# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1871 | 0 | 0.9892 | Phylogeographical Landscape of Citrobacter portucalensis Carrying Clinically Relevant Resistomes. During a surveillance study conducted to assess the occurrence and genomic landscape of critical priority pathogens circulating at the human-animal-environment interface in Brazil, as part of the Grand Challenges Explorations-New Approaches to Characterize the Global Burden of Antimicrobial Resistance program, two multidrug-resistant (MDR) Citrobacter portucalensis carrying bla(CTX-M-15) extended-spectrum β-lactamase (ESBL) genes, isolated from green sea turtles, were characterized. Genomic and phylogeographical analysis of C. portucalensis genomes available in public databases revealed the intercontinental dissemination of clades carrying different arrays of clinically relevant genes conferring resistance to carbapenems, broad-spectrum cephalosporins, cephamycins, aminoglycosides and fluoroquinolones, disinfectants, and heavy metals. Our observations suggest that C. portucalensis could be emerging as critical priority bacteria of both public and One Health importance worldwide. IMPORTANCE The global spread of antibiotic-resistant priority pathogens beyond the hospital setting is a critical issue within a One Health context that integrates the human-animal-environment interfaces. On the other hand, next-generation sequencing technologies along with user-friendly and high-quality bioinformatics tools have improved the identification of bacterial species, and bacterial resistance surveillance. The novel Citrobacter portucalensis species was proposed in 2017 after taxonomic reclassification and definition of the strain A60(T) isolated in 2008. Here, we presented genomic data showing the occurrence of multidrug-resistant C. portucalensis isolates carrying bla(CTX-M-15) ESBL genes in South America. Additionally, we observed the intercontinental dissemination of clades harboring a broad resistome to clinically relevant antibiotics. Therefore, these findings highlight that C. portucalensis is a global MDR bacteria that carries intrinsic bla(CMY)- and qnrB-type genes and has become a critical priority pathogen due to the acquisition of clinically relevant resistance determinants, such as ESBL and carbapenemase-encoding genes. | 2022 | 35357225 |
| 5126 | 1 | 0.9892 | Blanket antimicrobial resistance gene database with structural information, BOARDS, provides insights on historical landscape of resistance prevalence and effects of mutations in enzyme structure. Antimicrobial resistance (AMR) in pathogenic bacteria poses a significant threat to public health, yet there is still a need for development in the tools to deeply understand AMR genes based on genetic or structural information. In this study, we present an interactive web database named Blanket Overarching Antimicrobial-Resistance gene Database with Structural information (BOARDS, sbml.unist.ac.kr), a database that comprehensively includes 3,943 reported AMR gene information for 1,997 extended spectrum beta-lactamase (ESBL) and 1,946 other genes as well as a total of 27,395 predicted protein structures. These structures, which include both wild-type AMR genes and their mutants, were derived from 80,094 publicly available whole-genome sequences. In addition, we developed the rapid analysis and detection tool of antimicrobial-resistance (RADAR), a one-stop analysis pipeline to detect AMR genes across whole-genome sequencing (WGSs). By integrating BOARDS and RADAR, the AMR prevalence landscape for eight multi-drug resistant pathogens was reconstructed, leading to unexpected findings such as the pre-existence of the MCR genes before their official reports. Enzymatic structure prediction-based analysis revealed that the occurrence of mutations found in some ESBL genes was found to be closely related to the binding affinities with their antibiotic substrates. Overall, BOARDS can play a significant role in performing in-depth analysis on AMR.IMPORTANCEWhile the increasing antibiotic resistance (AMR) in pathogen has been a burden on public health, effective tools for deep understanding of AMR based on genetic or structural information remain limited. In this study, a blanket overarching antimicrobial-resistance gene database with structure information (BOARDS)-a web-based database that comprehensively collected AMR gene data with predictive protein structural information was constructed. Additionally, we report the development of a RADAR pipeline that can analyze whole-genome sequences as well. BOARDS, which includes sequence and structural information, has shown the historical landscape and prevalence of the AMR genes and can provide insight into single-nucleotide polymorphism effects on antibiotic degrading enzymes within protein structures. | 2024 | 38085058 |
| 2632 | 2 | 0.9889 | Environmental Spread of Extended Spectrum Beta-Lactamase (ESBL) Producing Escherichia coli and ESBL Genes among Children and Domestic Animals in Ecuador. BACKGROUND: There is a significant gap in our understanding of the sources of multidrug-resistant bacteria and resistance genes in community settings where human-animal interfaces exist. OBJECTIVES: This study characterized the relationship of third-generation cephalosporin-resistant Escherichia coli (3GCR-EC) isolated from animal feces in the environment and child feces based on phenotypic antimicrobial resistance (AMR) and whole genome sequencing (WGS). METHODS: We examined 3GCR-EC isolated from environmental fecal samples of domestic animals and child fecal samples in Ecuador. We analyzed phenotypic and genotypic AMR, as well as clonal relationships (CRs) based on pairwise single-nucleotide polymorphisms (SNPs) analysis of 3GCR-EC core genomes. CRs were defined as isolates with fewer than 100 different SNPs. RESULTS: A total of 264 3GCR-EC isolates from children (n = 21), dogs (n = 20), and chickens (n = 18) living in the same region of Quito, Ecuador, were identified. We detected 16 CRs total, which were found between 7 children and 5 domestic animals (5 CRs) and between 19 domestic animals (11 CRs). We observed that several clonally related 3GCR-EC isolates had acquired different plasmids and AMR genes. Most CRs were observed in different homes (n = 14) at relatively large distances. Isolates from children and domestic animals shared the same blaCTX-M allelic variants, and the most prevalent were blaCTX-M-55 and blaCTX-M-65, which were found in isolates from children, dogs, and chickens. DISCUSSION: This study provides evidence of highly dynamic horizontal transfer of AMR genes and mobile genetic elements (MGEs) in the E. coli community and shows that some 3GCR-EC and (extended-spectrum β-lactamase) ESBL genes may have moved relatively large distances among domestic animals and children in semirural communities near Quito, Ecuador. Child-animal contact and the presence of domestic animal feces in the environment potentially serve as important sources of drug-resistant bacteria and ESBL genes. https://doi.org/10.1289/EHP7729. | 2021 | 33617318 |
| 9069 | 3 | 0.9888 | Pdif-mediated antibiotic resistance genes transfer in bacteria identified by pdifFinder. Modules consisting of antibiotic resistance genes (ARGs) flanked by inverted repeat Xer-specific recombination sites were thought to be mobile genetic elements that promote horizontal transmission. Less frequently, the presence of mobile modules in plasmids, which facilitate a pdif-mediated ARGs transfer, has been reported. Here, numerous ARGs and toxin-antitoxin genes have been found in pdif site pairs. However, the mechanisms underlying this apparent genetic mobility is currently not understood, and the studies relating to pdif-mediated ARGs transfer onto most bacterial genera are lacking. We developed the web server pdifFinder based on an algorithm called PdifSM that allows the prediction of diverse pdif-ARGs modules in bacterial genomes. Using test set consisting of almost 32 thousand plasmids from 717 species, PdifSM identified 481 plasmids from various bacteria containing pdif sites with ARGs. We found 28-bp-long elements from different genera with clear base preferences. The data we obtained indicate that XerCD-dif site-specific recombination mechanism may have evolutionary adapted to facilitate the pdif-mediated ARGs transfer. Through multiple sequence alignment and evolutionary analyses of duplicated pdif-ARGs modules, we discovered that pdif sites allow an interspecies transfer of ARGs but also across different genera. Mutations in pdif sites generate diverse arrays of modules which mediate multidrug-resistance, as these contain variable numbers of diverse ARGs, insertion sequences and other functional genes. The identification of pdif-ARGs modules and studies focused on the mechanism of ARGs co-transfer will help us to understand and possibly allow controlling the spread of MDR bacteria in clinical settings. The pdifFinder code, standalone software package and description with tutorials are available at https://github.com/mjshao06/pdifFinder. | 2023 | 36470841 |
| 4926 | 4 | 0.9887 | Complete Assembly of Escherichia coli Sequence Type 131 Genomes Using Long Reads Demonstrates Antibiotic Resistance Gene Variation within Diverse Plasmid and Chromosomal Contexts. The incidence of infections caused by extraintestinal Escherichia coli (ExPEC) is rising globally, which is a major public health concern. ExPEC strains that are resistant to antimicrobials have been associated with excess mortality, prolonged hospital stays, and higher health care costs. E. coli sequence type 131 (ST131) is a major ExPEC clonal group worldwide, with variable plasmid composition, and has an array of genes enabling antimicrobial resistance (AMR). ST131 isolates frequently encode the AMR genes bla(CTX-M-14), bla(CTX-M-15), and bla(CTX-M-27), which are often rearranged, amplified, and translocated by mobile genetic elements (MGEs). Short DNA reads do not fully resolve the architecture of repetitive elements on plasmids to allow MGE structures encoding bla(CTX-M) genes to be fully determined. Here, we performed long-read sequencing to decipher the genome structures of six E. coli ST131 isolates from six patients. Most long-read assemblies generated entire chromosomes and plasmids as single contigs, in contrast to more fragmented assemblies created with short reads alone. The long-read assemblies highlighted diverse accessory genomes with bla(CTX-M-15), bla(CTX-M-14), and bla(CTX-M-27) genes identified in three, one, and one isolates, respectively. One sample had no bla(CTX-M) gene. Two samples had chromosomal bla(CTX-M-14) and bla(CTX-M-15) genes, and the latter was at three distinct locations, likely transposed by the adjacent MGEs: ISEcp1, IS903B, and Tn2 This study showed that AMR genes exist in multiple different chromosomal and plasmid contexts, even between closely related isolates within a clonal group such as E. coli ST131.IMPORTANCE Drug-resistant bacteria are a major cause of illness worldwide, and a specific subtype called Escherichia coli ST131 causes a significant number of these infections. ST131 bacteria become resistant to treatments by modifying their DNA and by transferring genes among one another via large packages of genes called plasmids, like a game of pass-the-parcel. Tackling infections more effectively requires a better understanding of what plasmids are being exchanged and their exact contents. To achieve this, we applied new high-resolution DNA sequencing technology to six ST131 samples from infected patients and compared the output to that of an existing approach. A combination of methods shows that drug resistance genes on plasmids are highly mobile because they can jump into ST131's chromosomes. We found that the plasmids are very elastic and undergo extensive rearrangements even in closely related samples. This application of DNA sequencing technologies illustrates at a new level the highly dynamic nature of ST131 genomes. | 2019 | 31068432 |
| 1560 | 5 | 0.9887 | Comprehensive genome data analysis establishes a triple whammy of carbapenemases, ICEs and multiple clinically relevant bacteria. Carbapenemases inactivate most β-lactam antibiotics, including carbapenems, and have frequently been reported among Enterobacteriaceae, Acinetobacter spp. and Pseudomonas spp. Traditionally, the horizontal gene transfer of carbapenemase-encoding genes (CEGs) has been linked to plasmids. However, given that integrative and conjugative elements (ICEs) are possibly the most abundant conjugative elements among prokaryotes, we conducted an in silico analysis to ascertain the likely role of ICEs in the spread of CEGs among all bacterial genomes (n=182 663). We detected 17 520 CEGs, of which 66 were located within putative ICEs among several bacterial species (including clinically relevant bacteria, such as Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli). Most CEGs detected within ICEs belong to the IMP, NDM and SPM metallo-beta-lactamase families, and the serine beta-lactamase KPC and GES families. Different mechanisms were likely responsible for acquisition of these genes. The majority of CEG-bearing ICEs belong to the MPF(G), MPF(T) and MPF(F) classes and often encode resistance to other antibiotics (e.g. aminoglycosides and fluoroquinolones). This study provides a snapshot of the different CEGs associated with ICEs among available bacterial genomes and sheds light on the underappreciated contribution of ICEs to the spread of carbapenem resistance globally. | 2020 | 32841111 |
| 1590 | 6 | 0.9886 | Molecular characterization of highly prevalent Escherichia coli and Escherichia marmotae resistant to extended-spectrum cephalosporins in European starlings (Sturnus vulgaris) in Tunisia. European starlings are widespread migratory birds that have already been described as carrying bacteria resistant to extended-spectrum cephalosporins (ESC-R). These birds are well known in Tunisia because they spend the wintertime in this country and are hunted for human consumption. The goal of our study was to estimate the proportion of ESC-R in these birds and to characterize the collected isolates using whole-genome sequencing. Results showed that 21.5% (42/200) of the birds carried either an extended-spectrum beta-lactamase (ESBL) or an acquired AmpC gene. Diverse bla (CTX-M) genes were responsible for the ESBL phenotype, bla (CTX-M-14) being the most prevalent, while only bla (CMY-2) and one bla (CMY-62) were found in AmpC-positive isolates. Likewise, different genetic determinants carried these resistance genes, including IncHI2, and IncF plasmids for bla (CTX-M) genes and IncI1 plasmids for bla (CMY-2) genes. Three chromosomally encoded bla (CTX-M-15) genes were also identified. Surprisingly, species identification revealed a large proportion (32.7%) of Escherichia marmotae isolates. This species is phenotypically indistinguishable from Escherichia coli and has obviously the same capacity to acquire ESC-R genes. Our data also strongly suggest that at least the IncHI2/pST3 plasmid can spread equally between E. coli and E. marmotae. Given the potential transmission routes between humans and animals, either by direct contact with dejections or through meat preparation, it is important to closely monitor antimicrobial resistance in European starlings in Tunisia and to set up further studies to identify the sources of contamination of these birds. IMPORTANCE The One Health concept highlighted knowledge gaps in the understanding of the transmission routes of resistant bacteria. A major interest was shown in wild migratory birds since they might spread resistant bacteria over long distances. Our study brings further evidence that wild birds, even though they are not directly submitted to antibiotic treatments, can be heavily contaminated by resistant bacteria. Our results identified numerous combinations of resistance genes, genetic supports, and bacterial clones that can spread vertically or horizontally and maintain a high level of resistance in the bird population. Some of these determinants are widespread in humans or animals (IncHI2/pST3 plasmids and pandemic clones), while some others are less frequent (atypical IncI1 plasmid and minor clones). Consequently, it is essential to be aware of the risks of transmission and to take all necessary measures to prevent the proportions of resistant isolates from increasing uncontrollably. | 2023 | 37772831 |
| 5030 | 7 | 0.9886 | Characterization of ESBL disseminating plasmids. Bacteria producing extended-spectrum β-lactamases (ESBLs) constitute a globally increasing problem that contributes to treatment complications and elevated death rates. The extremely successful dissemination by ESBL-producing Enterobacteriaceae during the latest decades is a result of the combination of mobilization, evolution and horizontal spread of β-lactamase genes on plasmids. In parallel, spread of these plasmids to particularly well-adapted bacterial clones (outbreak clones) has expanded. In this review we describe ESBL-producing bacteria and the genetic mechanisms for dissemination of ESBL resistance. We describe available methodology for studying plasmids and the importance of including plasmids in epidemiological typing as natural parts of the organisms. Plasmids play a fundamental role in how resistance arises and disseminates. | 2016 | 26135711 |
| 1561 | 8 | 0.9886 | The extent of carbapenemase-encoding genes in public genome sequences. Genome sequences provide information on the genetic elements present in an organism, and currently there are databases containing hundreds of thousands of bacterial genome sequences. These repositories allow for mining patterns concerning antibiotic resistance gene occurrence in both pathogenic and non-pathogenic bacteria in e.g. natural or animal environments, and link these to relevant metadata such as bacterial host species, country and year of isolation, and co-occurrence with other resistance genes. In addition, the advances in the prediction of mobile genetic elements, and discerning chromosomal from plasmid DNA, broadens our view on the mechanism mediating dissemination. In this study we utilize the vast amount of data in the public database PATRIC to investigate the dissemination of carbapenemase-encoding genes (CEGs), the emergence and spread of which is considered a grave public health concern. Based on publicly available genome sequences from PATRIC and manually curated CEG sequences from the beta lactam database, we found 7,964 bacterial genomes, belonging to at least 70 distinct species, that carry in total 9,892 CEGs, amongst which bla (NDM), bla (OXA), bla (VIM), bla (IMP) and bla (KPC). We were able to distinguish between chromosomally located resistance genes (4,137; 42%) and plasmid-located resistance genes (5,753; 58%). We found that a large proportion of the identified CEGs were identical, i.e. displayed 100% nucleotide similarity in multiple bacterial species (8,361 out of 9,892 genes; 85%). For example, the New Delhi metallo-beta-lactamase NDM-1 was found in 42 distinct bacterial species, and present in seven different environments. Our data show the extent of carbapenem-resistance far beyond the canonical species Acetinobacter baumannii, Klebsiella pneumoniae or Pseudomonas aeruginosa. These types of data complement previous systematic reviews, in which carbapenem-resistant Enterobacteriaceae were found in wildlife, livestock and companion animals. Considering the widespread distribution of CEGs, we see a need for comprehensive surveillance and transmission studies covering more host species and environments, akin to previous extensive surveys that focused on extended spectrum beta-lactamases. This may help to fully appreciate the spread of CEGs and improve the understanding of mechanisms underlying transmission, which could lead to interventions minimizing transmission to humans. | 2021 | 33732552 |
| 3771 | 9 | 0.9886 | RFPlasmid: predicting plasmid sequences from short-read assembly data using machine learning. Antimicrobial-resistance (AMR) genes in bacteria are often carried on plasmids and these plasmids can transfer AMR genes between bacteria. For molecular epidemiology purposes and risk assessment, it is important to know whether the genes are located on highly transferable plasmids or in the more stable chromosomes. However, draft whole-genome sequences are fragmented, making it difficult to discriminate plasmid and chromosomal contigs. Current methods that predict plasmid sequences from draft genome sequences rely on single features, like k-mer composition, circularity of the DNA molecule, copy number or sequence identity to plasmid replication genes, all of which have their drawbacks, especially when faced with large single-copy plasmids, which often carry resistance genes. With our newly developed prediction tool RFPlasmid, we use a combination of multiple features, including k-mer composition and databases with plasmid and chromosomal marker proteins, to predict whether the likely source of a contig is plasmid or chromosomal. The tool RFPlasmid supports models for 17 different bacterial taxa, including Campylobacter, Escherichia coli and Salmonella, and has a taxon agnostic model for metagenomic assemblies or unsupported organisms. RFPlasmid is available both as a standalone tool and via a web interface. | 2021 | 34846288 |
| 1817 | 10 | 0.9886 | A study at the wildlife-livestock interface unveils the potential of feral swine as a reservoir for extended-spectrum β-lactamase-producing Escherichia coli. Wildlife is known to serve as carriers and sources of antimicrobial resistance (AMR). Due to their unrestricted movements and behaviors, they can spread antimicrobial resistant bacteria among livestock, humans, and the environment, thereby accelerating the dissemination of AMR. Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae is one of major concerns threatening human and animal health, yet transmission mechanisms at the wildlife-livestock interface are not well understood. Here, we investigated the mechanisms of ESBL-producing bacteria spreading across various hosts, including cattle, feral swine, and coyotes in the same habitat range, as well as from environmental samples over a two-year period. We report a notable prevalence and clonal dissemination of ESBL-producing E. coli in feral swine and coyotes, suggesting their persistence and adaptation within wildlife hosts. In addition, in silico studies showed that horizontal gene transfer, mediated by conjugative plasmids and insertion sequences elements, may play a key role in spreading the ESBL genes among these bacteria. Furthermore, the shared gut resistome of cattle and feral swine suggests the dissemination of antibiotic resistance genes at the wildlife-livestock interface. Taken together, our results suggest that feral swine may serve as a reservoir of ESBL-producing E. coli. | 2024 | 38788585 |
| 1596 | 11 | 0.9885 | Distribution of bla(CTX-M-)gene variants in E. coli from different origins in Ecuador. The increasing abundance of extended spectrum (β-lactamase (ESBL) genes in E. coli, and other commensal and pathogenic bacteria, endangers the utility of third or more recent generation cephalosporins, which are major tools for fighting deadly infections. The role of domestic animals in the transmission of ESBL carrying bacteria has been recognized, especially in low- and middle-income countries, however the horizontal gene transfer of these genes is difficult to assess. Here we investigate bla(CTX-M) gene diversity (and flanking nucleotide sequences) in E. coli from chicken and humans, in an Ecuadorian rural community and from chickens in another location in Ecuador. The bla(CTX-M) associated sequences in isolates from humans and chickens in the same remote community showed greater similarity than those found in E. coli in a chicken industrial operation 200 km away. Our study may provide evidence of bla(CTX-M) transfer between chickens and humans in the community. | 2023 | 38148908 |
| 1834 | 12 | 0.9885 | Multiple host colonization and differential expansion of multidrug-resistant ST25-Acinetobacter baumannii clades. The Acinetobacter baumannii clonal lineage ST25 has been identified in humans and animals and found associated with outbreaks globally. To highlight possible similarities among ST25 A. baumannii of animal and human origins and to gather clues on the dissemination and evolution of the ST25 lineage, we conducted a phylogenetic analysis on n = 106 human and n = 35 animal A. baumannii ST25 genomes, including 44 sequenced for this study. Resistance genes and their genetic background were analyzed, as well. ST25 genomes are clustered into four clades: two are widespread in South America, while the other two are largely distributed in Europe, Asia and America. One particular clade was found to include the most recent strains and the highest number of acquired antibiotic resistance genes. OXA-23-type carbapenemase was the most common. Other resistance genes such as bla(NDM-1), bla(PER-7), and armA were found embedded in complex chromosomal regions present in human isolates. Genomic similarity among multidrug resistant ST25 isolates of either animal or human origin was revealed, suggesting cross-contaminations between the two sectors. Tracking the clonal complex ST25 between humans and animals should provide new insights into the mode of dissemination of these bacteria, and should help defining strategies for preserving global health. | 2023 | 38071225 |
| 1865 | 13 | 0.9885 | Characterization of mobile resistance elements in extended-spectrum β-lactamase producing gram-negative bacteria from aquatic environment. Extended-spectrum β-lactamase producing (ESBL) bacteria from aquatic environments can pose potential threats to public health due to their capability of spreading antimicrobial resistance (AMR) genes through mobile genetic elements (MGEs), such as plasmids, insertion sequences (ISs), transposons, and integrons. Currently, there is no policy for routine monitoring of AMR genes in aquatic environments and their roles in transmission are therefore unknown. Previous metagenomic and PCR-based culture-independent approaches are limited in recovering AMR resistant aquatic bacteria isolates and the data resolution generated are not able to provide detailed genetic comparison with known human pathogens particularly for determining genetic islands harbouring AMR genes. To address these gaps, we thus investigated the genetic profiles of ESBL-producing gram-negative aquatic bacteria found from water body sites within Singapore, examining the AMR genes carried and their associated MGEs. In total, 16 ESBL-producing gram-negative bacteria were identified, of which 8 were Escherichia coli, 3 Klebsiella pneumoniae, and 5 Aeromonas spp. Whole genome sequencing (WGS) analysis revealed the presence of 12 distinct classes of AMR genes, including 16 distinct variants of β-lactamase, of which bla(CTX-M) was the dominant beta-lactamase genotype in all 11 Enterobacterales. The AMR genetic islands in the aquatic bacteria were also found to share similar genetic structures similar to those of circulating ESBL bacteria causing human infections. These findings underscore the potential role of aquatic ESBL bacteria as AMR reservoirs for human pathogens, suggesting that aquatic bacteria may facilitate the hidden transmission of AMR mediated by MGEs through horizontal gene transfer across different sources and species, highlighting the importance of integrating environmental AMR monitoring into local surveillance strategies. | 2025 | 40245502 |
| 5031 | 14 | 0.9885 | Rapid Tracing of Resistance Plasmids in a Nosocomial Outbreak Using Optical DNA Mapping. Resistance to life-saving antibiotics increases rapidly worldwide, and multiresistant bacteria have become a global threat to human health. Presently, the most serious threat is the increasing spread of Enterobacteriaceae carrying genes coding for extended spectrum β-lactamases (ESBL) and carbapenemases on highly mobile plasmids. We here demonstrate how optical DNA maps of single plasmids can be used as fingerprints to trace plasmids, for example, during resistance outbreaks. We use the assay to demonstrate a potential transmission route of an ESBL-carrying plasmid between bacterial strains/species and between patients, during a polyclonal outbreak at a neonatal ward at Sahlgrenska University Hospital (Gothenburg, Sweden). Our results demonstrate that optical DNA mapping is an easy and rapid method for detecting the spread of plasmids mediating resistance. With the increasing prevalence of multiresistant bacteria, diagnostic tools that can aid in solving ongoing routes of transmission, in particular in hospital settings, will be of paramount importance. | 2016 | 27627201 |
| 3770 | 15 | 0.9885 | Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. OBJECTIVES: Antimicrobial resistance (AMR) in clinically relevant bacteria is a growing threat to public health globally. In these bacteria, antimicrobial resistance genes are often associated with mobile genetic elements (MGEs), which promote their mobility, enabling them to rapidly spread throughout a bacterial community. METHODS: The tool MobileElementFinder was developed to enable rapid detection of MGEs and their genetic context in assembled sequence data. MGEs are detected based on sequence similarity to a database of 4452 known elements augmented with annotation of resistance genes, virulence factors and detection of plasmids. RESULTS: MobileElementFinder was applied to analyse the mobilome of 1725 sequenced Salmonella enterica isolates of animal origin from Denmark, Germany and the USA. We found that the MGEs were seemingly conserved according to multilocus ST and not restricted to either the host or the country of origin. Moreover, we identified putative translocatable units for specific aminoglycoside, sulphonamide and tetracycline genes. Several putative composite transposons were predicted that could mobilize, among others, AMR, metal resistance and phosphodiesterase genes associated with macrophage survivability. This is, to our knowledge, the first time the phosphodiesterase-like pdeL has been found to be potentially mobilized into S. enterica. CONCLUSIONS: MobileElementFinder is a powerful tool to study the epidemiology of MGEs in a large number of genome sequences and to determine the potential for genomic plasticity of bacteria. This web service provides a convenient method of detecting MGEs in assembled sequence data. MobileElementFinder can be accessed at https://cge.cbs.dtu.dk/services/MobileElementFinder/. | 2021 | 33009809 |
| 5019 | 16 | 0.9885 | Extended-spectrum beta-lactamases: definition, history, an update on their genetic environment and detection methods. Bacterial resistance remains a major challenge in the therapeutic field. Beta-lactam antibiotics are widely used to treat Enterobacteriaceae, especially third-generation cephalosporins (3GCs), which are used in infections caused by bacteria resistant to first- and second-line antibiotics. However, these bacteria have been able to develop resistance against the used antibiotics through the production of extended-spectrum beta-lactamase (ESBL) enzymes. These enzymes inactivate 3GCs and are sensitive to beta-lactamase inhibitors such as clavulanic acid. This resistance is acquired by plasmids (IncF, IncI, IncK…) which carry mobile genetic elements (insertion sequence, transposon…) with genes coding for these enzymes, namely, the bla (CTX-M), bla (SHV) and bla (TEM), which code for the most frequent types of ESBL (CTX-M, SHV and TEM). Unfortunately, when ESBLs are not identified in time, appropriate treatment is delayed, reducing the chances of cure. Current data highlight the spread and dangerousness of ESBL-producing bacteria worldwide and confirm the priority given to these bacteria by the World Health Organization, which insists on vigilance in identifying them, both in patients and through surveillance studies. The aim of the current review is to provide a better understanding of ESBLs, to highlight their historical evolution and to show the importance of their genetic environment in the dissemination and spread of these enzymes worldwide, as well as the techniques used to detect them in laboratory studies. Current data demonstrate the degree of danger posed by ESBL-producing bacteria and confirm the priority given to these bacteria by the World Health Organization for the development of new antimicrobial agents. | 2025 | 40554694 |
| 1554 | 17 | 0.9885 | Genetic evolution and clinical impact in extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. The emergence of extended-spectrum β-lactamase (ESBL)-producing bacteria, particularly Escherichia coli and Klebsiella pneumoniae, is now a critical concern for the development of therapies against bacterial infection. ESBLs consist of three major genetic groups: TEM, SHV, and CTX-M types. Nosocomial infections due to TEM and SHV-producing K. pneumoniae strains were frequently documented until the late 1990s. The number of reports on community-acquired infections caused by CTX-M-producing E. coli strains have dramatically increased over the last decade; however, K. pneumoniae strains, of either the TEM or SHV types, are persistent and important ESBL producers. The spread of ESBL genes is associated with various mobile genetic elements, such as transposons, insertion sequences, and integrons. The rapid dissemination of ESBL genes of the CTX-M type may be related to highly complicated genetic structures. These structures harboring ESBL genes and mobile elements are found in a variety of plasmids, which often carry many other antibiotic resistance genes. Multidrug-resistant CTX-M-15-producing E. coli strains disseminate worldwide. Efficient mobile elements and plasmids may have accelerated the genetic diversity and the rapid spread of ESBL genes, and their genetic evolution has caused an emerging threat to the bacteria for which few effective drugs have been identified. | 2011 | 21689785 |
| 4999 | 18 | 0.9885 | Dissemination Routes of Carbapenem and Pan-Aminoglycoside Resistance Mechanisms in Hospital and Urban Wastewater Canalizations of Ghana. Wastewater has a major role in antimicrobial resistance (AMR) dynamics and public health. The impact on AMR of wastewater flux at the community-hospital interface in low- and middle-income countries (LMICs) is poorly understood. Therefore, the present study analyzed the epidemiological scenario of resistance genes, mobile genetic elements (MGEs), and bacterial populations in wastewater around the Tamale metropolitan area (Ghana). Wastewater samples were collected from the drainage and canalizations before and after three hospitals and one urban waste treatment plant (UWTP). From all carbapenem/pan-aminoglycoside-resistant bacteria, 36 isolates were selected to determine bacterial species and phenotypical resistance profiles. Nanopore sequencing was used to screen resistance genes and plasmids, whereas, sequence types, resistome and plasmidome contents, pan-genome structures, and resistance gene variants were analyzed with Illumina sequencing. The combination of these sequencing data allowed for the resolution of the resistance gene-carrying platforms. Hospitals and the UWTP collected genetic and bacterial elements from community wastewater and amplified successful resistance gene-bacterium associations, which reached the community canalizations. Uncommon carbapenemase/β-lactamase gene variants, like bla(DIM-1), and novel variants, including bla(VIM-71), bla(CARB-53), and bla(CMY-172), were identified and seem to spread via clonal expansion of environmental Pseudomonas spp. However, bla(NDM-1), bla(CTX-M-15), and armA genes, among others, were associated with MGEs that allowed for their dissemination between environmental and clinical bacterial hosts. In conclusion, untreated hospital wastewater in Ghana is a hot spot for the emergence and spread of genes and gene-plasmid-bacterium associations that accelerate AMR, including to last-resort antibiotics. Urgent actions must be taken in wastewater management in LMICs in order to delay AMR expansion. IMPORTANCE Antimicrobial resistance (AMR) is one the major threats to public health today, especially resistance to last-resort compounds for the treatment of critical infections, such as carbapenems and aminoglycosides. Innumerable works have focused on the clinical ambit of AMR, but studies addressing the impact of wastewater cycles on the emergence and dissemination of resistant bacteria are still limited. The lack of knowledge is even greater when referring to low- and middle-income countries, where there is an absence of accurate sanitary systems. Furthermore, the combination of short- and long-read sequencing has surpassed former technical limitations, allowing the complete characterization of resistance genes, mobile genetic platforms, plasmids, and bacteria. The present study deciphered the multiple elements and routes involved in AMR dynamics in wastewater canalizations and, therefore, in the local population of Tamale, providing the basis to adopt accurate control measures to preserve and promote public health. | 2022 | 35103490 |
| 1798 | 19 | 0.9885 | Impacts of Domestication and Veterinary Treatment on Mobile Genetic Elements and Resistance Genes in Equine Fecal Bacteria. Antimicrobial resistance in bacteria is a threat to both human and animal health. We aimed to understand the impact of domestication and antimicrobial treatment on the types and numbers of resistant bacteria, antibiotic resistance genes (ARGs), and class 1 integrons (C1I) in the equine gut microbiome. Antibiotic-resistant fecal bacteria were isolated from wild horses, healthy farm horses, and horses undergoing veterinary treatment, and isolates (9,083 colonies) were screened by PCR for C1I; these were found at frequencies of 9.8% (vet horses), 0.31% (farm horses), and 0.05% (wild horses). A collection of 71 unique C1I(+) isolates (17 Actinobacteria and 54 Proteobacteria) was subjected to resistance profiling and genome sequencing. Farm horses yielded mostly C1I(+) Actinobacteria (Rhodococcus, Micrococcus, Microbacterium, Arthrobacter, Glutamicibacter, Kocuria), while vet horses primarily yielded C1I(+) Proteobacteria (Escherichia, Klebsiella, Enterobacter, Pantoea, Acinetobacter, Leclercia, Ochrobactrum); the vet isolates had more extensive resistance and stronger P(C) promoters in the C1Is. All integrons in Actinobacteria were flanked by copies of IS6100, except in Micrococcus, where a novel IS5 family element (ISMcte1) was implicated in mobilization. In the Proteobacteria, C1Is were predominantly associated with IS26 and also IS1, Tn21, Tn1721, Tn512, and a putative formaldehyde-resistance transposon (Tn7489). Several large C1I-containing plasmid contigs were retrieved; two of these (plasmid types Y and F) also had extensive sets of metal resistance genes, including a novel copper-resistance transposon (Tn7519). Both veterinary treatment and domestication increase the frequency of C1Is in equine gut microflora, and each of these anthropogenic factors selects for a distinct group of integron-containing bacteria. IMPORTANCE There is increasing acknowledgment that a "one health" approach is required to tackle the growing problem of antimicrobial resistance. This requires that the issue is examined from not only the perspective of human medicine but also includes consideration of the roles of antimicrobials in veterinary medicine and agriculture and recognizes the importance of other ecological compartments in the dissemination of ARGs and mobile genetic elements such as C1I. We have shown that domestication and veterinary treatment increase the frequency of occurrence of C1Is in the equine gut microflora and that, in healthy farm horses, the C1I are unexpectedly found in Actinobacteria, while in horses receiving antimicrobial veterinary treatments, a taxonomic shift occurs, and the more typical integron-containing Proteobacteria are found. We identified several new mobile genetic elements (plasmids, insertion sequences [IS], and transposons) on genomic contigs from the integron-containing equine bacteria. | 2023 | 36988354 |