# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1750 | 0 | 0.8560 | The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2020/2021. Antimicrobial resistance (AMR) data on zoonotic and indicator bacteria from humans, animals and food are collected annually by the EU Member States (MSs) and reporting countries, jointly analysed by EFSA and ECDC and presented in a yearly EU Summary Report. This report provides an overview of the main findings of the 2020-2021 harmonised AMR monitoring in Salmonella spp., Campylobacter jejuni and C. coli in humans and food-producing animals (broilers, laying hens and turkeys, fattening pigs and bovines under 1 year of age) and relevant meat thereof. For animals and meat thereof, indicator E. coli data on the occurrence of AMR and presumptive Extended spectrum β-lactamases (ESBL)-/AmpC β-lactamases (AmpC)-/carbapenemases (CP)-producers, as well as the occurrence of methicillin-resistant Staphylococcus aureus are also analysed. In 2021, MSs submitted for the first time AMR data on E. coli isolates from meat sampled at border control posts. Where available, monitoring data from humans, food-producing animals and meat thereof were combined and compared at the EU level, with emphasis on multidrug resistance, complete susceptibility and combined resistance patterns to selected and critically important antimicrobials, as well as Salmonella and E. coli isolates exhibiting ESBL-/AmpC-/carbapenemase phenotypes. Resistance was frequently found to commonly used antimicrobials in Salmonella spp. and Campylobacter isolates from humans and animals. Combined resistance to critically important antimicrobials was mainly observed at low levels except in some Salmonella serotypes and in C. coli in some countries. The reporting of a number of CP-producing E. coli isolates (harbouring bla (OXA-48), bla (OXA-181), and bla (NDM-5) genes) in pigs, bovines and meat thereof by a limited number of MSs (4) in 2021, requests a thorough follow-up. The temporal trend analyses in both key outcome indicators (rate of complete susceptibility and prevalence of ESBL-/AmpC- producers) showed that encouraging progress have been registered in reducing AMR in food-producing animals in several EU MSs over the last years. | 2023 | 36891283 |
| 1386 | 1 | 0.8560 | ESBL/pAmpC-producing Enterobacterales in common leopard geckos (Eublepharis macularius) and central bearded dragons (Pogona vitticeps) from Portugal. Common leopard geckos (Eublepharis macularius) and central bearded dragon (Pogona vitticeps) are widely kept as pets but can harbor pathogenic bacteria, including antimicrobial-resistant (AMR) bacteria. This study aimed to research the frequency of β-lactamase-producing Enterobacterales in these two reptile species. A total of 132 samples were collected from the oral and cloacal cavities of healthy common leopard geckos and central bearded dragons in the Lisbon area, Portugal. Antimicrobial resistance was assessed for third-generation cephalosporin (3GC)-resistant Enterobacterales. The results revealed that 3GC-resistant Enterobacterales were observed in 17.9% (n = 14/78) of the reptiles. The most commonly identified species were: Citrobacter freundii and Klebsiella aerogenes. Furthermore, some isolates produced extended-spectrum β-lactamases (ESBLs) and AmpC β-lactamases (AmpC) encoding genes such as bla (CMY-2), bla (CTX-M-15,) and bla (TEM-1). These findings emphasize the potential role of these reptiles in the spread of AMR bacteria, particularly in urban settings where human- animal interactions are frequent. Given the zoonotic risks, this study emphasizes the importance of continued surveillance and responsible antimicrobial use in both veterinary and human medicine to mitigate the spread of AMR bacteria. | 2025 | 40370835 |
| 1749 | 2 | 0.8537 | The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2021-2022. This report by the European Food Safety Authority and the European Centre for Disease prevention and Control, provides an overview of the main findings of the 2021-2022 harmonised Antimicrobial Resistance (AMR) monitoring in Salmonella spp., Campylobacter jejuni and C. coli from humans and food-producing animals (broilers, laying hens and fattening turkeys, fattening pigs and cattle under one year of age) and relevant meat thereof. For animals and meat thereof, AMR data on indicator commensal Escherichia coli, presumptive extended-spectrum beta-lactamases (ESBL)-/AmpC beta-lactamases (AmpC)-/carbapenemase (CP)-producing E. coli, and the occurrence of methicillin-resistant Staphylococcus aureus (MRSA) are also analysed. Generally, resistance levels differed greatly between reporting countries and antimicrobials. Resistance to commonly used antimicrobials was frequently found in Salmonella and Campylobacter isolates from humans and animals. In humans, increasing trends in resistance to one of two critically antimicrobials (CIA) for treatment was observed in poultry-associated Salmonella serovars and Campylobacter, in at least half of the reporting countries. Combined resistance to CIA was however observed at low levels except in some Salmonella serovars and in C. coli from humans and animals in some countries. While CP-producing Salmonella isolates were not detected in animals in 2021-2022, nor in 2021 for human cases, in 2022 five human cases of CP-producing Salmonella were reported (four harbouring bla (OXA-48) or bla (OXA-48-like) genes). The reporting of a number of CP-producing E. coli isolates (harbouring bla (OXA-48), bla (OXA-181), bla (NDM-5) and bla (VIM-1) genes) in fattening pigs, cattle under 1 year of age, poultry and meat thereof by a limited number of MSs (5) in 2021 and 2022, requires a thorough follow-up. The temporal trend analyses in both key outcome indicators (rate of complete susceptibility and prevalence of ESBL-/AmpC-producers in E. coli) showed an encouraging progress in reducing AMR in food-producing animals in several EU MSs over the last 7 years. | 2024 | 38419967 |
| 1392 | 3 | 0.8536 | High prevalence of bla(CTX-M-15) type extended-spectrum beta-lactamases in Gambian hooded vultures (Necrosyrtes monachus): A threatened species with substantial human interaction. One hundred fecal samples from hooded vultures in the Gambia (Banjul area) were investigated for the presence of bacteria with extended-spectrum cephalosporin- (ESBL/AmpC), carbapenemases, and colistin resistance. No Enterobacteriales carrying carbapenemases or resistance against colistin were detected. Fifty-four ESBL-producing Escherichia coli and five ESBL-producing Klebsiella pneumoniae isolates were identified in 52 of the samples, of which 52 E. coli and 4 K. pneumoniae yielded passed sequencing results. Fifty of the E. coli had ESBL phenotype and genotype harboring bla(CTX-M) genes, of which 88.5% (n = 46) were the bla(CTX-M-15) gene, commonly found on the African continent. Furthermore, the genetic context around bla(CTX-M-15) was similar between isolates, being colocalized with ISKpn19. In contrast, cgMLST analysis of the E. coli harboring ESBL genes revealed a genetic distribution over a large fraction of the currently known existing E. coli populations in the Gambia. Hooded vultures in the Gambia thus have a high ESBL E. coli-prevalence (>50%) with low diversity regarding key resistance genes. Furthermore, given the urban presence and frequent interactions between hooded vultures and humans, data from this study implies hooded vultures as potential vectors contributing to the further dissemination of antibiotic-resistance genes. | 2023 | 37186228 |
| 1391 | 4 | 0.8521 | Faecal carriage of extended-spectrum β-lactamase-producing and AmpC β-lactamase-producing bacteria among Danish army recruits. During May and June 2008, 84 Danish army recruits were tested for faecal carriage of extended-spectrum β-lactamase (ESBL)-producing and AmpC β-lactamase-producing bacteria. Three ESBL-producing (CTX-M-14a) Escherichia coli isolates, two AmpC-producing (CMY-2) E. coli isolates and one AmpC-producing (CMY-34) Citrobacter freundii isolate were detected. Two of the CTX-M-14a E. coli isolates had similar pulsed-field gel electrophoresis and multilocus sequence typing profiles, indicating the same origin or transmission between the two army recruits. The bla(CTX-M-14a) genes were transferable to an E. coli recipient. These commensal bacteria therefore constitute a reservoir of resistance genes that can be transferred to other pathogenic bacteria in the intestine. | 2011 | 20718802 |
| 1385 | 5 | 0.8515 | GENOMIC CHARACTERIZATION OF MULTIDRUG-RESISTANT EXTENDED-SPECTRUM β-LACTAMASE-PRODUCING ESCHERICHIA COLI AND KLEBSIELLA PNEUMONIAE FROM CHIMPANZEES (PAN TROGLODYTES) FROM WILD AND SANCTUARY LOCATIONS IN UGANDA. Farm and wild animals may serve as reservoirs of antimicrobial-resistant bacteria of human health relevance. We investigated the occurrence and genomic characteristics of extended spectrum β-lactamase (ESBL)-producing bacteria in Ugandan chimpanzees (Pan troglodytes) residing in two environments with or without close contact to humans. The ESBL-producing Escherichia coli and Klebsiella pneumoniae were isolated from fecal material of chimpanzees from Budongo Forest and Ngamba Island Chimpanzee Sanctuary in Uganda and were more commonly isolated from chimpanzees in Ngamba Island Chimpanzee Sanctuary, where animals have close contact with humans. Selected ESBL isolates (E. coli n=9, K. pneumoniae n=7) were analyzed by whole-genome sequencing to determine the presence of resistance genes, as well as sequence type and virulence potential; the blaCTX-M-15 gene was present in all strains. Additionally, the ESBL genes blaSHV-11 and blaSHV-12 were found in strains in the study. All strains were found to be multidrug resistant. The E. coli strains belonged to four sequence types (ST2852, ST215, ST405, and ST315) and the K. pneumoniae strains to two sequence types (ST1540 and ST597). Virulence genes did not indicate that strains were of common E. coli pathotype, but strains with the same sequence types as isolated in the current study have previously been reported from clinical cases in Africa. The findings indicate that chimpanzees in close contact with humans may carry ESBL bacteria at higher frequency than those in the wild, indicating a potential anthropogenic transmission. | 2022 | 35255126 |
| 1406 | 6 | 0.8497 | Multicentre study of the burden of multidrug-resistant bacteria in the aetiology of infected diabetic foot ulcers. BACKGROUND: Infected diabetic foot ulcer (IDFU) is a public health issue and the leading cause of non-traumatic limb amputation. Very few published data on IDFU exist in most West African countries. OBJECTIVE: The study investigated the aetiology and antibacterial drug resistance burden of IDFU in tertiary hospitals in Osun state, Nigeria, between July 2016 and April 2017. METHODS: Isolates were cultured from tissue biopsies or aspirates collected from patients with IDFU. Bacterial identification, antibiotic susceptibility testing and phenotypic detection of extended-spectrum beta-lactamase and carbapenemase production were done by established protocols. Specific resistance genes were detected by polymerase chain reaction. RESULTS: There were 218 microorganisms isolated from 93 IDFUs, comprising 129 (59.2%) Gram-negative bacilli (GNB), 59 (27.1%) Gram-positive cocci and 29 (13.3%) anaerobic bacteria. The top five facultative anaerobic bacteria isolated were: Staphylococcus aureus (34; 15.6%), Escherichia coli (23; 10.6%), Pseudomonas aeruginosa (20; 9.2%), Klebsiella pneumoniae (19; 8.7%) and Citrobacter spp. (19; 8.7%). The most common anaerobes were Bacteroides spp. (7; 3.2%) and Peptostreptococcus anaerobius (6; 2.8%). Seventy-four IDFUs (80%) were infected by multidrug-resistant bacteria, predominantly methicillin-resistant S. aureus and GNB producing extended-spectrum β-lactamases, mainly of the CTX-M variety. Only 4 (3.1%) GNB produced carbapenemases encoded predominantly by bla (VIM). Factors associated with presence of multidrug-resistant bacteria were peripheral neuropathy (adjusted odds ratio [AOR] = 4.05, p = 0.04) and duration of foot infection of more than 1 month (AOR = 7.63, p = 0.02). CONCLUSION: Multidrug-resistant facultative anaerobic bacteria are overrepresented as agents of IDFU. A relatively low proportion of the aetiological agents were anaerobic bacteria. | 2021 | 33824857 |
| 1410 | 7 | 0.8495 | A high prevalence of multi-drug resistant Gram-negative bacilli in a Nepali tertiary care hospital and associated widespread distribution of Extended-Spectrum Beta-Lactamase (ESBL) and carbapenemase-encoding genes. BACKGROUND: Multi-drug resistance (MDR) and extensive-drug resistance (XDR) associated with extended-spectrum beta-lactamases (ESBLs) and carbapenemases in Gram-negative bacteria are global public health concerns. Data on circulating antimicrobial resistance (AMR) genes in Gram-negative bacteria and their correlation with MDR and ESBL phenotypes from Nepal is scarce. METHODS: A retrospective study was performed investigating the distribution of ESBL and carbapenemase genes and their potential association with ESBL and MDR phenotypes in E. coli, Klebsiella spp., Enterobacter spp. and Acinetobacter spp. isolated in a major tertiary hospital in Kathmandu, Nepal, between 2012 and 2018. RESULTS: During this period, the hospital isolated 719 E. coli, 532 Klebsiella spp., 520 Enterobacter spp. and 382 Acinetobacter spp.; 1955/2153 (90.1%) of isolates were MDR and half (1080/2153) were ESBL producers. Upon PCR amplification, bla(TEM) (1281/1771; 72%), bla(CTXM-1) (930/1771; 53%) and bla(CTXM-8) (419/1771; 24%) were the most prevalent ESBL genes in the enteric bacilli. Bla(OXA) and bla(OXA-51) were the most common bla(OXA) family genes in the enteric bacilli (918/1771; 25%) and Acinetobacter spp. (218/382; 57%) respectively. Sixteen percent (342/2153) of all isolates and 20% (357/1771) of enteric bacilli harboured bla(NDM-1) and bla(KPC) carbapenemase genes respectively. Of enteric bacilli, Enterobacter spp. was the most frequently positive for bla(KPC) gene (201/337; 60%). The presence of each bla(CTX-M) and bla(OXA) were significantly associated with non-susceptibility to third generation cephalosporins (OR 14.7, p < 0.001 and OR 2.3, p < 0.05, respectively).The presence of each bla(TEM), bla(CTXM) and bla(OXA) family genes were significantly associated with ESBL positivity (OR 2.96, p < 0.001; OR 14.2, p < 0.001 and OR 1.3, p < 0.05 respectively) and being MDR (OR 1.96, p < 0.001; OR 5.9, p < 0.001 and OR 2.3, p < 0.001 respectively). CONCLUSIONS: This study documents an alarming level of AMR with high prevalence of MDR ESBL- and carbapenemase-positive ESKAPE microorganisms in our clinical setting. These data suggest a scenario where the clinical management of infected patients is increasingly difficult and requires the use of last-resort antimicrobials, which in turn is likely to intensify the magnitude of global AMR crisis. | 2020 | 33087115 |
| 828 | 8 | 0.8495 | Screening for Resistant Bacteria, Antimicrobial Resistance Genes, Sexually Transmitted Infections and Schistosoma spp. in Tissue Samples from Predominantly Vaginally Delivered Placentae in Ivory Coast and Ghana. Medical complications during pregnancy have been frequently reported from Western Africa with a particular importance of infectious complications. Placental tissue can either become the target of infectious agents itself, such as, e.g., in the case of urogenital schistosomiasis, or be subjected to contamination with colonizing or infection-associated microorganisms of the cervix or the vagina during vaginal delivery. In the retrospective cross-sectional assessment presented here, the quantitative dimension of infection or colonization with selected resistant or pathogenic bacteria and parasites was regionally assessed. To do so, 274 collected placental tissues from Ivory Coastal and Ghanaian women were subjected to selective growth of resistant bacteria, as well as to molecular screening for beta-lactamase genes, Schistosoma spp. and selected bacterial causative agents of sexually transmitted infections (STI). Panton-Valentine-negative methicillin-resistant Staphylococcus aureus (MRSA) was grown from 1.8% of the tissue samples, comprising the spa types t008 and t688, as well as the newly detected ones, t12101 (n = 2) and t12102. While the culture-based recovery of resistant Enterobacterales and nonfermentative rod-shaped Gram-negative bacteria failed, molecular assessments confirmed beta-lactamase genes in 31.0% of the samples with multiple detections of up to four resistance genes per sample and bla(CTX-M), bla(IMP), bla(GES), bla(VIM), bla(OXA-58)-like, bla(NDM), bla(OXA-23)-like, bla(OXA-48)-like and bla(KPC) occurring in descending order of frequency. The beta-lactamase genes bla(OXA-40/24)-like, bla(NMC_A/IMI), bla(BIC), bla(SME), bla(GIM) and bla(DIM) were not detected. DNA of the urogenital schistosomiasis-associated Schistosoma haematobium complex was recorded in 18.6% of the samples, but only a single positive signal for S. mansoni with a high cycle-threshold value in real-time PCR was found. Of note, higher rates of schistosomiasis were observed in Ghana (54.9% vs. 10.3% in Ivory Coast) and Cesarean section was much more frequent in schistosomiasis patients (61.9% vs. 14.8% in women without Schistosoma spp. DNA in the placenta). Nucleic acid sequences of nonlymphogranuloma-venereum-associated Chlamydia trachomatis and of Neisseria gonorrhoeae were recorded in 1.1% and 1.9% of the samples, respectively, while molecular attempts to diagnose Treponema pallidum and Mycoplasma genitalium did not lead to positive results. Molecular detection of Schistosoma spp. or STI-associated pathogens was only exceptionally associated with multiple resistance gene detections in the same sample, suggesting epidemiological distinctness. In conclusion, the assessment confirmed considerable prevalence of urogenital schistosomiasis and resistant bacterial colonization, as well as a regionally expected abundance of STI-associated pathogens. Continuous screening offers seem advisable to minimize the risks for the pregnant women and their newborns. | 2023 | 37623959 |
| 939 | 9 | 0.8492 | Colonization of residents and staff of a long-term-care facility and adjacent acute-care hospital geriatric unit by multiresistant bacteria. Long-term-care facilities (LTCFs) are reservoirs of resistant bacteria. We undertook a point-prevalence survey and risk factor analysis for specific resistance types among residents and staff of a Bolzano LTCF and among geriatric unit patients in the associated acute-care hospital. Urine samples and rectal, inguinal, oropharyngeal and nasal swabs were plated on chromogenic agar; isolates were typed by pulsed-field gel electrophoresis; resistance genes and links to insertion sequences were sought by PCR; plasmids were analysed by PCR, restriction fragment length polymorphism and incompatibility grouping. Demographic data were collected. Of the LTCF residents, 74.8% were colonized with ≥1 resistant organism, 64% with extended-spectrum β-lactamase (ESBL) producers, 38.7% with methicillin-resistant Staphylococcus aureus (MRSA), 6.3% with metallo-β-lactamase (MBL) producers, and 2.7% with vancomycin-resistant enterococci. Corresponding rates for LTCF staff were 27.5%, 14.5%, 14.5%, 1.5% and 0%, respectively. Colonization frequencies for geriatric unit patients were lower than for those in the LTCF. Both clonal spread and plasmid transfer were implicated in the dissemination of MBL producers that harboured IncN plasmids bearing bla(VIM-1), qnrS, and bla(SHV-12). Most (44/45) ESBL-producing Escherichia coli isolates had bla(CTX-M) genes of group 1; a few had bla(CTX-M) genes of group 9 or bla(SHV-5); those with bla(CTX-M-15) or bla(SHV-5) were clonal. Risk factors for colonization of LTCF residents with resistant bacteria included age ≥86 years, antibiotic treatment in the previous 3 months, indwelling devices, chronic obstructive pulmonary disease, physical disability, and the particular LTCF unit; those for geriatric unit patients were age and dementia. In conclusion, ESBL-producing and MBL-producing Enterobacteriaceae and MRSA were prevalent among the LTCF residents and staff, but less so in the hospital geriatric unit. Education of LTCF employees and better infection control are proposed to minimize the spread of resistant bacteria in the facility. | 2010 | 19686277 |
| 1739 | 10 | 0.8492 | Antimicrobial-resistant Enterobacteriaceae from humans and wildlife in Dzanga-Sangha Protected Area, Central African Republic. Antimicrobial resistance is a worldwide concern of public health. Unfortunately, resistant bacteria are spreading to all ecosystems, including the strictly protected ones. We investigated antimicrobial resistance in gastrointestinal Enterobacteriaceae of wild mammals and people living within Dzangha-Sangha Protected Areas, Central African Republic, with an emphasis on extended-spectrum β-lactamase (ESBL) and plasmid-mediated quinolone resistance (PMQR) genes. We compare resistance genes found in microbiota of humans, gorillas habituated and unhabituated to humans and other wildlife. In gorillas, we additionally investigate the presence of ESBL resistant isolates after treatment by ceftiofur. We found a considerable prevalence of multiresistant Enterobacteriaceae isolates with ESBL and PMQR genes in humans (10% and 31%, respectively). Among wildlife the most significant findings were CTX-M-15-producing Klebsiella pneumoniae in a habituated gorilla and a multiresistant Escherichia coli isolate with gene qepA in an unhabituated gorilla. Other isolates from wildlife were mostly represented by qnrB-harboring Citrobacter spp. The relatedness of resistant E. coli was investigated in a PFGE-based dendrogram; isolates from gorillas showed less than 80% similarity to each other and less than 80% similarity to human isolates. No ESBL-producing isolates were found in animals treated by ceftiofur. Although we did not detect any bacterial clone common to wildlife and humans, we detected an intersection in the spectrum of resistance genes found in humans and gorillas, represented by blaCTX-M-15 and qepA. | 2014 | 24636162 |
| 944 | 11 | 0.8491 | Fecal shedding of extended-spectrum beta-lactamase-producing Enterobacterales in cats admitted to an animal shelter. OBJECTIVES: The objective of this study was to evaluate shedding of extended-spectrum beta-lactamase (ESBL)-producing bacteria in cats admitted to an animal shelter. METHODS: Fecal samples were collected from cats admitted to an animal shelter between 12 June and 23 August 2018. Selective enrichment culture for ESBL-producing bacteria was performed and isolates were speciated and tested for selected ESBL genes using PCR. RESULTS: ESBL-producing Enterobacterales were identified in fecal samples from 2/87 (2.3%; 95% confidence interval 0.6-8.0) cats. One isolate was an Escherichia coli that possessed bla(CTX-M-1), bla(CMY-2) and bla(TEM) genes. The other was Enterobacter cloacae possessing bla(CTX-M-1) and bla(CMY-2). CONCLUSIONS AND RELEVANCE: While the study sample size and prevalence rate for ESBL-producing bacteria were low, these data document that cats admitted to similar shelters could harbor these agents. The risk posed by ESBL-producing bacterium shedding in cats, both to cats and other species, is currently unclear. However, these findings support the need for more investigation of interspecies transmission of ESBL-producing bacteria and ESBL genes, as well as the importance of antimicrobial stewardship and routine infection control measures. | 2022 | 35133182 |
| 2271 | 12 | 0.8491 | Detection of clinically relevant antibiotic-resistant bacteria in shared fomites, waste water and municipal solid wastes disposed near residential areas of a Nigerian city. Studies investigating environmental hotspots of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in Nigeria are limited. This study was designed to assess various environmental sources and commonly touched surfaces as potential carriers of ARB and ARGs with implications for public health. A total of 392 samples, including sewage (36), sludge (36), diapers (20), plastics (20), water sachet polythene bags (20), food wastes (20), soil beneath dump sites (20), and frequently touched surfaces such as restroom floors (80), corridors (24), door handles (56), and room floors and walls (60), were collected and screened for the presence of resistant bacteria carrying genes such as bla (KPC), bla (NDM-1), bla (CMY-2), bla (IMP), bla (OXA66) and MecA. Additionally, we employed standard techniques to detect methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum β-lactamase (ESBL)-producing Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii . We also evaluated the effectiveness of routine disinfection procedures in eliminating ARB from restroom floors. Our findings revealed that sewage, sludge, diapers, food wastes and restroom floors are frequently contaminated with highly and moderately resistant strains of E. coli, K. pneumoniae, P. aeruginosa and MRSA. Notably, we identified two variants of the bla (OXA51-like) gene (bla (OXA-66) and bla (OXA-180)) in A. baumannii isolated from these environmental sources. Furthermore, we detected seven ESBL- K. pneumoniae , five ESBL- A. baumannii , two ESBL- E. coli and one ESBL- P. aeruginosa , all carrying one or more ARGs (bla (KPC), bla (NDM-1), bla (CMY-2)), in isolates recovered from sewage, sludge, restroom floors and plastics. It is of note that ARB persisted on restroom floors even after disinfection procedures. In conclusion, this study highlights that environmental wastes indiscriminately discarded in residential areas and shared surfaces among individuals are heavily colonized by ARB carrying ARGs of significant public health importance. | 2023 | 38188243 |
| 1407 | 13 | 0.8489 | World Health Organization priority antimicrobial resistance in Enterobacterales, Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus faecium healthcare-associated bloodstream infections in Brazil (ASCENSION): a prospective, multicentre, observational study. BACKGROUND: Carbapenem-resistant Enterobacterales (CRE), Acinetobacter baumannii (CRAB), Pseudomonas aeruginosa (CRPA), methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE) are listed by World Health Organization (WHO) as priority antimicrobial-resistant bacteria. Data on WHO Priority Antimicrobial resistance Phenotype (WPAP) bacteria from low- and middle-income countries are scarce. In this study, we investigated the occurrence of WPAP in healthcare-associated bloodstream infections (BSI) in Brazil, an upper-middle-income country in South America. METHODS: ASCENSION was a prospective, multicentre, observational study conducted in 14 hospitals from four of five Brazilian regions. Enterobacterales, A. baumannii, P. aeruginosa, S. aureus and E. faecium BSIs in hospitalised patients were analysed. The primary outcome was the frequency of WPAP among all bacteria of interest. Secondary outcomes were incidence-density of bacteria isolates in hospitalised patients, WPAP proportions within bacterial species, and 28-day mortality. PCR for carbapenemase genes was performed in carbapenem-resistant Gram-negative bacteria. FINDINGS: Between August 15, 2022, and August 14, 2023, 1350 isolates (1220 BSI episodes) were included. WPAP accounted for 38.8% (n = 524; 95% Confidence Interval 32.0-46.1) of all isolates, with CRE (19.3%) as the most frequent, followed by CRAB (9.6%), MRSA (4.9%), VRE (2.7%), and CRPA (2.4%). Incidence-density of all and WPAP isolates were 1.91 and 0.77/1000 patients-day, respectively. Carbapenem-resistant Klebsiella pneumoniae (CRKP) was the most common CRE, corresponding to 14.2% of all BSIs. A. baumannii isolates presented the highest proportion of WPAP (87.8%). Mortality rates were higher in patients with BSIs by WPAP than non-WPAP isolates. KPC (64.4%) was the predominant carbapenemase in CRE, followed by NDM (28.4%) and KPC + NDM co-production (7.1%). OXA-23 was the most frequent in CRAB. INTERPRETATION: A high frequency of WPAP bacteria, particularly CRKP and CRAB, were found in healthcare-associated BSIs in Brazil, posing them as a major public health problem in this country. FUNDING: National Council for Scientific and Technological Development, Brazil. | 2025 | 39957800 |
| 2525 | 14 | 0.8488 | Review of antimicrobial resistance surveillance programmes in livestock and meat in EU with focus on humans. OBJECTIVES: In this review, we describe surveillance programmes reporting antimicrobial resistance (AMR) and resistance genes in bacterial isolates from livestock and meat and compare them with those relevant for human health. METHODS: Publications on AMR in European countries were assessed. PubMed was reviewed and AMR monitoring programmes were identified from reports retrieved by Internet searches and by contacting national authorities in EU/European Economic Area (EEA) member states. RESULTS: Three types of systems were identified: EU programmes, industry-funded supranational programmes and national surveillance systems. The mandatory EU-financed programme has led to some harmonization in national monitoring and provides relevant information on AMR and extended-spectrum β-lactamase/AmpC- and carbapenemase-producing bacteria. At the national level, AMR surveillance systems in livestock apply heterogeneous sampling, testing and reporting modalities, resulting in results that cannot be compared. Most reports are not publicly available or are written in a local language. The industry-funded monitoring systems undertaken by the Centre Européen d'Etudes pour la Santé Animale (CEESA) examines AMR in bacteria in food-producing animals. CONCLUSIONS: Characterization of AMR genes in livestock is applied heterogeneously among countries. Most antibiotics of human interest are included in animal surveillance, although results are difficult to compare as a result of lack of representativeness of animal samples. We suggest that EU/EEA countries provide better uniform AMR monitoring and reporting in livestock and link them better to surveillance systems in humans. Reducing the delay between data collection and publication is also important to allow prompt identification of new resistance patterns. | 2018 | 28970159 |
| 1608 | 15 | 0.8487 | Low prevalence of zoonotic multidrug-resistant bacteria in veterinarians in a country with prudent use of antimicrobials in animals. The occurrence of multidrug-resistant zoonotic bacteria in animals has been increasing worldwide. Working in close contact with livestock increases the risk of carriage of these bacteria. We investigated the occurrence of extended-spectrum beta-lactamase (ESBL) and plasmidic AmpC beta-lactamase producing Enterobacteriaceae (ESBL/pAmpC-PE) and livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) in Finnish veterinarians (n = 320). In addition to microbiological samples, background information was collected. Bacterial whole genome sequencing was performed to deduce sequence types (STs), spa types and resistance genes of the isolates. In total, 3.0% (9/297) of the veterinarians carried ESBL producing Escherichia coli, with one ESBL producing E. coli isolate producing also AmpC. Seven different STs, sequences of several different plasmid groups as well as several different bla(ESBL/pAmpC) genes existed in different combinations. No carbapenemase or colistin resistance genes were detected. MRSA was detected in 0.3% (1/320) of the samples. The strain belonged to LA-MRSA clonal complex (CC) 398 (ST398, spa type 011, lacking Panton-Valentine leukocidin genes). In conclusion, this study shows low carriage of multidrug-resistant zoonotic bacteria in Finnish veterinarians. However, finding LA-MRSA for the first time in a sample from a veterinarian in a country with prudent use of animal antimicrobials and regarding the recent rise of LA-MRSA on Finnish pig farms, a strong recommendation to protect people working in close contact with animals carrying LA-MRSA CC398 is given. Further studies are needed to explain why the prevalence of LA-MRSA in veterinarians is lower in Finland than in other European countries. | 2019 | 31232511 |
| 940 | 16 | 0.8486 | Acquisition of multidrug-resistant bacteria and colistin resistance genes in French medical students on internships abroad. BACKGROUND: Acquisition of multidrug resistant bacteria (MDR) and colistin resistance genes by international travellers has been demonstrated. Studies conducted in medical students during internships abroad are scant. METHODS: Nasopharyngeal, rectal, and vaginal swabs samples were collected from 382 French medical students before and after travel to investigate the acquisition of MDR bacteria. The bacterial diversity in the samples was assessed by culture on selective media. We also genetically characterised the isolates of MDR bacteria including Extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-E), methicillin-resistant Staphylococcus aureus (MRSA), and Carbapenemase-producing Enterobacteriacae (CPE) using the real-time polymerase chain reaction method. The samples were collected from 293 students and were investigated for mcr colistin-resistance genes using RT-PCR directly on the samples, followed by conventional PCR and sequencing. RESULTS: A proportion of 29.3% (112/382) of the participants had acquired ESBL-E and 2.6% (10/382) had acquired CPE. The most common species and ESBL-E encoding gene were Escherichia coli (125/127 isolates, 98.4%) and bla(CTX-M-A) (121/127, 95.3%), respectively. A proportion of 6.8% (20/293) of the participants had acquired mcr-1 genes, followed by mcr-3 (1/293, 0.3%) and mcr-8 (1/293, 0.3%). We found that taking part in humanitarian missions to orphanages (aRR = 2.01, p < 0.0001), being in contact with children during travel (aRR = 1.78, p = 0.006), the primary destination of travel being Vietnam (aRR = 2.15, p < 0.0001) and north India (aRR = 2.41, p = 0.001), using antibiotics during travel (aRR = 1.77, p = 0.01), and studying in 2018 (aRR = 1.55, p = 0.03) were associated with the acquisition of ESBL-E. When the primary destination of travel was Vietnam (aRR = 2.74, p < 0.0001) and the year of study was 2018 (aRR = 1.93, p < 0.002), this was associated with acquisition of colistin resistance genes. CONCLUSION: Medical students are at a potential risk of acquiring ESBL-E, CPE and colistin resistance genes. A number of risk factors have been identified, which may be used to develop targeted preventive measures. | 2021 | 33248262 |
| 1744 | 17 | 0.8486 | Acquisition of multidrug-resistant bacteria and encoding genes among French pilgrims during the 2017 and 2018 Hajj. The objective of this study is to determine the acquisition of multidrug-resistant (MDR) bacteria and antibiotic resistance-encoding genes by French Hajj pilgrims and associated risk factors. Pilgrims traveling during the 2017 and 2018 Hajj were recruited. All pilgrims underwent two successive systematic nasopharyngeal and rectal swabs, pre- and post-Hajj. Specific culture media were used to screen for MDR bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), carbapenem-resistant bacteria, and extended spectrum beta-lactamase producing Enterobacteriaceae (ESBL-E). qPCR was used to identify antibiotic resistance-encoding genes from cultured isolates. Direct screening of genes encoding for colistin resistance (mcr-1, 2, 3, 4, 5, and 8) from nasopharyngeal and rectal swabs was performed using qPCR, and positive qPCR results were simultaneously tested by sequencing. There were 268 pilgrims included. The percentage of pilgrims acquiring MDR bacteria during the Hajj was 19.4%. A total of 81 strains were isolated (1 carbapenem-resistant Acinetobacter baumannii, 12 MRSA, and 68 ESBL-E). ESBL-E strains were found in rectal samples of 6.0% pilgrims pre-Hajj and of 16.4% pilgrims post-Hajj. Only 0.4% pilgrims were positive for CARB post-Hajj and 1.9% carried nasal MRSA pre- and post-Hajj. In addition, 23 (8.6%) post-Hajj rectal swabs were positive for mcr genes (19 mcr-1 gene and 4 mcr-4 gene). No significant association was found between co-factors and acquisition of MDR bacteria or mcr genes. MDR bacteria and genes are acquired by pilgrims during the Hajj mass gathering. Rationalization of antibiotic consumption and implementation of measures to prevent transmission of bacteria among pilgrims during the event are of paramount importance. | 2021 | 33411174 |
| 1740 | 18 | 0.8486 | MDR Escherichia coli carrying CTX-M-24 (IncF[F-:A1:B32]) and KPC-2 (IncX3/IncU) plasmids isolated from community-acquired urinary trainfection in Brazil. Acquired antibiotic resistance in bacteria has become an important worldwide challenge. Currently, several bacteria, including Escherichia coli, have multidrug resistance profiles. Genes such as bla CTX-M-24 and bla KPC-2 (carbapenemase) are widespread. This research letter reports about a genomic surveillance study where multidrug-resistant E. coli containing CTX-M-24(IncF [F-:A1:B32]) and KPC-2(IncX3/IncU) plasmids were obtained from community- acquired urinary tract infection in Brazil. | 2022 | 36228665 |
| 835 | 19 | 0.8486 | Acquisition of Escherichia coli carrying extended-spectrum ß-lactamase and carbapenemase genes by hospitalised children with severe acute malnutrition in Niger. Hospitalisation and routine antibiotic treatment are recommended for children with complicated severe acute malnutrition (SAM) but this may exacerbate antimicrobial resistance. Here, we investigate carriage of Gram-negative bacteria in children under five years of age receiving treatment for SAM in Niger, comparing the frequency of colonisation with bacteria carrying resistance genes at admission, during hospital stay and at discharge. E. coli isolates carrying a bla(NDM-5) gene were selected for whole-genome sequencing. Rectal colonisation with bacteria carrying ß-lactamase genes is high, with 76% (n = 1042/1371) of children harbouring bacteria carrying a bla(CTXM-1)-group gene and 25% (n = 338/1371) carrying a bla(NDM-5) gene. Over two-thirds of children who did not carry bacteria with a carbapenemase gene at admission are colonised with bacteria carrying a carbapenemase gene at discharge (n = 503/729, 69%). E. coli ST167 carrying bla(NDM-5) gene is recovered from 11% (n = 144/1371) of children. Here we highlight infection control and bacterial AMR transmission concerns amongst a vulnerable population in need of medical treatment. | 2025 | 40750762 |