# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 842 | 0 | 0.9981 | Molecular characterization of antimicrobial resistance genes and plasmid profiles in enterobacterales isolated from urinary tract infections in rural outpatient women in Otavalo, Ecuador. BACKGROUND: The rise of antibiotic-resistant bacteria poses a significant public health threat, particularly in the context of urinary tract infections (UTIs), which rank as the second most common ambulatory illness. UTIs are often caused by Enterobacterales species, such as Escherichia coli and Klebsiella pneumoniae, with increasing resistance to critical antibiotics complicating treatment. Indigenous rural populations, like those in Ecuador, face unique challenges due to cultural, social, and economic barriers that hinder access to healthcare, exacerbating the issue of antibiotic resistance. METHODS: This study analyzed 154 Enterobacterales strains isolated from ambulatory UTI cases in outpatiens from Otavalo, Ecuador, between October 2021 and February 2022. DNA was extracted, and the presence of antibiotic resistance genes (ARGs) was screened using PCR for extended-spectrum beta-lactamases and carbapenemases. Plasmid incompatibility groups were identified through replicon typing, and multi-locus sequence typing (MLST) was performed to characterize strains. RESULTS: The analysis revealed four prevalent ARGs, with bla(TEM) being the most common (87.01% of isolates), followed by bla(CTX-M-1) (44.16%), bla(SHV) (18.83%), and bla(CTX-M-9) (13.64%). No carbapenemases or mcr-1 genes were detected. Among the incompatibility groups, IncFIB, IncF, and IncY were the most prevalent. A diverse array of ARG combinations was observed, indicating significant plasmid-mediated genetic plasticity. MLST identified 33 distinct sequence types among E. coli isolates, with ST10 and ST3944 being the most frequent. For K. pneumoniae, ST15 and ST25 were predominant. CONCLUSIONS: This study reveals significant antibiotic resistance among Enterobacterales from urinary tract infections in rural outpatients in Ecuador. The bla(TEM) gene was found in 87.01% of isolates, with notable clones like E. coli ST10 and ST3944 linked to extraintestinal infections. K. pneumoniae ST15 and ST25 were prevalent, indicating multidrug resistance. The findings highlight the need for ongoing surveillance and targeted public health strategies to combat resistance in these vulnerable communities. | 2025 | 41131447 |
| 1637 | 1 | 0.9980 | Genomic surveillance of antimicrobial resistance in bovine fecal samples from Lebanon. Antimicrobial resistance (AMR) threatens human and animal health worldwide, driven by the spread of extended-spectrum β-lactamase (ESBL)-producing, and carbapenem-resistant Gram-negative bacteria. In Lebanon, inadequate surveillance and antibiotic misuse worsen the issue. Animal fecal material is an important reservoir of resistance genes and mobile elements. This study aims to address AMR in bovine feces. To achieve this, bovine fecal samples were collected from 24 farms in Lebanon. Sixty-two ESBL-producing bacteria were recovered on CHROMagar ESBL and whole-genome sequencing followed by in silico typing was used to determine the resistance genes, virulence factors, and mobile genetic elements. Disk diffusion assay revealed the prevalence of multidrug-resistant (MDR) Gram-negative bacteria (33/62) with Escherichia coli being the most common (37/62). Resistance to amoxicillin, ceftriaxone, and cefotaxime was detected in all 37 E. coli isolates, with one also exhibiting resistance to colistin. β-lactam resistance was primarily associated with bla(CTX-M-15) and bla(TEM-1B), while colistin resistance was linked to mcr-1.1 on an IncHI2A/IncFIC multi-replicon plasmid. Plasmid typing identified 22 replicons, the most common being IncFIB and IncFII. Virulence factor analysis identified enterotoxin-encoding genes in one E. coli isolate, suggesting a potentially pathogenic strain with diarrheagenic properties among the recovered isolates. The findings of this study revealed highly resistant Gram-negative bacteria with plasmid-mediated resistance to critical antibiotics such as colistin, emphasizing the risks posed to human and livestock health. Comprehensive surveillance and responsible antibiotic use, guided by an integrated One Health approach, are essential steps to effectively tackle the interconnected challenges of AMR. | 2025 | 40482361 |
| 1854 | 2 | 0.9980 | Whole genome analysis reveals the distribution and diversity of plasmid reservoirs of NDM and MCR in commercial chicken farms in China. The increase in multidrug-resistant (MDR) Enterobacteriaceae presents a significant challenge to clinical treatment, particularly in infections where carbapenems and colistin serve as the last-resort antimicrobial agents. In this study, we isolated 119 non-repetitive gram-negative bacteria from MacConkey medium supplemented with imipenem and colistin. The isolates were dominated by Klebsiella pneumoniae (58.0%, n = 69) and Escherichia coli (31.1%, n = 37). The predominant sequence types (STs) of E. coli were ST226, ST1286, and ST11738, whereas K. pneumoniae displayed ST152, ST395, and ST709 as major types. Genomic analysis identified mcr-1/3/8/9 in 44 strains and bla(NDM) in 63 strains across various species. IncX3 (n = 57) and IncFII (n = 5) were the most common bla(NDM-5)-carrying plasmid types. Several plasmid replicons were associated with mcr genes, including IncI2, IncX4, and novel plasmids. Remarkably, we discovered four combinations of bla(NDM) and mcr co-occurrence in 28 isolates, including bla(NDM-5)/mcr-1, bla(NDM-5)/mcr-3, bla(NDM-5)/mcr-8, and bla(NDM-5)/mcr-9. Our findings reveal that chicken farms are significant reservoirs for both bla(NDM) and mcr genes, with frequent co-occurrence of these resistance determinants. The presence of these genes alongside other resistance factors, such as blaESBL, highlights a critical public health risk. This study underscores the need for enhanced surveillance and intervention strategies to mitigate the spread of MDR pathogens from agricultural environments to clinical settings.IMPORTANCEThis study reveals that commercial poultry farms in China serve as critical reservoirs for MDR gram-negative bacteria harboring carbapenemase (bla(NDM)) and mobilized colistin resistance (mcr) genes. By analyzing 119 isolates, we uncovered extensive genetic diversity and plasmid-mediated co-occurrence of these resistance determinants, enabling bacteria to evade nearly all available treatments. Alarmingly, the horizontal transfer of resistance genes via highly mobile plasmids facilitates their spread across microbial communities and potentially into clinical settings. These findings underscore the urgent need to address antibiotic overuse in agriculture and strengthen surveillance under the One Health framework. The persistence of MDR pathogens in poultry environments highlights a significant risk for zoonotic transmission, emphasizing the necessity of coordinated interventions to curb the global antimicrobial resistance crisis. | 2025 | 40488461 |
| 1667 | 3 | 0.9980 | Colistin Resistance Gene mcr-8 in a High-Risk Sequence Type 15 Klebsiella pneumoniae Isolate from Kenya. The emergence and rise of mobile colistin resistance genes are of great global concern due to the ease of transfer of resistance to other bacteria. This report describes the genome of a colistin- and multidrug-resistant Klebsiella pneumoniae isolate bearing mcr-8, obtained from a hospitalized patient in Kenya. | 2020 | 32972937 |
| 867 | 4 | 0.9980 | Epidemiology and Mechanism of Drug Resistance of Multidrug-Resistant Klebsiella Pneumoniae Isolated from Patients with Urinary Tract Infection in Beijing Teaching Hospital, China. PURPOSE: Klebsiella pneumoniae is an important pathogenic bacterium in causing urinary tract infection. With the overuse of antibiotics, bacteria resistant to quinolones combined with carbapenems are increasing. In this study, we investigated the epidemiology, molecular characteristics, drug resistance of multidrug-resistant Klebsiella pneumoniae (MDR-KPN) isolated from urine samples. It provides theoretical basis for the treatment of urinary tract infection by clinicians. PATIENTS AND METHODS: Fifty-one strains of Klebsiella pneumonia were obtained from urine samples collected between 2012 and 2017 in total. All the strains are multi-drug resistant bacteria. This paper used multilocus sequence typing (MLST) to determine molecular epidemiological typing. We performed antimicrobial susceptibility testing and investigated quinolones and carbapenems resistance genes. RESULTS: The strains which we collected were resistant to ciprofloxacin and Levofloxacin. In an epidemiological analysis using MLST, 86.27% (44/51) of isolates were confirmed to be ST11. The main carbapenem resistance gene was KPC-19, 78.43(40/51). Among the quinolone resistance genes, the major resistance genes were aac(6')-Ib-cr, oqxA and oqxB. CONCLUSION: The main molecular epidemiological types we detected was ST11. The main resistance gene of carbapenems was KPC-19. The quinolone resistance genes are mainly aac(6')-Ib-cr, oqxA and oqxB. The experimental results can help control the use of quinolones and carbapenems, and we could provide rational drug use basis for clinicians to treat urinary tract infection. For MDR-KPN, a combination of multiple antibiotics is necessary. | 2025 | 39803309 |
| 1740 | 5 | 0.9980 | MDR Escherichia coli carrying CTX-M-24 (IncF[F-:A1:B32]) and KPC-2 (IncX3/IncU) plasmids isolated from community-acquired urinary trainfection in Brazil. Acquired antibiotic resistance in bacteria has become an important worldwide challenge. Currently, several bacteria, including Escherichia coli, have multidrug resistance profiles. Genes such as bla CTX-M-24 and bla KPC-2 (carbapenemase) are widespread. This research letter reports about a genomic surveillance study where multidrug-resistant E. coli containing CTX-M-24(IncF [F-:A1:B32]) and KPC-2(IncX3/IncU) plasmids were obtained from community- acquired urinary tract infection in Brazil. | 2022 | 36228665 |
| 1525 | 6 | 0.9980 | Genetic Characterization of Enterobacter hormaechei Co-Harboring bla (NDM-1) and mcr-9 Causing Upper Respiratory Tract Infection. PURPOSE: With the spread of multiple drug-resistant bacteria, bla (NDM-1) and mcr-9 have been detected in various bacteria worldwide. However, the simultaneous detection of bla (NDM-1) and mcr-9 in Enterobacter hormaechei has been rarely reported. This study identified an E. hormaechei strain carrying both bla (NDM-1) and mcr-9. We investigated the genetic characteristics of these two resistance genes in detail, elucidating various potential mechanisms by which they may be transmitted. METHODS: Bacterial genomic features and possible origins were assessed by whole-genome sequencing (WGS) with Illumina and PacBio platforms and phylogenetic analysis. Subsequent investigations were performed, including antimicrobial susceptibility testing and multilocus sequence typing (MLST). RESULTS: We isolated an E. hormaechei strain DY1901 carrying both bla (NDM-1) and mcr-9 from the sputum sample. Susceptibility testing showed that the isolate was multidrug-resistant. Multiple antibiotic resistance genes and virulence genes are widely distributed in DY1901. S1-PFGE, Southern blotting, and plasmid replicon typing showed that DY1901 carried four plasmids. The plasmid carrying mcr-9 was 259Kb in size and belonged to IncHI2, while the plasmid carrying bla (NDM-1) was 45Kb in length and belonged to IncX3. CONCLUSION: The E. hormaechei strain isolated in this study has a broad antibiotic resistance spectrum, posing a challenge to clinical treatment. Plasmids carrying mcr-9 are fusion plasmids, and those taking NDM are widely disseminated in China, suggesting that we should conduct routine genomic surveillance on such plasmids to curb the spread of drug-resistant bacteria in the region. | 2022 | 36068833 |
| 882 | 7 | 0.9980 | Ceftriaxone-resistant Salmonella enterica serotype typhimurium sequence type 313 from Kenyan patients is associated with the blaCTX-M-15 gene on a novel IncHI2 plasmid. Multidrug-resistant bacteria pose a major challenge to the clinical management of infections in resource-poor settings. Although nontyphoidal Salmonella (NTS) bacteria cause predominantly enteric self-limiting illness in developed countries, NTS is responsible for a huge burden of life-threatening bloodstream infections in sub-Saharan Africa. Here, we characterized nine S. Typhimurium isolates from an outbreak involving patients who initially failed to respond to ceftriaxone treatment at a referral hospital in Kenya. These Salmonella enterica serotype Typhimurium isolates were resistant to ampicillin, chloramphenicol, cefuroxime, ceftriaxone, aztreonam, cefepime, sulfamethoxazole-trimethoprim, and cefpodoxime. Resistance to β-lactams, including to ceftriaxone, was associated with carriage of a combination of blaCTX-M-15, blaOXA-1, and blaTEM-1 genes. The genes encoding resistance to heavy-metal ions were borne on the novel IncHI2 plasmid pKST313, which also carried a pair of class 1 integrons. All nine isolates formed a single clade within S. Typhimurium ST313, the major clone of an ongoing invasive NTS epidemic in the region. This emerging ceftriaxone-resistant clone may pose a major challenge in the management of invasive NTS in sub-Saharan Africa. | 2015 | 25779570 |
| 868 | 8 | 0.9980 | Antimicrobial susceptibility and genetic characteristics of multi-drug resistant Acinetobacter baumannii isolates in Northwest China. INTRODUCTION: In recent decades, widespread multi-drug resistant (MDR) bacteria have become a serious problem in healthcare facilities. METHODS: To systematically summarize and investigate the prevalence and genomic features of clinical MDR Acinetobacter baumannii (A. baumannii) clinical isolates recovered from the first hospital of Lanzhou University, we collected 50 MDR A. baumannii isolates isolated in the first quarter of 2022 and using whole-genome sequencing investigate the genotypic characteristics. RESULTS: All of these isolates were generally resistant to the common β-lactamase antibiotics. Resistance to cefoperazone-sulbactam varies greatly between different clones. The proportion of CC208 isolates resistant and mediated to cefoperazone-sulbactam is as high as 84.6%. There were no isolates resistant to tigecycline and colistin. The presence of bla(OXA - 23) (94.0%) and bla(OXA - 66) (98.0%) were the most frequent determinants for carbapenem resistance. Two main endemic clones were identified, one (ST469(oxf)) was predominantly circulating in ICUs and carried the same resistance genes, virulence genes and transposons, and the other clone (CC208) carried more resistance genes and had more widely disseminated. DISCUSSION: Our study showed that clinical MDR A. baumannii isolates circulating in our hospital exhibited highly similar genetic features. We should take timely and effective measures to control the further epidemic of these isolates. | 2024 | 38746749 |
| 1086 | 9 | 0.9980 | Antimicrobial Resistance Profiles and Co-Existence of Multiple Antimicrobial Resistance Genes in mcr-Harbouring Colistin-Resistant Enterobacteriaceae Isolates Recovered from Poultry and Poultry Meats in Malaysia. The co-existence of the colistin resistance (mcr) gene with multiple drug-resistance genes has raised concerns about the possibility of the development of pan-drug-resistant bacteria that will complicate treatment. This study aimed to investigate the antibiotic resistance profiles and co-existence of antibiotic resistance genes among the colistin-resistant Enterobacteriaceae isolates recovered from poultry and poultry meats. The antibiotic susceptibility to various classes of antibiotics was performed using the Kirby-Bauer disk diffusion method and selected antimicrobial resistance genes were detected using PCR in a total of 54 colistin-resistant Enterobacteriaceae isolates including Escherichia coli (E. coli) (n = 32), Salmonella spp. (n = 16) and Klebsiella pneumoniae (K. pneumoniae) (n = 6) isolates. Most of the isolates had multi-drug resistance (MDR), with antibiotic resistance against up to seven classes of antibiotics. All mcr-harbouring, colistin-resistant Enterobacteriaceae isolates showed this MDR (100%) phenotype. The mcr-1 harbouring E. coli isolates were co-harbouring multiple antibiotic resistance genes. The seven most commonly identified resistance genes ((bla)TEM, tetA, floR, aac-3-IV, aadA1, fosA, aac(6_)-lb) were detected in an mcr-1-harbouring E. coli isolate recovered from a cloacal swab. The mcr-5 harbouring Salmonella spp. isolate recovered from poultry meats was positive for (bla)TEM, tetA, floR, aac-3-IV, fosA and aac(6_)-lb genes. In conclusion, the colistin-resistant Enterobacteriaceae with mcr genes co-existing multiple clinically important antimicrobial resistance genes in poultry and poultry meats may cause potential future threats to infection treatment choices in humans and animals. | 2023 | 37370378 |
| 1526 | 10 | 0.9979 | Carbapenem resistance determinants and their transmissibility among clinically isolated Enterobacterales in Lebanon. BACKGROUND: The occurrence of carbapenem-resistant bacterial infections has increased significantly over the years with Gram-negative bacteria exhibiting the broadest resistance range. In this study we aimed to investigate the genomic characteristics of clinical carbapenem-resistant Enterobacterales (CRE). METHODS: Seventeen representative multi-drug resistant (MDR) isolates from a hospital setting showing high level of resistance to carbapenems (ertapenem, meropenem and imipenem) were chosen for further characterization through whole-genome sequencing. Resistance mechanisms and transferability of plasmids carrying carbapenemase-encoding genes were also determined in silico and through conjugative mating assays. RESULTS: We detected 18 different β-lactamases, including four carbapenemases (bla(NDM-1), bla(NDM-5), bla(NDM-7), bla(OXA-48)) on plasmids with different Inc groups. The combined results from PBRT and in silico replicon typing revealed 20 different replicons linked to plasmids ranging in size between 80 and 200 kb. The most prevalent Inc groups were IncFIB(K) and IncM. OXA-48, detected on 76-kb IncM1 conjugable plasmid, was the most common carbapenemase. We also detected other conjugative plasmids with different carbapenemases confirming the role of horizontal gene transfer in the dissemination of antimicrobial resistance genes. CONCLUSION: Our findings verified the continuing spread of carbapenemases in Enterobacterales and revealed the types of mobile elements circulating in a hospital setting and contributing to the spread of resistance determinants. The occurrence and transmission of plasmids carrying carbapenemase-encoding genes call for strengthening active surveillance and prevention efforts to control antimicrobial resistance dissemination in healthcare settings. | 2023 | 37871361 |
| 1842 | 11 | 0.9979 | Emergence of mcr-9.1 in Extended-Spectrum-β-Lactamase-Producing Clinical Enterobacteriaceae in Pretoria, South Africa: Global Evolutionary Phylogenomics, Resistome, and Mobilome. Extended-spectrum-β-lactamase (ESBL)-producing Enterobacteriaceae are critical-priority pathogens that cause substantial fatalities. With the emergence of mobile mcr genes mediating resistance to colistin in Enterobacteriaceae, clinicians are now left with few therapeutic options. Eleven clinical Enterobacteriaceae strains with resistance to cephems and/or colistin were genomically analyzed to determine their resistomes, mobilomes, and evolutionary relationships to global strains. The global phylogenomics of mcr genes and mcr-9.1-bearing genomes were further analyzed. Ten isolates were ESBL positive. The isolates were multidrug resistant and phylogenetically related to global clones but distant from local strains. Multiple resistance genes, including bla (CTX-M-15) bla (TEM-1), and mcr-9.1, were found in single isolates; ISEc9, IS19, and Tn3 transposons bracketed bla (CTX-M-15) and bla (TEM-1) Common plasmid types included IncF, IncH, and ColRNAI. mcr-9 was of close sequence identity to mcr-3, mcr-5, mcr-7, mcr-8, and mcr-10. Genomes bearing mcr-9.1 clustered into six main phyletic groups (A to F), with those of this study belonging to clade B. Enterobacter species and Salmonella species are the main hosts of mcr-9.1 globally, although diverse promiscuous plasmids disseminate mcr-9.1 across different bacterial species. Emergence of mcr-9.1 in ESBL-producing Enterobacteriaceae in South Africa is worrying, due to the restricted therapeutic options. Intensive One Health molecular surveillance might discover other mcr alleles and inform infection management and antibiotic choices.IMPORTANCE Colistin is currently the last-resort antibiotic for difficult-to-treat bacterial infections. However, colistin resistance genes that can move from bacteria to bacteria have emerged, threatening the safe treatment of many bacterial infections. One of these genes, mcr-9.1, has emerged in South Africa in bacteria that are multidrug resistant, further limiting treatment options for clinicians. In this work, we show that this new gene is disseminating worldwide through Enterobacter and Salmonella species through multiple plasmids. This worrying observation requires urgent action to prevent further escalation of this gene in South Africa and Africa. | 2020 | 32430406 |
| 859 | 12 | 0.9979 | Analysis of mcr family of colistin resistance genes in Gram-negative isolates from a tertiary care hospital in India. AIM: Colistin serves as the drug of last resort for combating numerous multidrug-resistant (MDR) Gram-negative infections. Its efficacy is hampered by the prevalent issue of colistin resistance, which severely limits treatment options for critically ill patients. Identifying resistance genes is crucial for controlling resistance spread, with horizontal gene transfer being the primary mechanism among bacteria. This study aimed to assess the prevalence of plasmid-mediated mcr genes associated with colistin resistance in Gram-negative bacteria, utilizing both genotypic and phenotypic tests. METHODS AND RESULTS: The clinical isolates (n = 913) were obtained from a tertiary care center in Chennai, India. Colistin resistance was seen among Gram-negative isolates. These strains underwent screening for mcr-1, mcr-3, mcr-4, and mcr-5 genes via conventional PCR. Additionally, mcr-positive isolates were confirmed through Sanger sequencing and phenotypic testing. The bacterial isolates predominantly comprised Klebsiella pneumoniae (62.43%), Escherichia coli (19.71%), Pseudomonas aeruginosa (10.73%), and Acinetobacter baumannii (4.81%), along with other species. All isolates exhibited multidrug resistance to three or more antibiotic classes. Colistin resistance, determined via broth microdilution (BMD) using CLSI guidelines, was observed in 13.08% of the isolates studied. Notably, mcr-5 was detected in K. pneumoniae in PCR, despite its absence in Sanger sequencing and phenotypic tests (including the combined-disk test, colistin MIC in the presence of EDTA, and Zeta potential assays). This finding underscores the importance of employing multiple diagnostic approaches to accurately identify colistin resistance mechanisms. | 2024 | 38986507 |
| 1742 | 13 | 0.9979 | Shelter dogs as reservoirs of international clones of Escherichia coli carrying mcr-1.1 and bla(CTX-M) resistance genes in Lima, Peru. Antimicrobial resistance (AMR) poses a critical public health threat worldwide, particularly at the human-animal interface where cross-transmission of critical priority Enterobacterales, such as Escherichia coli, have become increasingly reported. Worryingly, E. coli encoding extended-spectrum β-lactamases (ESBLs) has been documented in companion animals worldwide. Conversely, the presence of mcr genes, which confer resistance to polymyxins, in bacteria from pets remains more infrequent. In this study, we sequenced and reported on the first genomic data of E. coli strains carrying mcr-1 and/or bla(CTX-M) genes isolated from rectal swabs of stray dogs in a shelter in the city of Lima, Peru. Antimicrobial susceptibility revealed that E. coli strains exhibited a multidrug resistance profile. In addition to mcr-1 and bla(CTX-M) genes, other clinically relevant resistance determinants were identified, with notably presence of bla(TEM-176) and the novel bla(SCO-2) variant. The association of mcr-1.1 and IncI2 plasmid was confirmed. Several virulence genes were detected, classifying strains as putative extraintestinal pathogenic E. coli. Multilocus sequence typing prediction recognized diverse sequence types (ST), including ST155, ST189, ST657, ST746, ST1140, ST3014, and ST7188. This study represents the first report of mcr-positive E. coli in dogs from Peru, emphasizing the need for continuous surveillance and genomic characterization to better understand the transmission dynamics of these critical resistance genes at the human-animal interface. Furthermore, our results provide evidence that stray, and shelter dogs could be a reservoir for the spread of WHO priority pathogens, and/or polymyxin and β-lactam resistance genes, which is a public health and One Health concern that requires appropriate management strategies. | 2025 | 40339258 |
| 1880 | 14 | 0.9979 | Emergence and Dissemination of mcr-Carrying Clinically Relevant Salmonella Typhimurium Monophasic Clone ST34. Antibiotic resistance in bacteria is one of the urgent threats to both public and global health. The Salmonella Typhimurium monophasic sequence type 34 (ST34) clone, with its rapid dissemination and resistance to numerous critical antimicrobials, has raised global concerns. Here, we present an updated overview on the emerging infections caused by mobile colistin resistance (mcr)-carrying colistin-resistant ST34 isolates, covering their global dissemination and virulence-associated efficacy. The higher rates of mcr-1-positive ST34 in children in China highlights the increasing threat caused by this pathogen. Most of the ST34 isolates carrying the mcr-1 gene were isolated from animals and food products, indicating the role of foodborne transmission of mcr-1. The emergence of multidrug resistance genes along with various virulence factors and many heavy metal resistance genes on the chromosome and plasmid from ST34 isolates will challenge available therapeutic options. The presence of the colistin resistance gene (mcr-1, mcr-3, and mcr-5) with the multidrug-resistant phenotype in ST34 has spread across different countries, and most of the mcr-1 genes in ST34 isolates were detected in plasmid type IncHI2 followed by IncI2, and IncX4. Together, mcr-carrying S. Typhimurium ST34 may become a new pandemic clone. The fast detection and active surveillance in community, hospital, animal herds, food products and environment are urgently warranted. | 2019 | 31466338 |
| 1136 | 15 | 0.9979 | Multidrug-Resistant Shigella Infections in Patients with Diarrhea, Cambodia, 2014-2015. We observed multidrug resistance in 10 (91%) of 11 Shigella isolates from a diarrheal surveillance study in Cambodia. One isolate was resistant to fluoroquinolones and cephalosporins and showed decreased susceptibility to azithromycin. We found mutations in gyrA, parC, β-lactamase, and mphA genes. Multidrug resistance increases concern about shigellosis treatment options. | 2016 | 27532684 |
| 1680 | 16 | 0.9979 | Emergence of carbapenem resistant gram-negative pathogens with high rate of colistin resistance in Egypt: A cross sectional study to assess resistance trends during the COVID-19 pandemic. The current study investigated the temporal phenotypic and genotypic antimicrobial resistance (AMR) trends among multi-drug resistant and carbapenem-resistant Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa recovered from Egyptian clinical settings between 2020 and 2021. Bacterial identification and antimicrobial sensitivity of 111 clinical isolates against a panel of antibiotics were performed. Molecular screening for antibiotic resistance determinants along with integrons and associated gene cassettes was implemented. An alarming rate (98.2%) of these isolates were found to be phenotypically resistant to carbapenem. Although 23.9 % K. pneumoniae isolates were phenotypically resistant to colistin, no mobile colistin resistance (mcr) genes were detected. Among carbapenem-resistant isolates, bla(NDM) and bla(OXA-48)-like were the most prevalent genetic determinants and were significantly overrepresented among K. pneumoniae. Furthermore, 84.78% of K. pneumoniae isolates co-produced these two carbapenemase genes. The plasmid-mediated quinolone resistance genes (qnrS and qnrB) were detected among the bacterial species and were significantly more prevalent among K. pneumoniae. Moreover, Class 1 integron was detected in 82% of the bacterial isolates. This study alarmingly reveals elevated resistance to last-resort antibiotics such as carbapenems as well as colistin which impose a considerable burden in the health care settings in Egypt. Our future work will implement high throughput sequencing-based antimicrobial resistance surveillance analysis for characterization of novel AMR determinants. This information could be applied as a step forward to establish a robust antibiotic stewardship program in Egyptian clinical settings, thereby addressing the rising challenges of AMR. | 2024 | 38494251 |
| 1746 | 17 | 0.9979 | New Multidrug-Resistant Salmonella enterica Serovar Anatum Clone, Taiwan, 2015-2017. In 2011, a Salmonella enterica serovar Anatum clone emerged in Taiwan. During 2016-2017, infections increased dramatically, strongly associated with emergence and spread of multidrug-resistant strains with a plasmid carrying 11 resistance genes, including bla(DHA-1). Because these resistant strains infect humans and food animals, control measures are urgently needed. | 2019 | 30561315 |
| 1688 | 18 | 0.9979 | Carriage of colistin-resistant Gram-negative bacteria in children from communities in Cape Town (Tuberculosis child multidrug-resistant preventive therapy trial sub-study). Colistin is a last-resort antibiotic against multidrug-resistant, Gram-negative bacteria. Colistin resistance has been described in the clinical settings in South Africa. However, information on carriage of these bacteria in communities is limited. This study investigated gastrointestinal carriage of colistin-resistant Escherichia coli and Klebsiella spp. and mcr genes in children from communities in Cape Town. Colistin-resistant E. coli was isolated from two participants (4%, 2/50), and mcr-1-mcr-9 genes were not detected. Gastrointestinal carriage of colistin-resistant Enterobacterales was rare; however, continuous extensive surveillance is necessary to determine the extent of carriage and its contribution to resistance observed in clinical settings. | 2021 | 34485500 |
| 1630 | 19 | 0.9978 | One Health study of mobile colistin resistance (mcr) in Salmonella enterica in Canada, 2017-2022. Colistin is a last-resort treatment for highly drug-resistant bacterial infections. Of 47,184 Salmonella isolates collected from 2017 to 2022 in Canada from human and animal/food sources, mobile colistin resistance (mcr) variants conferring colistin resistance were detected exclusively in humans (n = 15). These variants were mcr-1.1 (n = 7), mcr-3.1 (n = 5), mcr-3.2 (n = 2), and mcr-1.2 (n = 1). The most common mcr-containing serotypes were I 4,[5],12:i:- (n = 8) and Typhimurium (n = 3). The proportion of Salmonella carrying mcr genes remains low in Canada (0.03%). IMPORTANCE: Colistin can be used in combination with other drugs as salvage therapy for extensively drug-resistant infections. If mobile colistin resistance (mcr) becomes widely disseminated in Enterobacterales, colistin will no longer be an option for salvage therapy in otherwise untreatable infections. While colistin is not commonly used to treat human Salmonella infections, Salmonella represents an important reservoir of mcr genes that may be transmitted to other gram-negative bacteria. Our aim was to determine the occurrence of mcr genes in Salmonella isolates collected from humans, food animals, and retail meats in Canada. | 2025 | 40387317 |