# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9719 | 0 | 0.9966 | Dynamics of antibiotic resistance genes in plasmids and bacteriophages. This brief review explores the intricate interplay between bacteriophages and plasmids in the context of antibiotic resistance gene (ARG) dissemination. Originating from studies in the late 1950s, the review traces the evolution of knowledge regarding extrachromosomal factors facilitating horizontal gene transfer and adaptation in bacteria. Analyzing the gene repertoires of plasmids and bacteriophages, the study highlights their contributions to bacterial evolution and adaptation. While plasmids encode essential and accessory genes influencing host characteristics, bacteriophages carry auxiliary metabolic genes (AMGs) that augment host metabolism. The debate on phages carrying ARGs is explored through a critical evaluation of various studies, revealing contrasting findings from researchers. Additionally, the review addresses the interplay between prophages and plasmids, underlining their similarities and divergences. Based on the available literature evidence, we conclude that plasmids generally encode ARGs while bacteriophages typically do not contain ARGs. But extra-chromosomaly present prophages with plasmid characteristics can encode and disseminate ARGs. | 2025 | 38651513 |
| 9840 | 1 | 0.9965 | The chromosomal organization of horizontal gene transfer in bacteria. Bacterial adaptation is accelerated by the acquisition of novel traits through horizontal gene transfer, but the integration of these genes affects genome organization. We found that transferred genes are concentrated in only ~1% of the chromosomal regions (hotspots) in 80 bacterial species. This concentration increases with genome size and with the rate of transfer. Hotspots diversify by rapid gene turnover; their chromosomal distribution depends on local contexts (neighboring core genes), and content in mobile genetic elements. Hotspots concentrate most changes in gene repertoires, reduce the trade-off between genome diversification and organization, and should be treasure troves of strain-specific adaptive genes. Most mobile genetic elements and antibiotic resistance genes are in hotspots, but many hotspots lack recognizable mobile genetic elements and exhibit frequent homologous recombination at flanking core genes. Overrepresentation of hotspots with fewer mobile genetic elements in naturally transformable bacteria suggests that homologous recombination and horizontal gene transfer are tightly linked in genome evolution.Horizontal gene transfer (HGT) is an important mechanism for genome evolution and adaptation in bacteria. Here, Oliveira and colleagues find HGT hotspots comprising ~ 1% of the chromosomal regions in 80 bacterial species. | 2017 | 29018197 |
| 9848 | 2 | 0.9964 | Cargo Genes of Tn7-Like Transposons Comprise an Enormous Diversity of Defense Systems, Mobile Genetic Elements, and Antibiotic Resistance Genes. Transposition is a major mechanism of horizontal gene mobility in prokaryotes. However, exploration of the genes mobilized by transposons (cargo) is hampered by the difficulty in delineating integrated transposons from their surrounding genetic context. Here, we present a computational approach that allowed us to identify the boundaries of 6,549 Tn7-like transposons. We found that 96% of these transposons carry at least one cargo gene. Delineation of distinct communities in a gene-sharing network demonstrates how transposons function as a conduit of genes between phylogenetically distant hosts. Comparative analysis of the cargo genes reveals significant enrichment of mobile genetic elements (MGEs) nested within Tn7-like transposons, such as insertion sequences and toxin-antitoxin modules, and of genes involved in recombination, anti-MGE defense, and antibiotic resistance. More unexpectedly, cargo also includes genes encoding central carbon metabolism enzymes. Twenty-two Tn7-like transposons carry both an anti-MGE defense system and antibiotic resistance genes, illustrating how bacteria can overcome these combined pressures upon acquisition of a single transposon. This work substantially expands the distribution of Tn7-like transposons, defines their evolutionary relationships, and provides a large-scale functional classification of prokaryotic genes mobilized by transposition. IMPORTANCE Transposons are major vehicles of horizontal gene transfer that, in addition to genes directly involved in transposition, carry cargo genes. However, characterization of these genes is hampered by the difficulty of identification of transposon boundaries. We developed a computational approach for detecting transposon ends and applied it to perform a comprehensive census of the cargo genes of Tn7-like transposons, a large class of bacterial mobile genetic elements (MGE), many of which employ a unique, CRISPR-mediated mechanism of site-specific transposition. The cargo genes encompass a striking diversity of MGE, defense, and antibiotic resistance systems. Unexpectedly, we also identified cargo genes encoding metabolic enzymes. Thus, Tn7-like transposons mobilize a vast repertoire of genes that can have multiple effects on the host bacteria. | 2021 | 34872347 |
| 9838 | 3 | 0.9963 | Interactions between plasmids and other mobile genetic elements affect their transmission and persistence. Plasmids are genetic elements that play a role in bacterial evolution by providing new genes that promote adaptation to diverse conditions. Plasmids are also known to reduce bacterial competitiveness in the absence of selection for plasmid-encoded traits. It is easier to understand plasmid persistence when considering the evidence that plasmid maintenance can improve during co-evolution with the bacterial host, i.e. the chromosome. However, bacteria isolated from nature often harbor diverse mobile elements: phages, transposons, genomic islands and even other plasmids. Recent interest has emerged on the role such elements play on the persistence and evolution of plasmids. Here, we mainly review interactions between different plasmids, but also discuss their interactions with other genetic elements. We focus on interactions that impact fundamental plasmid traits, such as the fitness effect imposed on their hosts and the transfer efficiency into new host cells. We illustrate these phenomena with examples concerning clinically relevant organisms and the spread of plasmids carrying antibiotic resistance genes and virulence factors. | 2019 | 30771401 |
| 9481 | 4 | 0.9963 | Genetic linkage and horizontal gene transfer, the roots of the antibiotic multi-resistance problem. Bacteria carrying resistance genes for many antibiotics are moving beyond the clinic into the community, infecting otherwise healthy people with untreatable and frequently fatal infections. This state of affairs makes it increasingly important that we understand the sources of this problem in terms of bacterial biology and ecology and also that we find some new targets for drugs that will help control this growing epidemic. This brief and eclectic review takes the perspective that we have too long thought about the problem in terms of treatment with or resistance to a single antibiotic at a time, assuming that dissemination of the resistance gene was affected by simple vertical inheritance. In reality antibiotic resistance genes are readily transferred horizontally, even to and from distantly related bacteria. The common agents of bacterial gene transfer are described and also one of the processes whereby nonantibiotic chemicals, specifically toxic metals, in the environment can select for and enrich bacteria with antibiotic multiresistance. Lastly, some speculation is offered on broadening our perspective on this problem to include drugs directed at compromising the ability of the mobile elements themselves to replicate, transfer, and recombine, that is, the three "infrastructure" processes central to the movement of genes among bacteria. | 2006 | 17127524 |
| 9244 | 5 | 0.9963 | Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective. History of mankind is regarded as struggle against infectious diseases. Rather than observing the withering away of bacterial diseases, antibiotic resistance has emerged as a serious global health concern. Medium of antibiotic resistance in bacteria varies greatly and comprises of target protection, target substitution, antibiotic detoxification and block of intracellular antibiotic accumulation. Further aggravation to prevailing situation arose on observing bacteria gradually becoming resistant to different classes of antibiotics through acquisition of resistance genes from same and different genera of bacteria. Attributing bacteria with feature of better adaptability, dispersal of antibiotic resistance genes to minimize effects of antibiotics by various means including horizontal gene transfer (conjugation, transformation, and transduction), Mobile genetic elements (plasmids, transposons, insertion sequences, integrons, and integrative-conjugative elements) and bacterial toxin-antitoxin system led to speedy bloom of antibiotic resistance amongst bacteria. Proficiency of bacteria to obtain resistance genes generated an unpleasant situation; a grave, but a lot unacknowledged, feature of resistance gene transfer. | 2018 | 30298054 |
| 9844 | 6 | 0.9962 | The role of Bacteroides conjugative transposons in the dissemination of antibiotic resistance genes. Investigations into the mechanisms of antibiotic resistance gene transfer utilized by Bacteroides species have led to a greater understanding of how bacteria transfer antibiotic resistance genes, and what environmental stimuli promote such horizontal transfer events. Although Bacteroides spp. harbor a variety of transmissible elements that are involved in the dissemination of antibiotic resistance genes, it is one particular class of elements, the conjugative transposons, that are responsible for most of the resistance gene transfer in Bacteroides. The potential for Bacteroides conjugative transposons to transfer antibiotic resistance genes extends beyond those genes carried by the conjugative transposon itself, because Bacteroides conjugative transposons are able to mobilize coresident plasmids in trans and in cis, and also stimulate the excision and transfer of unlinked integrated elements called mobilizable transposons. These characteristics of conjugative transposons alone have significant implications for the ecology and spread of antibiotic resistance genes, and in terms of biotechnology. A novel feature of the most widespread family of Bacteroides conjugative transposons, the CTnDOT/ERL family, is that their transfer is stimulated 100- to 1000-fold by low concentrations of tetracycline. This is significant because the use of antibiotics not only selects for resistant Bacteroides strains, but also stimulates their transfer. Other Bacteroides conjugative transposons do not require any induction to stimulate transfer, and hence appear to transfer constitutively. The constitutively transferring elements characterized so far appear to have a broader host range than the CTnDOT/ERL family of conjugative transposons, and the prevalence of these elements is on the increase. Since these constitutively transferring elements do not require induction by antibiotics to stimulate transfer, they have the potential to become as pervasive as the CTnDOT/ERL family of conjugative transposons. | 2002 | 12568330 |
| 9494 | 7 | 0.9962 | Within-Host Mathematical Models of Antibiotic Resistance. Mathematical models have been used to study the spread of infectious diseases from person to person. More recently studies are developing within-host modeling which provides an understanding of how pathogens-bacteria, fungi, parasites, or viruses-develop, spread, and evolve inside a single individual and their interaction with the host's immune system.Such models have the potential to provide a more detailed and complete description of the pathogenesis of diseases within-host and identify other influencing factors that may not be detected otherwise. Mathematical models can be used to aid understanding of the global antibiotic resistance (ABR) crisis and identify new ways of combating this threat.ABR occurs when bacteria respond to random or selective pressures and adapt to new environments through the acquisition of new genetic traits. This is usually through the acquisition of a piece of DNA from other bacteria, a process called horizontal gene transfer (HGT), the modification of a piece of DNA within a bacterium, or through. Bacteria have evolved mechanisms that enable them to respond to environmental threats by mutation, and horizontal gene transfer (HGT): conjugation; transduction; and transformation. A frequent mechanism of HGT responsible for spreading antibiotic resistance on the global scale is conjugation, as it allows the direct transfer of mobile genetic elements (MGEs). Although there are several MGEs, the most important MGEs which promote the development and rapid spread of antimicrobial resistance genes in bacterial populations are plasmids and transposons. Each of the resistance-spread-mechanisms mentioned above can be modeled allowing us to understand the process better and to define strategies to reduce resistance. | 2024 | 38949703 |
| 9240 | 8 | 0.9962 | CRISPR-Cas-Mediated Phage Resistance Enhances Horizontal Gene Transfer by Transduction. A powerful contributor to prokaryotic evolution is horizontal gene transfer (HGT) through transformation, conjugation, and transduction, which can be advantageous, neutral, or detrimental to fitness. Bacteria and archaea control HGT and phage infection through CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) adaptive immunity. Although the benefits of resisting phage infection are evident, this can come at a cost of inhibiting the acquisition of other beneficial genes through HGT. Despite the ability of CRISPR-Cas to limit HGT through conjugation and transformation, its role in transduction is largely overlooked. Transduction is the phage-mediated transfer of bacterial DNA between cells and arguably has the greatest impact on HGT. We demonstrate that in Pectobacterium atrosepticum, CRISPR-Cas can inhibit the transduction of plasmids and chromosomal loci. In addition, we detected phage-mediated transfer of a large plant pathogenicity genomic island and show that CRISPR-Cas can inhibit its transduction. Despite these inhibitory effects of CRISPR-Cas on transduction, its more common role in phage resistance promotes rather than diminishes HGT via transduction by protecting bacteria from phage infection. This protective effect can also increase transduction of phage-sensitive members of mixed populations. CRISPR-Cas systems themselves display evidence of HGT, but little is known about their lateral dissemination between bacteria and whether transduction can contribute. We show that, through transduction, bacteria can acquire an entire chromosomal CRISPR-Cas system, including cas genes and phage-targeting spacers. We propose that the positive effect of CRISPR-Cas phage immunity on enhancing transduction surpasses the rarer cases where gene flow by transduction is restricted.IMPORTANCE The generation of genetic diversity through acquisition of DNA is a powerful contributor to microbial evolution and occurs through transformation, conjugation, and transduction. Of these, transduction, the phage-mediated transfer of bacterial DNA, is arguably the major route for genetic exchange. CRISPR-Cas adaptive immune systems control gene transfer by conjugation and transformation, but transduction has been mostly overlooked. Our results indicate that CRISPR-Cas can impede, but typically enhances the transduction of plasmids, chromosomal genes, and pathogenicity islands. By limiting wild-type phage replication, CRISPR-Cas immunity increases transduction in both phage-resistant and -sensitive members of mixed populations. Furthermore, we demonstrate mobilization of a chromosomal CRISPR-Cas system containing phage-targeting spacers by generalized transduction, which might partly account for the uneven distribution of these systems in nature. Overall, the ability of CRISPR-Cas to promote transduction reveals an unexpected impact of adaptive immunity on horizontal gene transfer, with broader implications for microbial evolution. | 2018 | 29440578 |
| 9835 | 9 | 0.9962 | Genomic islands: tools of bacterial horizontal gene transfer and evolution. Bacterial genomes evolve through mutations, rearrangements or horizontal gene transfer. Besides the core genes encoding essential metabolic functions, bacterial genomes also harbour a number of accessory genes acquired by horizontal gene transfer that might be beneficial under certain environmental conditions. The horizontal gene transfer contributes to the diversification and adaptation of microorganisms, thus having an impact on the genome plasticity. A significant part of the horizontal gene transfer is or has been facilitated by genomic islands (GEIs). GEIs are discrete DNA segments, some of which are mobile and others which are not, or are no longer mobile, which differ among closely related strains. A number of GEIs are capable of integration into the chromosome of the host, excision, and transfer to a new host by transformation, conjugation or transduction. GEIs play a crucial role in the evolution of a broad spectrum of bacteria as they are involved in the dissemination of variable genes, including antibiotic resistance and virulence genes leading to generation of hospital 'superbugs', as well as catabolic genes leading to formation of new metabolic pathways. Depending on the composition of gene modules, the same type of GEIs can promote survival of pathogenic as well as environmental bacteria. | 2009 | 19178566 |
| 9851 | 10 | 0.9962 | The potential of integrons and connected programmed rearrangements for mediating horizontal gene transfer. Site-specific recombination of integrons, mediates transfer of single genes in small genomes and plasmids. Recent data suggest that new genes are recruited to the cassettes--the units moved by integrons. Integrons are resident in a class of transposons with pronounced target selectivity for resolution loci in broad host range plasmids. A resulting network of programmed transfer routes, with potential offshoots reaching into eukaryotic cells, may channel genes to unexpectedly remote organisms. It has previously been observed that the conjugation apparatus of the broad host range plasmid R751 (IncP) which contains transposon Tn5090 harbouring an integron, promotes horizontal genetic transfer between bacteria and yeast. Furthermore, it is well known and fundamental for widely used gene replacement technologies, that site-specific recombination systems (e.g. Cre-lox of bacteriophage P1) related to the integrons are functional in higher eukaryotes. It seems very clear that integrons and associated programmed transfer mechanisms have high significance for the dissemination of antibiotic resistance genes in bacteria whereas further studies are needed to assess their importance for spreading of arbitrary genes in a wider range of host systems. | 1998 | 9850680 |
| 8625 | 11 | 0.9962 | Marine viruses: truth or dare. Over the past two decades, marine virology has progressed from a curiosity to an intensely studied topic of critical importance to oceanography. At concentrations of approximately 10 million viruses per milliliter of surface seawater, viruses are the most abundant biological entities in the oceans. The majority of these viruses are phages (viruses that infect bacteria). Through lysing their bacterial hosts, marine phages control bacterial abundance, affect community composition, and impact global biogeochemical cycles. In addition, phages influence their hosts through selection for resistance, horizontal gene transfer, and manipulation of bacterial metabolism. Recent work has also demonstrated that marine phages are extremely diverse and can carry a variety of auxiliary metabolic genes encoding critical ecological functions. This review is structured as a scientific "truth or dare," revealing several well-established "truths" about marine viruses and presenting a few "dares" for the research community to undertake in future studies. | 2012 | 22457982 |
| 4014 | 12 | 0.9962 | Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer. The emergence and spread of antibiotic resistance among pathogenic bacteria has been a rising problem for public health in recent decades. It is becoming increasingly recognized that not only antibiotic resistance genes (ARGs) encountered in clinical pathogens are of relevance, but rather, all pathogenic, commensal as well as environmental bacteria-and also mobile genetic elements and bacteriophages-form a reservoir of ARGs (the resistome) from which pathogenic bacteria can acquire resistance via horizontal gene transfer (HGT). HGT has caused antibiotic resistance to spread from commensal and environmental species to pathogenic ones, as has been shown for some clinically important ARGs. Of the three canonical mechanisms of HGT, conjugation is thought to have the greatest influence on the dissemination of ARGs. While transformation and transduction are deemed less important, recent discoveries suggest their role may be larger than previously thought. Understanding the extent of the resistome and how its mobilization to pathogenic bacteria takes place is essential for efforts to control the dissemination of these genes. Here, we will discuss the concept of the resistome, provide examples of HGT of clinically relevant ARGs and present an overview of the current knowledge of the contributions the various HGT mechanisms make to the spread of antibiotic resistance. | 2016 | 26925045 |
| 9842 | 13 | 0.9962 | Discovery of a new family of relaxases in Firmicutes bacteria. Antibiotic resistance is a serious global problem. Antibiotic resistance genes (ARG), which are widespread in environmental bacteria, can be transferred to pathogenic bacteria via horizontal gene transfer (HGT). Gut microbiomes are especially apt for the emergence and dissemination of ARG. Conjugation is the HGT route that is predominantly responsible for the spread of ARG. Little is known about conjugative elements of Gram-positive bacteria, including those of the phylum Firmicutes, which are abundantly present in gut microbiomes. A critical step in the conjugation process is the relaxase-mediated site- and strand-specific nick in the oriT region of the conjugative element. This generates a single-stranded DNA molecule that is transferred from the donor to the recipient cell via a connecting channel. Here we identified and characterized the relaxosome components oriT and the relaxase of the conjugative plasmid pLS20 of the Firmicute Bacillus subtilis. We show that the relaxase gene, named relLS20, is essential for conjugation, that it can function in trans and provide evidence that Tyr26 constitutes the active site residue. In vivo and in vitro analyses revealed that the oriT is located far upstream of the relaxase gene and that the nick site within oriT is located on the template strand of the conjugation genes. Surprisingly, the RelLS20 shows very limited similarity to known relaxases. However, more than 800 genes to which no function had been attributed so far are predicted to encode proteins showing significant similarity to RelLS20. Interestingly, these putative relaxases are encoded almost exclusively in Firmicutes bacteria. Thus, RelLS20 constitutes the prototype of a new family of relaxases. The identification of this novel relaxase family will have an important impact in different aspects of future research in the field of HGT in Gram-positive bacteria in general, and specifically in the phylum of Firmicutes, and in gut microbiome research. | 2017 | 28207825 |
| 3783 | 14 | 0.9962 | Ecology drives a global network of gene exchange connecting the human microbiome. Horizontal gene transfer (HGT), the acquisition of genetic material from non-parental lineages, is known to be important in bacterial evolution. In particular, HGT provides rapid access to genetic innovations, allowing traits such as virulence, antibiotic resistance and xenobiotic metabolism to spread through the human microbiome. Recent anecdotal studies providing snapshots of active gene flow on the human body have highlighted the need to determine the frequency of such recent transfers and the forces that govern these events. Here we report the discovery and characterization of a vast, human-associated network of gene exchange, large enough to directly compare the principal forces shaping HGT. We show that this network of 10,770 unique, recently transferred (more than 99% nucleotide identity) genes found in 2,235 full bacterial genomes, is shaped principally by ecology rather than geography or phylogeny, with most gene exchange occurring between isolates from ecologically similar, but geographically separated, environments. For example, we observe 25-fold more HGT between human-associated bacteria than among ecologically diverse non-human isolates (P = 3.0 × 10(-270)). We show that within the human microbiome this ecological architecture continues across multiple spatial scales, functional classes and ecological niches with transfer further enriched among bacteria that inhabit the same body site, have the same oxygen tolerance or have the same ability to cause disease. This structure offers a window into the molecular traits that define ecological niches, insight that we use to uncover sources of antibiotic resistance and identify genes associated with the pathology of meningitis and other diseases. | 2011 | 22037308 |
| 9482 | 15 | 0.9962 | Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. Antibiotics were one of the great discoveries of the 20th century. However, resistance appeared even in the earliest years of the antibiotic era. Antibiotic resistance continues to become worse, despite the ever-increasing resources devoted to combat the problem. One of the most important factors in the development of resistance to antibiotics is the remarkable ability of bacteria to share genetic resources via Lateral Gene Transfer (LGT). LGT occurs on a global scale, such that in theory, any gene in any organism anywhere in the microbial biosphere might be mobilized and spread. With sufficiently strong selection, any gene may spread to a point where it establishes a global presence. From an antibiotic resistance perspective, this means that a resistance phenotype can appear in a diverse range of infections around the globe nearly simultaneously. We discuss the forces and agents that make this LGT possible and argue that the problem of resistance can ultimately only be managed by understanding the problem from a broad ecological and evolutionary perspective. We also argue that human activities are exacerbating the problem by increasing the tempo of LGT and bacterial evolution for many traits that are important to humans. | 2011 | 21517914 |
| 9295 | 16 | 0.9962 | Biological activities specified by antibiotic resistance plasmids. Bacteria can display resistance to a wide spectrum of noxious agents and environmental conditions, and these properties are often mediated by genes located on extrachromosomal DNA elements called plasmids. Replication, vertical and horizontal transmission and evolution of these elements are discussed, and examples of the genes responsible for the resistance phenotypes are given. Selective forces that drive the evolution of new combinations of bacterial properties of particular importance in clinical situations are analysed. | 1986 | 3542928 |
| 3781 | 17 | 0.9962 | Duplicated antibiotic resistance genes reveal ongoing selection and horizontal gene transfer in bacteria. Horizontal gene transfer (HGT) and gene duplication are often considered as separate mechanisms driving the evolution of new functions. However, the mobile genetic elements (MGEs) implicated in HGT can copy themselves, so positive selection on MGEs could drive gene duplications. Here, we use a combination of modeling and experimental evolution to examine this hypothesis and use long-read genome sequences of tens of thousands of bacterial isolates to examine its generality in nature. Modeling and experiments show that antibiotic selection can drive the evolution of duplicated antibiotic resistance genes (ARGs) through MGE transposition. A key implication is that duplicated ARGs should be enriched in environments associated with antibiotic use. To test this, we examined the distribution of duplicated ARGs in 18,938 complete bacterial genomes with ecological metadata. Duplicated ARGs are highly enriched in bacteria isolated from humans and livestock. Duplicated ARGs are further enriched in an independent set of 321 antibiotic-resistant clinical isolates. Our findings indicate that duplicated genes often encode functions undergoing positive selection and horizontal gene transfer in microbial communities. | 2024 | 38365845 |
| 4170 | 18 | 0.9961 | The Spread of Antibiotic Resistance Is Driven by Plasmids Among the Fastest Evolving and of Broadest Host Range. Microorganisms endure novel challenges for which other microorganisms in other biomes may have already evolved solutions. This is the case of nosocomial bacteria under antibiotic therapy because antibiotics are of ancient natural origin and resistances to them have previously emerged in environmental bacteria. In such cases, the rate of adaptation crucially depends on the acquisition of genes by horizontal transfer of plasmids from distantly related bacteria in different biomes. We hypothesized that such processes should be driven by plasmids among the most mobile and evolvable. We confirmed these predictions by showing that plasmid species encoding antibiotic resistance are very mobile, have broad host ranges, while showing higher rates of homologous recombination and faster turnover of gene repertoires than the other plasmids. These characteristics remain outstanding when we remove resistance plasmids from our dataset, suggesting that antibiotic resistance genes are preferentially acquired and carried by plasmid species that are intrinsically very mobile and plastic. Evolvability and mobility facilitate the transfer of antibiotic resistance, and presumably of other phenotypes, across distant taxonomic groups and biomes. Hence, plasmid species, and possibly those of other mobile genetic elements, have differentiated and predictable roles in the spread of novel traits. | 2025 | 40098486 |
| 9717 | 19 | 0.9961 | Bacterial Transformation Buffers Environmental Fluctuations through the Reversible Integration of Mobile Genetic Elements. Horizontal gene transfer (HGT) promotes the spread of genes within bacterial communities. Among the HGT mechanisms, natural transformation stands out as being encoded by the bacterial core genome. Natural transformation is often viewed as a way to acquire new genes and to generate genetic mixing within bacterial populations. Another recently proposed function is the curing of bacterial genomes of their infectious parasitic mobile genetic elements (MGEs). Here, we propose that these seemingly opposing theoretical points of view can be unified. Although costly for bacterial cells, MGEs can carry functions that are at points in time beneficial to bacteria under stressful conditions (e.g., antibiotic resistance genes). Using computational modeling, we show that, in stochastic environments, an intermediate transformation rate maximizes bacterial fitness by allowing the reversible integration of MGEs carrying resistance genes, although these MGEs are costly for host cell replication. Based on this dual function (MGE acquisition and removal), transformation would be a key mechanism for stabilizing the bacterial genome in the long term, and this would explain its striking conservation.IMPORTANCE Natural transformation is the acquisition, controlled by bacteria, of extracellular DNA and is one of the most common mechanisms of horizontal gene transfer, promoting the spread of resistance genes. However, its evolutionary function remains elusive, and two main roles have been proposed: (i) the new gene acquisition and genetic mixing within bacterial populations and (ii) the removal of infectious parasitic mobile genetic elements (MGEs). While the first one promotes genetic diversification, the other one promotes the removal of foreign DNA and thus genome stability, making these two functions apparently antagonistic. Using a computational model, we show that intermediate transformation rates, commonly observed in bacteria, allow the acquisition then removal of MGEs. The transient acquisition of costly MGEs with resistance genes maximizes bacterial fitness in environments with stochastic stress exposure. Thus, transformation would ensure both a strong dynamic of the bacterial genome in the short term and its long-term stabilization. | 2020 | 32127449 |