salvelinus alpinus) and lake whitefish (Coregonus clupeaformis) sampled from the high Arctic region of Nunavut, Canada are anadromous fish, migrating annually from the same ice-covered freshwater waterbodies to spend summers in the marine waters of the Arctic Ocean. Microbiota associated with the skin-associated mucus undergo community change coincident with migration, and irrespective of this turnover, antibiotic resistance was detected in mixed bacterial cultures initiated with mucus samples. Although as expected most bacteria were unculturable, however, 5/7 isolates showed susceptibility to a panel of five common antibiotics. The fish were sampled under severe conditions and at remote locations far from human habitation. Regardless, two isolates, 'Carnobacterium maltaromaticum sm-2' and 'Arthrobacter citreus sm', showed multi-resistance to two or more antibiotics including ampicillin and streptomycin indicating multiple resistance genes. It is unknown if these fish bacteria have 'natural' resistance phenotypes or if resistance has been acquired. As result of these observations, we urge long-term monitoring of drug-resistant bacteria in the region and caution the assumption of a lack of drug-resistant organisms even in such extreme environments. | 2022 | 34109745 |
| 3413 | 6 | 0.9597 | Tetracycline resistance gene tet(M) of a marine bacterial strain is not accumulated in bivalves from seawater in clam tank experiment and mussel monitoring. Antibiotic resistance genes (ARGs) are found in marine as well as terrestrial bacteria. Bivalves are known to accumulate chemical pollutants and pathogenic microbes, however, the fate of ARGs in bivalves after the intake of ARG-possessing bacteria is not known. Here we show that the copy number of oxytetracycline resistance gene tet(M) increased rapidly in the clam digestive tract by filtering water, then remained constant over 96h in a tank experiment even with the addition of tet(M)-possessing bacteria every 24h. >99.9% of the added tet(M) was decomposed, reaching a balanced state. Environmental sampling of mussel digestive tract and seawater supported the hypothesis that tet(M) was decomposed in bivalves as tet(M) was present in seawater from April to October at a concentration of 10(-5) to 10(-6) copies/16S, whereas tet(M) in mussels was mostly below the detection limit. Two (April) and three (July and October) individual mussels were positive for tet(M) with a concentration equivalent to that of seawater. We therefore conclude that bivalves do not accumulate tet(M) from seawater. | 2018 | 29627540 |
| 2995 | 7 | 0.9597 | Antibiotic resistance in bacteria from magpies (Pica pica) and rabbits (Oryctolagus cuniculus) from west Wales. The prevalence of antibiotic-resistant bacteria in wild animal and bird populations is largely unknown, with little consistency among the few published reports. We therefore examined intestinal bacteria from magpies (Pica pica) and rabbits (Oryctolagus cuniculus) collected in rural west Wales. Escherichia coli isolates resistant to multiple antibiotics were grown from eight of 20 magpies trapped in spring, 1999 and one of 17 in spring, 2000; the most prevalent resistance trait among these isolates was to tetracycline, but resistances to ampicillin, chloramphenicol, kanamycin, sulphonamide, tetracycline and trimethoprim were also found. Tetracycline-resistant Enterococcus spp. were found in one of 20 magpies in 1999 and three of 17 in 2000. Only one resistant E. coli isolate was detected among gut bacteria from 13 rabbits, and this strain was resistant only to tetracycline. Differences in the prevalence of resistance between bacteria from rabbits and magpies may reflect differences in diet: rabbits graze field edges, whereas magpies are omnivorous and opportunistic. The resistance genes found in E. coli isolates from magpies mostly corresponded to those common among human isolates, but those conferring tetracycline resistance were unique. | 2001 | 11722546 |
| 3671 | 8 | 0.9596 | Antibiotic resistance genes detected in the marine sponge Petromica citrina from Brazilian coast. Although antibiotic-resistant pathogens pose a significant threat to human health, the environmental reservoirs of the resistance determinants are still poorly understood. This study reports the detection of resistance genes (ermB, mecA, mupA, qnrA, qnrB and tetL) to antibiotics among certain culturable and unculturable bacteria associated with the marine sponge Petromica citrina. The antimicrobial activities elicited by P. citrina and its associated bacteria are also described. The results indicate that the marine environment could play an important role in the development of antibiotic resistance and the dissemination of resistance genes among bacteria. | 2016 | 27287338 |
| 3957 | 9 | 0.9594 | Antibiotic-Resistant Bacteria in Clams-A Study on Mussels in the River Rhine. Bacterial infections have been treated effectively by antibiotics since the discovery of penicillin in 1928. A worldwide increase in the use of antibiotics led to the emergence of antibiotic resistant strains in almost all bacterial pathogens, which complicates the treatment of infectious diseases. Antibiotic-resistant bacteria play an important role in increasing the risk associated with the usage of surface waters (e.g., irrigation, recreation) and the spread of the resistance genes. Many studies show that important pathogenic antibiotic-resistant bacteria can enter the environment by the discharge of sewage treatment plants and combined sewage overflow events. Mussels have successfully been used as bio-indicators of heavy metals, chemicals and parasites; they may also be efficient bio-indicators for viruses and bacteria. In this study an influence of the discharge of a sewage treatment plant could be shown in regard to the presence of E. coli in higher concentrations in the mussels downstream the treatment plant. Antibiotic-resistant bacteria, resistant against one or two classes of antibiotics and relevance for human health could be detected in the mussels at different sampling sites of the river Rhine. No multidrug-resistant bacteria could be isolated from the mussels, although they were found in samples of the surrounding water body. | 2021 | 34066054 |
| 3954 | 10 | 0.9590 | Evolution of transferable antibiotic resistance in coliform bacteria from remote environments. The influence of a mission hospital on the evolution of antibiotic resistance in coliform bacteria from a remote antibiotic-free Xhosa community and environment is described. | 1976 | 984780 |
| 6733 | 11 | 0.9589 | Bioavailability of tetracycline to antibiotic resistant Escherichia coli in water-clay systems. Tetracyclines are a class of antimicrobials frequently found in the environment, and have promoted the proliferation of antibiotic resistance. An unanswered research question is whether tetracycline sorbed to soils is still bioavailable to bacteria and exerts selective pressure on the bacterial community for the development of antibiotic resistance. In this study, bioreporter E. coli MC4100/pTGM strain was used to probe the bioavailability of tetracycline sorbed by smectite clay, a class of common soil minerals. Batch sorption experiments were conducted to prepare clay samples with a wide range of sorbed tetracycline concentration. The bioreporter was incubated with tetracycline-sorbed clay at different clay/solution ratios and water contents, as well as using dialysis tubings to prevent the direct contact between bacterial cells and clay particles. The expression of antibiotic resistance genes from the bioreporter was measured using a flow cytometer as a measurement of bioavailability/selective pressure. The direct contact of bioreporter cells to clay surfaces represented an important pathway facilitating bacterial access to clay-sorbed tetracycline. In clay-water suspensions, reducing solution volume rendered more bacteria to attach to clay surfaces enhancing the bioavailability of clay-sorbed tetracycline. The strong fluorescence emission from bioreporter cells on clay surfaces indicated that clay-sorbed tetracycline was still bioavailable to bacteria. The formation of biofilms on clay surfaces could increase bacterial access to clay-sorbed tetracycline. In addition, desorption of loosely sorbed tetracycline into bulk solution contributed to bacterial exposure and activation of the antibiotic resistance genes. Tetracycline sorbed by soil geosorbents could exert selective pressure on the surrounding microbial communities via bacterial exposure to tetracycline in solution from desorption and to the geosorbent-sorbed tetracycline as well. | 2018 | 30253298 |
| 5286 | 12 | 0.9586 | Water pollution and observation of acquired antibiotic resistance in Bayou Lafourche, a major drinking water source in Southeast Louisiana, USA. Antibiotics are known to enter the environment, not only by human excretion but also through livestock/aquaculture, healthcare facilities, and pharmaceutical industry waste. Once in the environment, antibiotics have the ability to provide a selective pressure in microbial communities thus selecting for resistance. Bayou Lafourche of Southeastern Louisiana serves as the raw source of drinking water for 300,000 people in the region and has previously been shown to receive high amounts of fecal contamination. Four sites along the bayou and one site from its input source on the Mississippi River were monitored for water chemistry, total and fecal coliform estimates, and presence of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARG) for a period of 1 year. Four waste-associated bacterial isolates were tested for resistance to antibiotics (tetracycline, sulfamethoxazole/trimethoprim, cefoxitin, meropenem, imipenem, erythromycin, and vancomycin). Resistant bacteria were further examined with PCR/electrophoresis to confirm the presence of antibiotic resistance genes (Sul1, tet(A), tet(W), tet(X), IMP, KPC, and OXA-48). The bayou appears to meet the Louisiana Department of Environmental Quality (LDEQ) criteria for water chemistry, yet fecal coliforms were consistently higher than LDEQ thresholds, thus indicating fecal contamination. Enterobacteriaceae isolates showed 13.6%, 10.9%, and 19.8% resistant to tetracycline, sulfamethoxazole/trimethoprim, and cefoxitin, respectively, and 11 isolates were confirmed for presence of either tet(A) or Sul1 resistance genes. High fecal coliforms and presence of ARB/ARG may both indicate a presence of anthropogenic or agricultural source of fecal contamination. | 2019 | 30612354 |
| 6732 | 13 | 0.9585 | Assessment of Bioavailability of Biochar-Sorbed Tetracycline to Escherichia coli for Activation of Antibiotic Resistance Genes. Human overuse and misuse of antibiotics have caused the wide dissemination of antibiotics in the environment, which has promoted the development and proliferation of antibiotic resistance genes (ARGs) in soils. Biochar (BC) with strong sorption affinity to many antibiotics is considered to sequester antibiotics and hence mitigate their impacts to bacterial communities in soils. However, little is known about whether BC-sorbed antibiotics are bioavailable and exert selective pressure on soil bacteria. In this study, we probed the bioavailability of tetracycline sorbed by BCs prepared from rice-, wheat-, maize-, and bean-straw feedstock using Escherichia coli MC4100/pTGM bioreporter strain. The results revealed that BC-sorbed tetracycline was still bioavailable to the E. coli attached to BC surfaces. Tetracycline sorbed by BCs prepared at 400 °C (BC400) demonstrated a higher bioavailability to bacteria compared to that sorbed by BCs prepared at 500 °C (BC500). Tetracycline could be sorbed primarily in the small pores of BC500 where bacteria could not access due to the size exclusion to bacteria. In contrast, tetracycline could be sorbed mainly on BC400 surfaces where bacteria could conveniently access tetracycline. Increasing the ambient humidity apparently enhanced the bioavailability of BC400-sorbed tetracycline. BC500-sorbed tetracycline exposed to varying levels of ambient humidity showed no significant changes in bioavailability, indicating that water could not effectively mobilize tetracycline from BC500 pores to surfaces where bacteria could access tetracycline. The results from this study suggest that BCs prepared at a higher pyrolysis temperature could be more effective to sequester tetracycline and mitigate the selective pressure on soil bacteria. | 2020 | 32786566 |
| 3726 | 14 | 0.9585 | Presence of antibiotic resistance genes in a sewage treatment plant in Thibodaux, Louisiana, USA. Increasing uses and disposals of antibiotics to the environment have increased emergence of various antibiotic resistance. One of the sources for the spread of antibiotic resistance is wastewater treatment plant, where bacteria and antibiotics can come in contact and can acquire antibiotics resistance. There are very few studies on this subject from a small town sewage treatment plant. Therefore, this study was conducted using raw sewage as well as treated sewage from a sewage treatment plant in Thibodaux in rural southeast Louisiana in USA. Samples were collected monthly from the Thibodaux sewage treatment plant and the presence of antibiotic resistance genes was monitored. The study showed the presence of antibiotic resistance genes in both raw and treated sewage in every month of the study period. The genetic transformation assay showed the successful transformation of methicillin resistant gene, mecA to an antibiotic sensitive Staphylococcus aureus, which became antibiotic resistant within 24h. | 2015 | 25662190 |
| 3056 | 15 | 0.9585 | Spread of a newly found trimethoprim resistance gene, dhfrIX, among porcine isolates and human pathogens. A plasmid-borne gene mediating trimethoprim resistance, dhfrIX, newly found among porcine strains of Escherichia coli, was observed at a frequency of 11% among trimethoprim-resistant veterinary isolates. This rather high frequency of dhfrIX could be due to the extensive use of trimethoprim in veterinary practice in Sweden. After searching several hundred clinical isolates, one human E. coli strain was also found to harbor the dhfrIX gene. Thus, the dhfrIX gene seems to have spread from porcine bacteria to human pathogens. Furthermore, the occurrence of other genes coding for resistant dihydrofolate reductase enzymes (dhfrI, dhfrII, dhfrV, dhfrVII, and dhfrVIII) among the porcine isolates was investigated. In addition, association of dhfr genes with the integraselike open reading frames of transposons Tn7 and Tn21 was studied. In colony hybridization experiments, both dhfrI and dhfrII were found associated with these integrase genes. The most common combination was dhfrI and int-Tn7, indicating a high prevalence of Tn7. | 1992 | 1482138 |
| 7422 | 16 | 0.9584 | Microplastic-Mediated Transfer of Tetracycline Resistance: Unveiling the Role of Mussels in Marine Ecosystems. The global threat of antimicrobial resistance (AMR) is exacerbated by the mobilization of antimicrobial resistance genes (ARGs) occurring in different environmental niches, including seawater. Marine environments serve as reservoirs for resistant bacteria and ARGs, further complicated by the ubiquity of microplastics (MPs). MPs can adsorb pollutants and promote bacterial biofilm formation, creating conditions favorable to the dissemination of ARGs. This study explores the dynamics of ARG transfer in the marine bivalve Mytilus galloprovincialis within a seawater model, focusing on the influence of polyethylene MPs on the mobilization of the Tn916-carrying tetM gene and plasmid-encoded ermB. Experiments revealed that biofilm formation on MPs by Enterococcus faecium and Listeria monocytogenes facilitated the transfer of the tetM resistance gene, but not the ermB gene. Furthermore, the presence of MPs significantly increased the conjugation frequency of tetM within mussels, indicating that MPs enhance the potential for ARG mobilization in marine environments. These findings highlight the role of MPs and marine organisms in ARG spread, underscoring the ecological and public health implications. | 2024 | 39200027 |
| 6130 | 17 | 0.9584 | Characterization of the virulence, growth temperature and antibiotic resistance of the Campylobacter jejuni IAL 2383 strain isolated from humans. The objective of this study was to characterize the C. jejuni IAL2383 strain isolated from humans in Brazil. Transcripts for the racR, dnaJ and ciaB genes were found and flaA, plda and cadF genes were present in the genome and bacteria was sensitive to most of the important antimicrobials used to treat humans. C. jejuni IAL2383 is a good experimental model to analyze the interactions with cells. | 2014 | 24948944 |
| 3958 | 18 | 0.9583 | Antimicrobial-Resistant Bacteria Carriage in Rodents According to Habitat Anthropization. It is increasingly suggested that the dynamics of antimicrobial-resistant bacteria in the wild are mostly anthropogenically driven, but the spatial and temporal scales at which these phenomena occur in landscapes are only partially understood. Here, we explore this topic by studying antimicrobial resistance in the commensal bacteria from micromammals sampled at 12 sites from a large heterogenous landscape (the Carmargue area, Rhone Delta) along a gradient of anthropization: natural reserves, rural areas, towns, and sewage-water treatment plants. There was a positive relationship between the frequency of antimicrobial-resistant bacteria and the level of habitat anthropization. Although low, antimicrobial resistance was also present in natural reserves, even in the oldest one, founded in 1954. This study is one of the first to support the idea that rodents in human-altered habitats are important components of the environmental pool of resistance to clinically relevant antimicrobials and also that a "One Health" approach is required to assess issues related to antimicrobial resistance dynamics in anthropized landscapes. | 2023 | 37140742 |
| 9110 | 19 | 0.9582 | Bacterial resistance to antibiotics: the role of biofilms. Bacteria adhere to natural and synthetic, medically important surfaces within an extracellular polymer generically termed the glycocalyx. This quasi-structure is a biofilm. The enhanced antibiotic resistance of biofilm bacteria, relative to floating (planktonic) bacteria, encourages the establishment of chronic bacterial infections. Resistance mechanisms include the hinderance of antibiotic diffusion by the glycocalyx, the physiology of the bacteria and the environment conditions of the niche in which the biofilm resides. | 1991 | 1763187 |