# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6443 | 0 | 0.9927 | Understanding bacterial ecology to combat antibiotic resistance dissemination. The dissemination of antibiotic resistance from environmental sources is a growing concern. Despite the widespread occurrence of antibiotic resistance transmission events, there are actually multiple obstacles in the ecosystem that restrict the flow of bacteria and genes, in particular nonnegligible biological barriers. How these ecological factors help combat the dissemination of antibiotic resistance and relevant antibiotic resistance-diminishing organisms (ARDOs) deserves further exploration. This review summarizes the factors that influence the growth, metabolism, and environmental adaptation of antibiotic-resistant bacteria (ARB) and restrict the horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs). Additionally, this review discusses the achievements in the application of ARDOs to improve biotechnology for wastewater and solid waste remediation while highlighting current challenges limiting their broader implementation. | 2025 | 39855970 |
| 6436 | 1 | 0.9924 | Protist predation selects for the soil resistome. A key aspect of "One Health" is to comprehend how antibiotic resistomes evolve naturally. In this issue, Nguyen and colleagues pioneered an in situ investigation on the impact of protist predations on the soil microbial community and its antibiotic resistance genes (ARGs). They found that bacterivorous protists consistently increased the abundance of ARGs, such as tetracycline resistant genes. Indeed, antibiotic production is a common strategy for bacteria to evade protist predation. The rise of ARGs can be explained by the balance between antibiotic producers and resisters shaped by predatory selection. This work suggests that ARG enrichment due to biotic interactions may be less worrisome than previously thought. Unless, these ARGs are carried by or disseminated among pathogens. Therefore, it is essential to monitor the occurrence, dissemination and pathogenic hosts of ARGs, enhancing our capacity to combat antibiotic resistance. | 2024 | 38365252 |
| 8625 | 2 | 0.9924 | Marine viruses: truth or dare. Over the past two decades, marine virology has progressed from a curiosity to an intensely studied topic of critical importance to oceanography. At concentrations of approximately 10 million viruses per milliliter of surface seawater, viruses are the most abundant biological entities in the oceans. The majority of these viruses are phages (viruses that infect bacteria). Through lysing their bacterial hosts, marine phages control bacterial abundance, affect community composition, and impact global biogeochemical cycles. In addition, phages influence their hosts through selection for resistance, horizontal gene transfer, and manipulation of bacterial metabolism. Recent work has also demonstrated that marine phages are extremely diverse and can carry a variety of auxiliary metabolic genes encoding critical ecological functions. This review is structured as a scientific "truth or dare," revealing several well-established "truths" about marine viruses and presenting a few "dares" for the research community to undertake in future studies. | 2012 | 22457982 |
| 9626 | 3 | 0.9924 | Daphnia as a refuge for an antibiotic resistance gene in an experimental freshwater community. Mechanisms that enable the maintenance of antibiotic resistance genes in the environment are still greatly unknown. Here we show that the tetracycline resistance gene tet(A) is largely removed from the pelagic aquatic bacterial community through filter feeding by Daphnia obtusa while it becomes detectable within the microbiome of the daphniids themselves, where it was not present prior to the experiment. We moreover show that a multitude of Daphnia-associated bacterial taxa are potential carriers of tet(A) and postulated that the biofilm-like structures, where bacteria grow in, may enable horizontal transfer of such genes. This experiment highlights the need to take ecological interactions and a broad range of niches into consideration when studying and discussing the fate of antibiotic resistance genes in nature. | 2016 | 27459256 |
| 6393 | 4 | 0.9924 | A review of the impact of conductive materials on antibiotic resistance genes during the anaerobic digestion of sewage sludge and animal manure. The urgent need to reduce the environmental burden of antibiotic resistance genes (ARGs) has become even more apparent as concerted efforts are made globally to tackle the dissemination of antimicrobial resistance. Concerning levels of ARGs abound in sewage sludge and animal manure, and their inadequate attenuation during conventional anaerobic digestion (AD) compromises the safety of the digestate, a nutrient-rich by-product of AD commonly recycled to agricultural land for improvement of soil quality. Exogenous ARGs introduced into the natural environment via the land application of digestate can be transferred from innocuous environmental bacteria to clinically relevant bacteria by horizontal gene transfer (HGT) and may eventually reach humans through food, water, and air. This review, therefore, discusses the prospects of using carbon- and iron-based conductive materials (CMs) as additives to mitigate the proliferation of ARGs during the AD of sewage sludge and animal manure. The review spotlights the core mechanisms underpinning the influence of CMs on the resistome profile, the steps to maximize ARG attenuation using CMs, and the current knowledge gaps. Data and information gathered indicate that CMs can profoundly reduce the abundance of ARGs in the digestate by easing selective pressure on ARGs, altering microbial community structure, and diminishing HGT. | 2023 | 36586329 |
| 6396 | 5 | 0.9924 | Interaction between microplastic biofilm formation and antibiotics: Effect of microplastic biofilm and its driving mechanisms on antibiotic resistance gene. As two pollutants with similar transport pathways, microplastics (MPs) and antibiotics (ATs) inevitably co-exist in water environments, and their interaction has become a topic of intense research interest for scholars over the past few years. This paper comprehensively and systematically reviews the current interaction between MPs and ATs, in particular, the role played by biofilm developed MPs (microplastic biofilm). A summary of the formation process of microplastic biofilm and its unique microbial community structure is presented in the paper. The formation of microplastic biofilm can enhance the adsorption mechanisms of ATs on primary MPs. Moreover, microplastic biofilm system is a diverse and vast reservoir of genetic material, and this paper reviews the mechanisms by which microplastics with biofilm drive the production of antibiotic resistance genes (ARGs) and the processes that selectively enrich for more ARGs. Meanwhile, the enrichment of ARGs may lead to the development of microbial resistance and the gradual loss of the antimicrobial effect of ATs. The transfer pathways of ARGs affected by microplastic biofilm are outlined, and ARGs dependent transfer of antibiotic resistance bacteria (ARB) is mainly through horizontal gene transfer (HGT). Furthermore, the ecological implications of the interaction between microplastic biofilm and ATs and perspectives for future research are reviewed. This review contributes to a new insight into the aquatic ecological environmental risks and the fate of contaminants (MPs, ATs), and is of great significance for controlling the combined pollution of these two pollutants. | 2023 | 37517232 |
| 8630 | 6 | 0.9923 | Environmental fate and behaviour of antibiotic resistance genes and small interference RNAs released from genetically modified crops. Rising global populations have amplified food scarcity across the world and ushered in the development of genetically modified (GM) crops to overcome these challenges. Cultivation of major crops such as corn and soy has favoured GM crops over conventional varieties to meet crop production and resilience needs. Modern GM crops containing small interference RNA molecules and antibiotic resistance genes have become increasingly common in the United States. However, the use of these crops remains controversial due to the uncertainty regarding the unintended release of its genetic material into the environment and possible downstream effects on human and environmental health. DNA or RNA transgenes may be exuded from crop tissues during cultivation or released during plant decomposition and adsorbed by soil. This can contribute to the persistence and bioavailability in soil or water environment and possible uptake by soil microbial communities and further passing of this information to neighbouring bacteria, disrupting microbial ecosystem services such as nutrient cycling and soil fertility. In this review, transgene mechanisms of action, uses in crops, and knowledge regarding their environmental fate and impact to microbes are evaluated. This aims to encapsulate the current knowledge and promote further research regarding unintended effects transgenes may cause. | 2022 | 35892194 |
| 6421 | 7 | 0.9923 | A critical review of process parameters influencing the fate of antibiotic resistance genes in the anaerobic digestion of organic waste. The overuse and inappropriate disposal of antibiotics raised severe public health risks worldwide. Specifically, the incomplete antibiotics metabolism in human and animal bodies contributes to the significant release of antibiotics into the natural ecosystems and the proliferation of antibiotic-resistant bacteria carrying antibiotic-resistant genes. Moreover, the organic feedstocks used for anaerobic digestion are often highly-rich in residual antibiotics and antibiotic-resistant genes. Hence, understanding their fate during anaerobic digestion has become a significant research focus recently. Previous studies demonstrated that various process parameters could considerably influence the propagation of the antibiotic-resistant genes during anaerobic digestion and their transmission via land application of digestate. This review article scrutinizes the influences of process parameters on antibiotic-resistant genes propagation in anaerobic digestion and the inherent fundamentals behind their effects. Based on the literature review, critical research gaps and challenges are summarized to guide the prospects for future studies. | 2022 | 35439559 |
| 6440 | 8 | 0.9923 | Fate and transport of biological microcontaminants bound to microplastics in the soil environment. Microplastics, fragmented plastic particles with a maximum dimension <5 mm, are an emerging contaminant of concern that can also serve as a vector of other chemical and biological contaminants. Compared to chemical contaminants, the potential of microplastics to adsorb biological microcontaminants such as antibiotic resistance genes, small interference RNAs, and pathogenic viruses is not well understood. Many current microplastic studies are based in the aquatic environment (freshwater, seawater, and wastewater), even though the terrestrial environment is considered both an important sink and source of microplastics. Microplastics co-occur with biological microcontaminants in many terrestrial environments including agricultural soils, where biosolids containing both contaminants are often applied as a soil amendment. Recent research suggests that microplastics in these environments can increase gene persistence and flow, which could have unintended downstream consequences for environmental microbiome health and resilience. Antibiotic resistance genes and silencing RNAs bound to microplastics, for example, have the potential to increase resistance and alter gene expression in environmental bacteria, respectively. This review evaluates the sources and pathways of microplastics and biological microcontaminants in the terrestrial environment as well as potential sorption mechanisms that can encourage long-range transport and persistence. Novel sources of biological microcontaminants are considered, and the role of microplastics in promoting the persistence and flow of biological microcontaminants evaluated. Finally, future research directions are suggested to increase understanding of the mechanisms that drive the fate and transport of microplastic-biological microcontaminant complexes in the terrestrial environment and better inform risk management. | 2023 | 37247742 |
| 6445 | 9 | 0.9923 | Microplastics: Disseminators of antibiotic resistance genes and pathogenic bacteria. Microplastics (MPs) are emerging pollutants that linger in the air, water, and land. Beyond their physical and chemical risks, there is growing evidence that MPs contribute to the worldwide antimicrobial resistance (AMR) dilemma by acting as carriers of harmful microbes and antibiotic resistance genes (ARGs). Despite an increase in research, the available literature is dispersed, and the part that MPs play in influencing microbial populations and fostering resistance is still not well understood. This review summarizes current research on how MPs contribute to the spread of antibiotic resistance. We concentrated on the ways in which MPs support horizontal gene transfer (HGT) processes such as conjugation, transformation, and transduction, assist biofilm development, and offer surfaces for microbial colonization. Evidence from a variety of settings suggests that MPs serve as vectors for opportunistic pathogens, such as the ESKAPE group, and ARGs, increasing the survival and movement of resistance determinants in ecosystems. Through the consolidation of current developments, this review emphasizes MPs as active resistance vectors instead of passive pollutants. We also point out important limitations, such as the lack of standardized procedures, inadequate risk assessment frameworks, and the absence of real-world exposure research. It is imperative that these issues be approached from a One Health standpoint in order to reduce the risks of both plastic pollution and antibiotic resistance. | 2025 | 41056605 |
| 6417 | 10 | 0.9923 | Fate of environmental pollutants: A review. A review of the literature published in 2019 on topics associated with the fate of environmental pollutants is presented. Environmental pollutants covered include pharmaceuticals, antibiotic-resistant bacteria and genes, pesticides and veterinary medicines, personal care products and emerging pollutants, PFAS, microplastics, nanomaterials, heavy metals and radionuclides, nutrients, pathogens and indicator organisms, and oil and hydrocarbons. For each pollutant, the occurrence in the environment and/or their fate in engineered as well as natural systems in matrices including water, soil, wastewater, stormwater, runoff, and/or manure is presented based on the published literature. The review includes current developments in understanding pollutants in natural and engineered systems, and relevant physico-chemical processes, as well as biological processes. | 2020 | 32671926 |
| 6409 | 11 | 0.9922 | Bacterial perspectives on the dissemination of antibiotic resistance genes in domestic wastewater bio-treatment systems: beneficiary to victim. Domestic wastes, ranging from sewage and sludge to municipal solid waste, are usually treated in bioprocessing systems. These systems are regarded as main conduits for the elevated levels of antibiotic resistance genes (ARGs) observed in the environment. This paper mainly reviews recent studies on the occurrence and dynamics of ARGs in wastewater bio-treatment systems and discusses the ins and outs of ARG dissemination from the perspective of the microbial community. Our analysis shows that concentration of antibiotics through adsorption to microbial aggregates triggers the bacteria to acquire ARGs, which can be facilitated by the presence of mobile genetic elements. Notably, the acquisition and flow of ARGs during the rapid dissemination process is directed towards and for the best interests of the microbial community as a whole, and is influenced by surrounding nutrient levels, toxicant types, and sensitivities of the species in the prevailing antibiotic-stressed conditions. Furthermore, our review argues that predation of ARG-carrying bacteria by bacteriophages does periodically enhance the accessibility of ARGs to bacteria, which indirectly facilitates the recruitment of ARGs into environmental microbial communities. | 2018 | 29198067 |
| 9580 | 12 | 0.9922 | Antibiotic resistance in bacterial communities. Bacteria are single-celled organisms, but the survival of microbial communities relies on complex dynamics at the molecular, cellular, and ecosystem scales. Antibiotic resistance, in particular, is not just a property of individual bacteria or even single-strain populations, but depends heavily on the community context. Collective community dynamics can lead to counterintuitive eco-evolutionary effects like survival of less resistant bacterial populations, slowing of resistance evolution, or population collapse, yet these surprising behaviors are often captured by simple mathematical models. In this review, we highlight recent progress - in many cases, advances driven by elegant combinations of quantitative experiments and theoretical models - in understanding how interactions between bacteria and with the environment affect antibiotic resistance, from single-species populations to multispecies communities embedded in an ecosystem. | 2023 | 37054512 |
| 6455 | 13 | 0.9922 | Bacteriophages: Underestimated vehicles of antibiotic resistance genes in the soil. Bacteriophages (phages), the most abundant biological entities on Earth, have a significant effect on the composition and dynamics of microbial communities, biogeochemical cycles of global ecosystems, and bacterial evolution. A variety of antibiotic resistance genes (ARGs) have been identified in phage genomes in different soil samples. Phages can mediate the transfer of ARGs between bacteria via transduction. Recent studies have suggested that anthropogenic activities promote phage-mediated horizontal gene transfer events. Therefore, the role of phages in the dissemination of ARGs, which are a potential threat to human health, may be underestimated. However, the contribution of phages to the transfer of ARGs is still poorly understood. Considering the growing and wide concerns of antibiotic resistance, phages should be considered a research focus in the mobile resistome. This review aimed to provide an overview of phages as vehicles of ARGs in soil. Here, we summarized the current knowledge on the diversity and abundance of ARGs in soilborne phages and analyzed the contribution of phages to the horizontal transfer of ARGs. Finally, research deficiencies and future perspectives were discussed. This study provides a reference for preventing and controlling ARG pollution in agricultural systems. | 2022 | 35992716 |
| 6403 | 14 | 0.9922 | Fate and transport modelling for evaluating antibiotic resistance in aquatic environments: Current knowledge and research priorities. Antibiotics have revolutionised medicine in the last century and enabled the prevention of bacterial infections that were previously deemed untreatable. However, in parallel, bacteria have increasingly developed resistance to antibiotics through various mechanisms. When resistant bacteria find their way into terrestrial and aquatic environments, animal and human exposures increase, e.g., via polluted soil, food, and water, and health risks multiply. Understanding the fate and transport of antibiotic resistant bacteria (ARB) and the transfer mechanisms of antibiotic resistance genes (ARGs) in aquatic environments is critical for evaluating and mitigating the risks of resistant-induced infections. The conceptual understanding of sources and pathways of antibiotics, ARB, and ARGs from society to the water environments is essential for setting the scene and developing an appropriate framework for modelling. Various factors and processes associated with hydrology, ecology, and climate change can significantly affect the fate and transport of ARB and ARGs in natural environments. This article reviews current knowledge, research gaps, and priorities for developing water quality models to assess the fate and transport of ARB and ARGs. The paper also provides inputs on future research needs, especially the need for new predictive models to guide risk assessment on AR transmission and spread in aquatic environments. | 2024 | 37788551 |
| 6438 | 15 | 0.9922 | The influence of heavy metals, polyaromatic hydrocarbons, and polychlorinated biphenyls pollution on the development of antibiotic resistance in soils. The minireview is devoted to the analysis of the influence of soil pollution with heavy metals, polyaromatic hydrocarbons (PAHs), and the polychlorinated biphenyls (PCBs) on the distribution of antibiotics resistance genes (ARGs) in soil microbiomes. It is shown that the best understanding of ARGs distribution process requires studying the influence of pollutants on this process in natural microbiocenoses. Heavy metals promote co-selection of genes determining resistance to them together with ARGs in the same mobile elements of a bacterial genome, but the majority of studies focus on agricultural soils enriched with ARGs originating from manure. Studying nonagricultural soils would clear mechanisms of ARGs transfer in natural and anthropogenically transformed environments and highlight the role of antibiotic-producing bacteria. PAHs make a considerable shift in soil microbiomes leading to an increase in the number of Actinobacteria which are the source of antibiotics formation and bear multiple ARGs. The soils polluted with PAHs can be a selective medium for bacteria resistant to antibiotics, and the level of ARGs expression is much higher. PCBs are accumulated in soils and significantly alter the specific structure of soil microbiocenoses. In such soils, representatives of the genera Acinetobacter, Pseudomonas, and Alcanivorax dominate, and the ability to degrade PCBs is connected to horizontal gene transfer (HGT) and high level of genomic plasticity. The attention is also focused on the need to study the properties of the soil having an impact on the bioavailability of pollutants and, as a result, on resistome of soil microorganisms. | 2018 | 29453715 |
| 6449 | 16 | 0.9922 | Microbial regulation of natural antibiotic resistance: Understanding the protist-bacteria interactions for evolution of soil resistome. The emergence, evolution and spread of antibiotic resistance genes (ARGs) in the environment represent a global threat to human health. Our knowledge of antibiotic resistance in human-impacted ecosystems is rapidly growing with antibiotic use, organic fertilization and wastewater irrigation identified as key selection pressures. However, the importance of biological interactions, especially predation and competition, as a potential driver of antibiotic resistance in the natural environment with limited anthropogenic disturbance remains largely overlooked. Stress-affected bacteria develop resistance to maximize competition and survival, and similarly bacteria may develop resistance to fight stress under the predation pressure of protists, an essential component of the soil microbiome. In this article, we summarized the major findings for the prevalence of natural ARGs on our planet and discussed the potential selection pressures driving the evolution and development of antibiotic resistance in natural settings. This is the first article that reviewed the potential links between protists and the antibiotic resistance of bacteria, and highlighted the importance of predation by protists as a crucial selection pressure of antibiotic resistance in the absence of anthropogenic disturbance. We conclude that an improved ecological understanding of the protists-bacteria interactions and other biological relationships would greatly expand our ability to predict and mitigate the environmental antibiotic resistance under the context of global change. | 2020 | 31818598 |
| 6411 | 17 | 0.9921 | Are microplastics in aquaculture an undeniable driver in accelerating the spread of antibiotic resistance genes? Aquaculture products have been a key source of protein in the human food supply. Contamination by microplastics and antibiotic resistance genes (ARGs) directly affects food quality and safety. Plastic fishing gear and the long-term misuse of antibiotics result in the persistent residue, migration, and spread of microplastics and ARGs in the aquaculture environment, causing in ecological imbalance and endangering human security. Microplastics can act as "petri dishes" for the reproduction, communication, and spread of ARGs, which adds an additional layer of complexity to the global issues surrounding microplastics and ARGs. Aquaculture has become an important source of microplastics and ARGs in natural waters. Accordingly, this paper mainly discusses the contribution of aquaculture to the presence of microplastics and ARGs in aquatic ecosystems. Microplastics and ARGs can (1) affect the production and quality of aquatic products; (2) influence the development and reproduction of aquatic organisms; and (3) accelerate the spread of resistant bacteria. How to eliminate microplastics and ARGs and block their transmission has become a worldwide problem. Actually, further research is required to understand the scale and scope of these effects. | 2023 | 37840081 |
| 6406 | 18 | 0.9921 | The Environmental Lifecycle of Antibiotics and Resistance Genes: Transmission Mechanisms, Challenges, and Control Strategies. Antibiotics are widely used in modern medicine. However, as global antibiotic consumption rises, environmental contamination with antibiotics and antibiotic resistance genes (ARGs) is becoming a serious concern. The impact of antibiotic use on human health is now under scrutiny, particularly regarding the emergence of antibiotic-resistant bacteria (ARB) in the environment. This has heightened interest in technologies for treating ARGs, highlighting the need for effective solutions. This review traces the life cycle of ARB and ARGs driven by human activity, revealing pathways from antibiotic use to human infection. We address the mechanisms enabling resistance in ARB during this process. Beyond intrinsic resistance, the primary cause of ARB resistance is the horizontal gene transfer (HGT) of ARGs. These genes exploit mobile genetic elements (MGEs) to spread via conjugation, transformation, transduction, and outer membrane vesicles (OMVs). Currently, biological wastewater treatment is the primary pollution control method due to its cost-effectiveness. However, these biological processes can promote ARG propagation, significantly amplifying the environmental threat posed by antibiotics. This review also summarizes key mechanisms in the biological treatment of antibiotics and evaluates risks associated with major ARB/ARG removal processes. Our aim is to enhance understanding of ARB risks, their pathways and mechanisms in biotreatment, and potential biomedical applications for pollution control. | 2025 | 41011444 |
| 6502 | 19 | 0.9921 | A critical review on the occurrence of resistomes in the environment and their removal from wastewater using apposite treatment technologies: Limitations, successes and future improvement. Recent reports are pointing towards the potential increasing risks of resistomes in human host. With no permissible limit in sight, resistomes are continually multiplying at an alarming rate in the ecosystem, with a disturbing level in drinking water source. The morphology and chemical constituent of resistomes afford them to resist degradation, elude membrane and counter ionic charge, thereby, rendering both conventional and advanced water and wastewater treatment inefficient. Water and wastewater matrix may govern the propagation of individual resistomes sub-type, co-selection and specific interaction towards precise condition may have enhanced the current challenge. This review covers recent reports (2011-2019) on the occurrence of ARB/ARGs and ease of spread of resistance genes in the aquatic ecosystem. The contributions of water matrix to the spread and mitigation, treatment options, via bulk removal or capture, and intracellular and extracellular DNA lysis were discussed. A complete summary of recent occurrences of ARB/ARGs, fate after disinfection and optimum conditions of individual treatment technology or in tandem, including process limitations, with a brief assessment of removal or degradation mechanism were highlighted. | 2020 | 32224385 |