# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3764 | 0 | 0.8791 | Evidence for diversifying selection in a set of Mycobacterium tuberculosis genes in response to antibiotic- and nonantibiotic-related pressure. Tuberculosis (TB) is a global health problem estimated to kill 1.4 million people per year. Recent advances in the genomics of the causative agents of TB, bacteria known as the Mycobacterium tuberculosis complex (MTBC), have allowed a better comprehension of its population structure and provided the foundation for molecular evolution analyses. These studies are crucial for a better understanding of TB, including the variation of vaccine efficacy and disease outcome, together with the emergence of drug resistance. Starting from the analysis of 73 publicly available genomes from all the main MTBC lineages, we have screened for evidences of positive selection, a set of 576 genes previously associated with drug resistance or encoding membrane proteins. As expected, because antibiotics constitute strong selective pressure, some of the codons identified correspond to the position of confirmed drug-resistance-associated substitutions in the genes embB, rpoB, and katG. Furthermore, we identified diversifying selection in specific codons of the genes Rv0176 and Rv1872c coding for MCE1-associated transmembrane protein and a putative l-lactate dehydrogenase, respectively. Amino acid sequence analyses showed that in Rv0176, sites undergoing diversifying selection were in a predicted antigen region that varies between "modern" lineages and "ancient" MTBC/BCG strains. In Rv1872c, some of the sites under selection are predicted to impact protein function and thus might result from metabolic adaptation. These results illustrate that diversifying selection in MTBC is happening as a consequence of both antibiotic treatment and other evolutionary pressures. | 2013 | 23449927 |
| 810 | 1 | 0.8787 | Draft genome sequencing and functional annotation and characterization of biofilm-producing bacterium Bacillus novalis PD1 isolated from rhizospheric soil. Biofilm forming bacterium Bacillus novalis PD1 was isolated from the rhizospheric soil of a paddy field. B. novalis PD1 is a Gram-positive, facultatively anaerobic, motile, slightly curved, round-ended, and spore-forming bacteria. The isolate B. novalis PD1 shares 98.45% similarity with B. novalis KB27B. B. vireti LMG21834 and B. drentensis NBRC 102,427 are the closest phylogenetic neighbours for B. novalis PD1. The draft genome RAST annotation showed a linear chromosome with 4,569,088 bp, encoding 6139 coding sequences, 70 transfer RNA (tRNA), and 11 ribosomal RNA (rRNA) genes. The genomic annotation of biofilm forming B. novalis PD1(> 3.6@OD(595nm)) showed the presence of exopolysaccharide-forming genes (ALG, PSL, and PEL) as well as other biofilm-related genes (comER, Spo0A, codY, sinR, TasA, sipW, degS, and degU). Antibiotic inactivation gene clusters (ANT (6)-I, APH (3')-I, CatA15/A16 family), efflux pumps conferring antibiotic resistance genes (BceA, BceB, MdtABC-OMF, MdtABC-TolC, and MexCD-OprJ), and secondary metabolites linked to phenazine, terpene, and beta lactone gene clusters are part of the genome. | 2021 | 34537868 |
| 331 | 2 | 0.8757 | MmpS4 promotes glycopeptidolipids biosynthesis and export in Mycobacterium smegmatis. The MmpS family (mycobacterial membrane protein small) includes over 100 small membrane proteins specific to the genus Mycobacterium that have not yet been studied experimentally. The genes encoding MmpS proteins are often associated with mmpL genes, which are homologous to the RND (resistance nodulation cell division) genes of Gram-negative bacteria that encode proteins functioning as multidrug efflux system. We showed by molecular genetics and biochemical analysis that MmpS4 in Mycobacterium smegmatis is required for the production and export of large amounts of cell surface glycolipids, but is dispensable for biosynthesis per se. A new specific and sensitive method utilizing single-chain antibodies against the surface-exposed glycolipids was developed to confirm that MmpS4 was dispensable for transport to the surface. Orthologous complementation demonstrated that the MmpS4 proteins are exchangeable, thus not specific to a defined lipid species. MmpS4 function requires the formation of a protein complex at the pole of the bacillus, which requires the extracytosolic C-terminal domain of MmpS4. We suggest that MmpS proteins facilitate lipid biosynthesis by acting as a scaffold for coupled biosynthesis and transport machinery. | 2010 | 21062372 |
| 14 | 3 | 0.8734 | Unraveling Pinus massoniana's Defense Mechanisms Against Bursaphelenchus xylophilus Under Aseptic Conditions: A Transcriptomic Analysis. Pine wilt disease (PWD) is caused by the pine wood nematode (PWN, Bursaphelenchus xylophilus) and significantly impacts pine forest ecosystems globally. This study focuses on Pinus massoniana, an important timber and oleoresin resource in China, which is highly susceptible to PWN. However, the defense mechanism of pine trees in response to PWN remains unclear. Addressing the complexities of PWD, influenced by diverse factors such as bacteria, fungi, and environment, we established a reciprocal system between PWN and P. massoniana seedlings under aseptic conditions. Utilizing combined second- and third-generation sequencing technologies, we identified 3,718 differentially expressed genes post PWN infection. Transcript analysis highlighted the activation of defense mechanisms via stilbenes, salicylic acid and jasmonic acid pathways, terpene synthesis, and induction of pathogenesis-related proteins and resistance genes, predominantly at 72 h postinfection. Notably, terpene synthesis pathways, particularly the mevalonate pathway, were crucial in defense, suggesting their significance in P. massoniana's response to PWN. This comprehensive transcriptome profiling offers insights into P. massoniana's intricate defense strategies against PWN under aseptic conditions, laying a foundation for future functional analyses of key resistance genes. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license. | 2024 | 39283201 |
| 803 | 4 | 0.8707 | Nucleotide sequences and genetic analysis of hydrogen oxidation (hox) genes in Azotobacter vinelandii. Azotobacter vinelandii contains a heterodimeric, membrane-bound [NiFe]hydrogenase capable of catalyzing the reversible oxidation of H2. The beta and alpha subunits of the enzyme are encoded by the structural genes hoxK and hoxG, respectively, which appear to form part of an operon that contains at least one further potential gene (open reading frame 3 [ORF3]). In this study, determination of the nucleotide sequence of a region of 2,344 bp downstream of ORF3 revealed four additional closely spaced or overlapping ORFs. These ORFs, ORF4 through ORF7, potentially encode polypeptides with predicted masses of 22.8, 11.4, 16.3, and 31 kDa, respectively. Mutagenesis of the chromosome of A. vinelandii in the area sequenced was carried out by introduction of antibiotic resistance gene cassettes. Disruption of hoxK and hoxG by a kanamycin resistance gene abolished whole-cell hydrogenase activity coupled to O2 and led to loss of the hydrogenase alpha subunit. Insertional mutagenesis of ORF3 through ORF7 with a promoterless lacZ-Kmr cassette established that the region is transcriptionally active and involved in H2 oxidation. We propose to call ORF3 through ORF7 hoxZ, hoxM, hoxL, hoxO, and hoxQ, respectively. The predicted hox gene products resemble those encoded by genes from hydrogenase-related operons in other bacteria, including Escherichia coli and Alcaligenes eutrophus. | 1992 | 1624446 |
| 9997 | 5 | 0.8700 | RNAi screen of DAF-16/FOXO target genes in C. elegans links pathogenesis and dauer formation. The DAF-16/FOXO transcription factor is the major downstream output of the insulin/IGF1R signaling pathway controlling C. elegans dauer larva development and aging. To identify novel downstream genes affecting dauer formation, we used RNAi to screen candidate genes previously identified to be regulated by DAF-16. We used a sensitized genetic background [eri-1(mg366); sdf-9(m708)], which enhances both RNAi efficiency and constitutive dauer formation (Daf-c). Among 513 RNAi clones screened, 21 displayed a synthetic Daf-c (SynDaf) phenotype with sdf-9. One of these genes, srh-100, was previously identified to be SynDaf, but twenty have not previously been associated with dauer formation. Two of the latter genes, lys-1 and cpr-1, are known to participate in innate immunity and six more are predicted to do so, suggesting that the immune response may contribute to the dauer decision. Indeed, we show that two of these genes, lys-1 and clc-1, are required for normal resistance to Staphylococcus aureus. clc-1 is predicted to function in epithelial cohesion. Dauer formation exhibited by daf-8(m85), sdf-9(m708), and the wild-type N2 (at 27°C) were all enhanced by exposure to pathogenic bacteria, while not enhanced in a daf-22(m130) background. We conclude that knockdown of the genes required for proper pathogen resistance increases pathogenic infection, leading to increased dauer formation in our screen. We propose that dauer larva formation is a behavioral response to pathogens mediated by increased dauer pheromone production. | 2010 | 21209831 |
| 9028 | 6 | 0.8700 | Efflux Pumps in Chromobacterium Species Increase Antibiotic Resistance and Promote Survival in a Coculture Competition Model. Members of the Chromobacterium genus include opportunistic but often-fatal pathogens and soil saprophytes with highly versatile metabolic capabilities. In previous studies of Chromobacterium subtsugae (formerly C. violaceum) strain CV017, we identified a resistance nodulation division (RND)-family efflux pump (CdeAB-OprM) that confers resistance to several antibiotics, including the bactobolin antibiotic produced by the soil saprophyte Burkholderia thailandensis Here, we show the cdeAB-oprM genes increase C. subtsugae survival in a laboratory competition model with B. thailandensis We also demonstrate that adding sublethal bactobolin concentrations to the coculture increases C. subtsugae survival, but this effect is not through CdeAB-OprM. Instead, the increased survival requires a second, previously unreported pump we call CseAB-OprN. We show that in cells exposed to sublethal bactobolin concentrations, the cseAB-oprN genes are transcriptionally induced, and this corresponds to an increase in bactobolin resistance. Induction of this pump is highly specific and sensitive to bactobolin, while CdeAB-OprM appears to have a broader range of antibiotic recognition. We examine the distribution of cseAB-oprN and cdeAB-oprM gene clusters in members of the Chromobacterium genus and find the cseAB-oprN genes are limited to the nonpathogenic C. subtsugae strains, whereas the cdeAB-oprM genes are more widely distributed among members of the Chromobacterium genus. Our results provide new information on the antibiotic resistance mechanisms of Chromobacterium species and highlight the importance of efflux pumps for saprophytic bacteria existing in multispecies communities.IMPORTANCE Antibiotic efflux pumps are best known for increasing antibiotic resistance of pathogens; however, the role of these pumps in saprophytes is much less well defined. This study describes two predicted efflux pump gene clusters in the Chromobacterium genus, which is comprised of both nonpathogenic saprophytes and species that cause highly fatal human infections. One of the predicted efflux pump clusters is present in every member of the Chromobacterium genus and increases resistance to a broad range of antibiotics. The other gene cluster has more narrow antibiotic specificity and is found only in Chromobacterium subtsugae, a subset of entirely nonpathogenic species. We demonstrate the role of both pumps in increasing antibiotic resistance and demonstrate the importance of efflux-dependent resistance induction for C. subtsugae survival in a dual-species competition model. These results have implications for managing antibiotic-resistant Chromobacterium infections and for understanding the evolution of efflux pumps outside the host. | 2019 | 31324628 |
| 5145 | 7 | 0.8695 | Genome sequence and comparative analysis of a putative entomopathogenic Serratia isolated from Caenorhabditis briggsae. BACKGROUND: Entomopathogenic associations between nematodes in the genera Steinernema and Heterorhabdus with their cognate bacteria from the bacterial genera Xenorhabdus and Photorhabdus, respectively, are extensively studied for their potential as biological control agents against invasive insect species. These two highly coevolved associations were results of convergent evolution. Given the natural abundance of bacteria, nematodes and insects, it is surprising that only these two associations with no intermediate forms are widely studied in the entomopathogenic context. Discovering analogous systems involving novel bacterial and nematode species would shed light on the evolutionary processes involved in the transition from free living organisms to obligatory partners in entomopathogenicity. RESULTS: We report the complete genome sequence of a new member of the enterobacterial genus Serratia that forms a putative entomopathogenic complex with Caenorhabditis briggsae. Analysis of the 5.04 MB chromosomal genome predicts 4599 protein coding genes, seven sets of ribosomal RNA genes, 84 tRNA genes and a 64.8 KB plasmid encoding 74 genes. Comparative genomic analysis with three of the previously sequenced Serratia species, S. marcescens DB11 and S. proteamaculans 568, and Serratia sp. AS12, revealed that these four representatives of the genus share a core set of ~3100 genes and extensive structural conservation. The newly identified species shares a more recent common ancestor with S. marcescens with 99% sequence identity in rDNA sequence and orthology across 85.6% of predicted genes. Of the 39 genes/operons implicated in the virulence, symbiosis, recolonization, immune evasion and bioconversion, 21 (53.8%) were present in Serratia while 33 (84.6%) and 35 (89%) were present in Xenorhabdus and Photorhabdus EPN bacteria respectively. CONCLUSION: The majority of unique sequences in Serratia sp. SCBI (South African Caenorhabditis briggsae Isolate) are found in ~29 genomic islands of 5 to 65 genes and are enriched in putative functions that are biologically relevant to an entomopathogenic lifestyle, including non-ribosomal peptide synthetases, bacteriocins, fimbrial biogenesis, ushering proteins, toxins, secondary metabolite secretion and multiple drug resistance/efflux systems. By revealing the early stages of adaptation to this lifestyle, the Serratia sp. SCBI genome underscores the fact that in EPN formation the composite end result - killing, bioconversion, cadaver protection and recolonization- can be achieved by dissimilar mechanisms. This genome sequence will enable further study of the evolution of entomopathogenic nematode-bacteria complexes. | 2015 | 26187596 |
| 397 | 8 | 0.8691 | PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Streptomycetes are high G+C Gram-positive, antibiotic-producing, mycelial soil bacteria. The 8.7-Mb Streptomyces coelicolor genome was previously sequenced by using an ordered library of Supercos-1 clones. Here, we describe an efficient procedure for creating precise gene replacements in the cosmid clones by using PCR targeting and lambda-Red-mediated recombination. The cloned Streptomyces genes are replaced with a cassette containing a selectable antibiotic resistance and oriT(RK2) for efficient transfer to Streptomyces by RP4-mediated intergeneric conjugation. Supercos-1 does not replicate in Streptomyces, but the clones readily undergo double-crossover recombination, thus creating gene replacements. The antibiotic resistance cassettes are flanked by yeast FLP recombinase target sequences for removal of the antibiotic resistance and oriT(RK2) to generate unmarked, nonpolar mutations. The technique has been used successfully by >20 researchers to mutate around 100 Streptomyces genes. As an example, we describe its application to the discovery of a gene involved in the production of geosmin, the ubiquitous odor of soil. The gene, Sco6073 (cyc2), codes for a protein with two sesquiterpene synthase domains, only one of which is required for geosmin biosynthesis, probably via a germacra-1 (10) E,5E-dien-11-ol intermediate generated by the sesquiterpene synthase from farnesyl pyrophosphate. | 2003 | 12563033 |
| 5131 | 9 | 0.8688 | Conjugative Transfer of the pVA1-Type Plasmid Carrying the pirAB(vp) Genes Results in the Formation of New AHPND-Causing Vibrio. Acute hepatopancreatic necrosis disease (AHPND) has caused sharp declines in aquaculture industries of whiteleg shrimp Penaeus vannamei in Asia and the Americas since 2010. Vibrio parahaemolyticus, V. campbellii, V. owensii, and V. punensis have been proved to cause AHPND. However, the mechanisms underlying the burgeoning number of Vibrio species that cause AHPND is not known. All of AHPND-causing Vibrio bacteria (V(AHPND)) harbor a highly homologous plasmid (designated as pVA1-type) carrying pirAB(vp) toxin genes. In this study, we demonstrate conclusively that the pVA1-type plasmid can be transferred from V(AHPND) to non-pathogenic bacteria. We constructed a pVPGX1-Cm(r) plasmid (a pVA1-type plasmid) by adding a chloramphenicol resistance gene as a marker in a donor AHPND-causing V. parahaemolyticus 20130629002S01 (Vp2S01). Horizontal transfer of this plasmid was successfully performed from the AHPND-Vp2S01 to a non-pathogenic strain of V. campbellii at the transfer efficiency of 2.6×10(-8) transconjugant/recipient, and DNase I treatment did not eliminate the transfer. The recipient V. campbellii acquired the pVA1-type plasmid and was shown to produce pirAB(vp) RNA and proteins. Challenge studies using the transconjugant caused 100% mortality in exposed groups of P. vannamei. The challenged shrimp, infected with the transconjugant bacteria, showed typical gross signs and histological lesions of AHPND. These results demonstrated the conjugative transfer of an AHPND pVA1-type plasmid. It provides timely information for explaining the increased species of AHPND-causing Vibrio bacteria and will be useful in the development of management strategies leading to the prevention and control of AHPND. | 2019 | 31231618 |
| 500 | 10 | 0.8687 | An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea. Erythromycin A, a clinically important polyketide antibiotic, is produced by the Gram-positive bacterium Saccharopolyspora erythraea. In an arrangement that seems to be generally true of antibiotic biosynthetic genes in Streptomyces and related bacteria like S. erythraea, the ery genes encoding the biosynthetic pathway to erythromycin are clustered around the gene (ermE) that confers self-resistance on S. erythraea. The aglycone core of erythromycin A is derived from one propionyl-CoA and six methylmalonyl-CoA units, which are incorporated head-to-tail into the growing polyketide chain, in a process similar to that of fatty-acid biosynthesis, to generate a macrolide intermediate, 6-deoxyerythronolide B. 6-Deoxyerythronolide B is converted into erythromycin A through the action of specific hydroxylases, glycosyltransferases and a methyltransferase. We report here the analysis of about 10 kilobases of DNA from S. erythraea, cloned by chromosome 'walking' outwards from the erythromycin-resistance determinant ermE, and previously shown to be essential for erythromycin biosynthesis. Partial sequencing of this region indicates that it encodes the synthase. Our results confirm this, and reveal a novel organization of the erythromycin-producing polyketide synthase, which provides further insight into the mechanism of chain assembly. | 1990 | 2234082 |
| 527 | 11 | 0.8687 | Characterization of the bagremycin biosynthetic gene cluster in Streptomyces sp. Tü 4128. Bagremycin A and bagremycin B isolated from Streptomyces sp. Tü 4128 have activities against Gram-positive bacteria, fungi and also have a weak antitumor activity, which make them have great potential for development of novel antibiotics. Here, we report a draft genome 8,424,112 bp in length of S. sp. Tü 4128 by Illumina Hiseq2000, and identify the bagremycins biosynthetic gene cluster (BGC) by bioinformatics analysis. The putative bagremycins BGC includes 16 open reading frames (ORFs) with the functions of biosynthesis, resistance and regulation. Disruptions of relative genes and HPLC analysis of bagremycins production demonstrated that not all the genes within the BGC are responsible for the biosynthesis of bagremycins. In addition, the biosynthetic pathways of bagremycins are proposed for deeper inquiries into their intriguing biosynthetic mechanism. | 2019 | 30526412 |
| 5144 | 12 | 0.8687 | Genomic analysis of the nomenclatural type strain of the nematode-associated entomopathogenic bacterium Providencia vermicola. BACKGROUND: Enterobacteria of the genus Providencia are mainly known as opportunistic human pathogens but have been isolated from highly diverse natural environments. The species Providencia vermicola comprises insect pathogenic bacteria carried by entomoparasitic nematodes and is investigated as a possible insect biocontrol agent. The recent publication of several genome sequences from bacteria assigned to this species has given rise to inconsistent preliminary results. RESULTS: The genome of the nematode-derived P. vermicola type strain DSM_17385 has been assembled into a 4.2 Mb sequence comprising 5 scaffolds and 13 contigs. A total of 3969 protein-encoding genes were identified. Multilocus sequence typing with different marker sets revealed that none of the previously published presumed P. vermicola genomes represents this taxonomic species. Comparative genomic analysis has confirmed a close phylogenetic relationship of P. vermicola to the P. rettgeri species complex. P. vermicola DSM_17385 carries a type III secretion system (T3SS-1) with probable function in host cell invasion or intracellular survival. Potentially antibiotic resistance-associated genes comprising numerous efflux pumps and point-mutated house-keeping genes, have been identified across the P. vermicola genome. A single small (3.7 kb) plasmid identified, pPVER1, structurally belongs to the qnrD-type family of fluoroquinolone resistance conferring plasmids that is prominent in Providencia and Proteus bacteria, but lacks the qnrD resistance gene. CONCLUSIONS: The sequence reported represents the first well-supported published genome for the taxonomic species P. vermicola to be used as reference in further comparative genomics studies on Providencia bacteria. Due to a striking difference in the type of injectisome encoded by the respective genomes, P. vermicola might operate a fundamentally different mechanism of entomopathogenicity when compared to insect-pathogenic Providencia sneebia or Providencia burhodogranariea. The complete absence of antibiotic resistance gene carrying plasmids or mobile genetic elements as those causing multi drug resistance phenomena in clinical Providencia strains, is consistent with the invertebrate pathogen P. vermicola being in its natural environment efficiently excluded from the propagation routes of multidrug resistance (MDR) carrying genetic elements operating between human pathogens. Susceptibility to MDR plasmid acquisition will likely become a major criterion in the evaluation of P. vermicola for potential applications in biological pest control. | 2021 | 34598677 |
| 526 | 13 | 0.8687 | Role of rhomboid proteases in bacteria. The first member of the rhomboid family of intramembrane serine proteases in bacteria was discovered almost 20years ago. It is now known that rhomboid proteins are widely distributed in bacteria, with some bacteria containing multiple rhomboids. At the present time, only a single rhomboid-dependent function in bacteria has been identified, which is the cleavage of TatA in Providencia stuartii. Mutational analysis has shown that loss of the GlpG rhomboid in Escherichia coli alters cefotaxime resistance, loss of the YqgP (GluP) rhomboid in Bacillus subtilis alters cell division and glucose uptake, and loss of the MSMEG_5036 and MSMEG_4904 genes in Mycobacterium smegmatis results in altered colony morphology, biofilm formation and antibiotic susceptibilities. However, the cellular substrates for these proteins have not been identified. In addition, analysis of the rhombosortases, together with their possible Gly-Gly CTERM substrates, may shed new light on the role of these proteases in bacteria. This article is part of a Special Issue entitled: Intramembrane Proteases. | 2013 | 23518036 |
| 6090 | 14 | 0.8683 | Draft genome sequence of Mesorhizobium alhagi CCNWXJ12-2T, a novel salt-resistant species isolated from the desert of northwestern China. Mesorhizobium alhagi strain CCNWXJ12-2(T) is a novel species of soil-dwelling, nitrogen-fixing bacteria that can form symbiotic root nodules with Alhagi sparsifolia. Moreover, the strain has high resistance to salt and alkali. Here we report the draft genome sequence of Mesorhizobium alhagi strain CCNWXJ12-2(T). A large number of osmotic regulation-related genes have been identified. | 2012 | 22328758 |
| 123 | 15 | 0.8680 | Genes for all metals--a bacterial view of the periodic table. The 1996 Thom Award Lecture. Bacterial chromosomes have genes for transport proteins for inorganic nutrient cations and oxyanions, such as NH4+, K+, Mg2+, Co2+, Fe3+, Mn2+, Zn2+ and other trace cations, and PO4(3-), SO4(2-) and less abundant oxyanions. Together these account for perhaps a few hundred genes in many bacteria. Bacterial plasmids encode resistance systems for toxic metal and metalloid ions including Ag+, AsO2-, AsO4(3-), Cd2+, Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, TeO3(2-), Tl+ and Zn2+. Most resistance systems function by energy-dependent efflux of toxic ions. A few involve enzymatic (mostly redox) transformations. Some of the efflux resistance systems are ATPases and others are chemiosmotic ion/proton exchangers. The Cd(2+)-resistance cation pump of Gram-positive bacteria is membrane P-type ATPase, which has been labeled with 32P from [gamma-32P]ATP and drives ATP-dependent Cd2+ (and Zn2+) transport by membrane vesicles. The genes defective in the human hereditary diseases of copper metabolism, Menkes syndrome and Wilson's disease, encode P-type ATPases that are similar to bacterial cadmium ATPases. The arsenic resistance system transports arsenite [As(III)], alternatively with the ArsB polypeptide functioning as a chemiosmotic efflux transporter or with two polypeptides, ArsB and ArsA, functioning as an ATPase. The third protein of the arsenic resistance system is an enzyme that reduces intracellular arsenate [As(V)] to arsenite [As(III)], the substrate of the efflux system. In Gram-negative cells, a three polypeptide complex functions as a chemiosmotic cation/protein exchanger to efflux Cd2+, Zn2+ and Co2+. This pump consists of an inner membrane (CzcA), an outer membrane (CzcC) and a membrane-spanning (CzcB) protein that function together. | 1998 | 9523453 |
| 316 | 16 | 0.8678 | The pathway-specific regulatory genes, tei15* and tei16*, are the master switches of teicoplanin production in Actinoplanes teichomyceticus. Pathogenic antibiotic-resistant bacteria are an unprecedented threat to health care worldwide. The range of antibiotics active against these bacteria is narrow; it includes teicoplanin, a "last resort" drug, which is produced by the filamentous actinomycete Actinoplanes teichomyceticus. In this report, we determine the functions of tei15* and tei16*, pathway-specific regulatory genes that code for StrR- and LuxR-type transcriptional factors, respectively. The products of these genes are master switches of teicoplanin biosynthesis, since their inactivation completely abolished antibiotic production. We show that Tei15* positively regulates the transcription of at least 17 genes in the cluster, whereas the targets of Tei16* still remain unknown. Integration of tei15* or tei16* under the control of the aminoglycoside resistance gene aac(3)IV promoter into attBϕC31 site of the A. teichomyceticus chromosome increased teicoplanin productivity to nearly 1 g/L in TM1 industrial medium. The expression of these genes from the moderate copy number episomal vector pKC1139 led to 3-4 g/L teicoplanin, while under the same conditions, wild type produced approximately 100 mg/L. This shows that a significant increase in teicoplanin production can be achieved by a single step of genetic manipulation of the wild-type strain by increasing the expression of the tei regulatory genes. This confirms that natural product yields can be increased using rational engineering once suitable genetic tools have been developed. We propose that this new technology for teicoplanin overproduction might now be transferred to industrial mutants of A. teichomyceticus. | 2014 | 25104028 |
| 330 | 17 | 0.8677 | A DHA14 drug efflux gene from Xanthomonas albilineans confers high-level albicidin antibiotic resistance in Escherichia coli. AIMS: Identification of a gene for self-protection from the antibiotic-producing plant pathogen Xanthomonas albilineans, and functional testing by heterologous expression. METHODS AND RESULTS: Albicidin antibiotics and phytotoxins are potent inhibitors of prokaryote DNA replication. A resistance gene (albF) isolated by shotgun cloning from the X. albilineans albicidin-biosynthesis region encodes a protein with typical features of DHA14 drug efflux pumps. Low-level expression of albF in Escherichia coli increased the MIC of albicidin 3000-fold, without affecting tsx-mediated albicidin uptake into the periplasm or resistance to other tested antibiotics. Bioinformatic analysis indicates more similarity to proteins involved in self-protection in polyketide-antibiotic-producing actinomycetes than to multi-drug resistance pumps in other gram-negative bacteria. A complex promoter region may co-regulate albF with genes for hydrolases likely to be involved in albicidin activation or self-protection. CONCLUSIONS: AlbF is the first apparent single-component antibiotic-specific efflux pump from a gram-negative antibiotic producer. It shows extraordinary efficiency as measured by resistance level conferred upon heterologous expression. SIGNIFICANCE AND IMPACT OF THE STUDY: Development of the clinical potential of albicidins as potent bactericidial antibiotics against diverse bacteria has been limited because of low yields in culture. Expression of albF with recently described albicidin-biosynthesis genes may enable large-scale production. Because albicidins are X. albilineans pathogenicity factors, interference with AlbF function is also an opportunity for control of the associated plant disease. | 2006 | 16834602 |
| 204 | 18 | 0.8677 | RNA modification enzymes encoded by the gid operon: Implications in biology and virulence of bacteria. Ribonucleic acid (RNA) molecules consist of numerous chemically modified nucleosides that are highly conserved in eukarya, archeae, and bacteria, while others are unique to each domain of life. In bacteria, hundreds of RNA modification enzymes have been identified and implicated in biological pathways associated with many cell processes. The glucose-inhibited division (gid) operon encodes genes for two RNA modification enzymes named GidA and GidB. Studies have shown GidA is essential for the proper biosynthesis of 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U) of bacterial transfer RNA (tRNA) with GidB responsible for the methylation of the 16S ribosomal RNA (rRNA). Furthermore, deletion of gidA and gidB has shown to alter numerous bacterial properties like virulence, stress response, morphology, growth, antibiotic susceptibility, and others. In this review, we discuss the present knowledge of the RNA modification enzymes GidA and GidB, and their potential role in the biology and virulence of bacteria. | 2015 | 26427881 |
| 144 | 19 | 0.8676 | Genome analysis of Bacillus amyloliquefaciens Subsp. plantarum UCMB5113: a rhizobacterium that improves plant growth and stress management. The Bacillus amyloliquefaciens subsp. plantarum strain UCMB5113 is a Gram-positive rhizobacterium that can colonize plant roots and stimulate plant growth and defense based on unknown mechanisms. This reinforcement of plants may provide protection to various forms of biotic and abiotic stress. To determine the genetic traits involved in the mechanism of plant-bacteria association, the genome sequence of UCMB5113 was obtained by assembling paired-end Illumina reads. The assembled chromosome of 3,889,532 bp was predicted to encode 3,656 proteins. Genes that potentially contribute to plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, acetoin synthesis and siderophore production were identified. Moreover, annotation identified putative genes responsible for non-ribosomal synthesis of secondary metabolites and genes supporting environment fitness of UCMB5113 including drug and metal resistance. A large number of genes encoding a diverse set of secretory proteins, enzymes of primary and secondary metabolism and carbohydrate active enzymes were found which reflect a high capacity to degrade various rhizosphere macromolecules. Additionally, many predicted membrane transporters provides the bacterium with efficient uptake capabilities of several nutrients. Although, UCMB5113 has the possibility to produce antibiotics and biosurfactants, the protective effect of plants to pathogens seems to be indirect and due to priming of plant induced systemic resistance. The availability of the genome enables identification of genes and their function underpinning beneficial interactions of UCMB5113 with plants. | 2014 | 25119988 |