MOSTLY - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
183400.9991Multiple host colonization and differential expansion of multidrug-resistant ST25-Acinetobacter baumannii clades. The Acinetobacter baumannii clonal lineage ST25 has been identified in humans and animals and found associated with outbreaks globally. To highlight possible similarities among ST25 A. baumannii of animal and human origins and to gather clues on the dissemination and evolution of the ST25 lineage, we conducted a phylogenetic analysis on n = 106 human and n = 35 animal A. baumannii ST25 genomes, including 44 sequenced for this study. Resistance genes and their genetic background were analyzed, as well. ST25 genomes are clustered into four clades: two are widespread in South America, while the other two are largely distributed in Europe, Asia and America. One particular clade was found to include the most recent strains and the highest number of acquired antibiotic resistance genes. OXA-23-type carbapenemase was the most common. Other resistance genes such as bla(NDM-1), bla(PER-7), and armA were found embedded in complex chromosomal regions present in human isolates. Genomic similarity among multidrug resistant ST25 isolates of either animal or human origin was revealed, suggesting cross-contaminations between the two sectors. Tracking the clonal complex ST25 between humans and animals should provide new insights into the mode of dissemination of these bacteria, and should help defining strategies for preserving global health.202338071225
156010.9991Comprehensive genome data analysis establishes a triple whammy of carbapenemases, ICEs and multiple clinically relevant bacteria. Carbapenemases inactivate most β-lactam antibiotics, including carbapenems, and have frequently been reported among Enterobacteriaceae, Acinetobacter spp. and Pseudomonas spp. Traditionally, the horizontal gene transfer of carbapenemase-encoding genes (CEGs) has been linked to plasmids. However, given that integrative and conjugative elements (ICEs) are possibly the most abundant conjugative elements among prokaryotes, we conducted an in silico analysis to ascertain the likely role of ICEs in the spread of CEGs among all bacterial genomes (n=182 663). We detected 17 520 CEGs, of which 66 were located within putative ICEs among several bacterial species (including clinically relevant bacteria, such as Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli). Most CEGs detected within ICEs belong to the IMP, NDM and SPM metallo-beta-lactamase families, and the serine beta-lactamase KPC and GES families. Different mechanisms were likely responsible for acquisition of these genes. The majority of CEG-bearing ICEs belong to the MPF(G), MPF(T) and MPF(F) classes and often encode resistance to other antibiotics (e.g. aminoglycosides and fluoroquinolones). This study provides a snapshot of the different CEGs associated with ICEs among available bacterial genomes and sheds light on the underappreciated contribution of ICEs to the spread of carbapenem resistance globally.202032841111
156120.9990The extent of carbapenemase-encoding genes in public genome sequences. Genome sequences provide information on the genetic elements present in an organism, and currently there are databases containing hundreds of thousands of bacterial genome sequences. These repositories allow for mining patterns concerning antibiotic resistance gene occurrence in both pathogenic and non-pathogenic bacteria in e.g. natural or animal environments, and link these to relevant metadata such as bacterial host species, country and year of isolation, and co-occurrence with other resistance genes. In addition, the advances in the prediction of mobile genetic elements, and discerning chromosomal from plasmid DNA, broadens our view on the mechanism mediating dissemination. In this study we utilize the vast amount of data in the public database PATRIC to investigate the dissemination of carbapenemase-encoding genes (CEGs), the emergence and spread of which is considered a grave public health concern. Based on publicly available genome sequences from PATRIC and manually curated CEG sequences from the beta lactam database, we found 7,964 bacterial genomes, belonging to at least 70 distinct species, that carry in total 9,892 CEGs, amongst which bla (NDM), bla (OXA), bla (VIM), bla (IMP) and bla (KPC). We were able to distinguish between chromosomally located resistance genes (4,137; 42%) and plasmid-located resistance genes (5,753; 58%). We found that a large proportion of the identified CEGs were identical, i.e. displayed 100% nucleotide similarity in multiple bacterial species (8,361 out of 9,892 genes; 85%). For example, the New Delhi metallo-beta-lactamase NDM-1 was found in 42 distinct bacterial species, and present in seven different environments. Our data show the extent of carbapenem-resistance far beyond the canonical species Acetinobacter baumannii, Klebsiella pneumoniae or Pseudomonas aeruginosa. These types of data complement previous systematic reviews, in which carbapenem-resistant Enterobacteriaceae were found in wildlife, livestock and companion animals. Considering the widespread distribution of CEGs, we see a need for comprehensive surveillance and transmission studies covering more host species and environments, akin to previous extensive surveys that focused on extended spectrum beta-lactamases. This may help to fully appreciate the spread of CEGs and improve the understanding of mechanisms underlying transmission, which could lead to interventions minimizing transmission to humans.202133732552
191530.9990Low Prevalence of Carbapenem-Resistant Bacteria in River Water: Resistance Is Mostly Related to Intrinsic Mechanisms. Carbapenems are last-resort antibiotics to handle serious infections caused by multiresistant bacteria. The incidence of resistance to these antibiotics has been increasing and new resistance mechanisms have emerged. The dissemination of carbapenem resistance in the environment has been overlooked. The main goal of this research was to assess the prevalence and diversity of carbapenem-resistant bacteria in riverine ecosystems. The presence of frequently reported carbapenemase-encoding genes was inspected. The proportion of imipenem-resistant bacteria was on average 2.24 CFU/ml. Imipenem-resistant strains (n=110) were identified as Pseudomonas spp., Stenotrophomonas maltophilia, Aeromonas spp., Chromobacterium haemolyticum, Shewanella xiamenensis, and members of Enterobacteriaceae. Carbapenem-resistant bacteria were highly resistant to other beta-lactams such as quinolones, aminoglycosides, chloramphenicol, tetracyclines, and sulfamethoxazole/trimethoprim. Carbapenem resistance was mostly associated with intrinsically resistant bacteria. As intrinsic resistance mechanisms, we have identified the blaCphA gene in 77.3% of Aeromonas spp., blaL1 in all S. maltophilia, and blaOXA-48-like in all S. xiamenensis. As acquired resistance mechanisms, we have detected the blaVIM-2 gene in six Pseudomonas spp. (5.45%). Integrons with gene cassettes encoding resistance to aminoglycosides (aacA and aacC genes), trimethoprim (dfrB1b), and carbapenems (blaVIM-2) were found in Pseudomonas spp. Results suggest that carbapenem resistance dissemination in riverine ecosystems is still at an early stage. Nevertheless, monitoring these aquatic compartments for the presence of resistance genes and its host organisms is essential to outline strategies to minimize resistance dissemination.201526430939
184740.9990Resistance to Carbapenems in Non-Typhoidal Salmonella enterica Serovars from Humans, Animals and Food. Non-typhoidal serovars of Salmonella enterica (NTS) are a leading cause of food-borne disease in animals and humans worldwide. Like other zoonotic bacteria, NTS have the potential to act as reservoirs and vehicles for the transmission of antimicrobial drug resistance in different settings. Of particular concern is the resistance to critical "last resort" antimicrobials, such as carbapenems. In contrast to other Enterobacteriaceae (e.g., Klebsiella pneumoniae, Escherichia coli, and Enterobacter, which are major nosocomial pathogens affecting debilitated and immunocompromised patients), carbapenem resistance is still very rare in NTS. Nevertheless, it has already been detected in isolates recovered from humans, companion animals, livestock, wild animals, and food. Five carbapenemases with major clinical importance-namely KPC (Klebsiella pneumoniae carbapenemase) (class A), IMP (imipenemase), NDM (New Delhi metallo-β-lactamase), VIM (Verona integron-encoded metallo-β-lactamase) (class B), and OXA-48 (oxacillinase, class D)-have been reported in NTS. Carbapenem resistance due to the production of extended spectrum- or AmpC β-lactamases combined with porin loss has also been detected in NTS. Horizontal gene transfer of carbapenemase-encoding genes (which are frequently located on self-transferable plasmids), together with co- and cross-selective adaptations, could have been involved in the development of carbapenem resistance by NTS. Once acquired by a zoonotic bacterium, resistance can be transmitted from humans to animals and from animals to humans through the food chain. Continuous surveillance of resistance to these "last resort" antibiotics is required to establish possible links between reservoirs and to limit the bidirectional transfer of the encoding genes between S. enterica and other commensal or pathogenic bacteria.201829642473
157350.9989Genomic Analysis of a Pan-Resistant Isolate of Klebsiella pneumoniae, United States 2016. Antimicrobial resistance is a threat to public health globally and leads to an estimated 23,000 deaths annually in the United States alone. Here, we report the genomic characterization of an unusual Klebsiella pneumoniae, nonsusceptible to all 26 antibiotics tested, that was isolated from a U.S. PATIENT: The isolate harbored four known beta-lactamase genes, including plasmid-mediated bla(NDM-1) and bla(CMY-6), as well as chromosomal bla(CTX-M-15) and bla(SHV-28), which accounted for resistance to all beta-lactams tested. In addition, sequence analysis identified mechanisms that could explain all other reported nonsusceptibility results, including nonsusceptibility to colistin, tigecycline, and chloramphenicol. Two plasmids, IncA/C2 and IncFIB, were closely related to mobile elements described previously and isolated from Gram-negative bacteria from China, Nepal, India, the United States, and Kenya, suggesting possible origins of the isolate and plasmids. This is one of the first K. pneumoniae isolates in the United States to have been reported to the Centers for Disease Control and Prevention (CDC) as nonsusceptible to all drugs tested, including all beta-lactams, colistin, and tigecycline.IMPORTANCE Antimicrobial resistance is a major public health threat worldwide. Bacteria that are nonsusceptible or resistant to all antimicrobials available are of major concern to patients and the public because of lack of treatment options and potential for spread. A Klebsiella pneumoniae strain that was nonsusceptible to all tested antibiotics was isolated from a U.S. PATIENT: Mechanisms that could explain all observed phenotypic antimicrobial resistance phenotypes, including resistance to colistin and beta-lactams, were identified through whole-genome sequencing. The large variety of resistance determinants identified demonstrates the usefulness of whole-genome sequencing for detecting these genes in an outbreak response. Sequencing of isolates with rare and unusual phenotypes can provide information on how these extremely resistant isolates develop, including whether resistance is acquired on mobile elements or accumulated through chromosomal mutations. Moreover, this provides further insight into not only detecting these highly resistant organisms but also preventing their spread.201829615503
185260.9989Genomic and Resistance Epidemiology of Gram-Negative Bacteria in Africa: a Systematic Review and Phylogenomic Analyses from a One Health Perspective. Antibiotic resistance (AR) remains a major threat to public and animal health globally. However, AR ramifications in developing countries are worsened by limited molecular diagnostics, expensive therapeutics, inadequate numbers of skilled clinicians and scientists, and unsanitary environments. The epidemiology of Gram-negative bacteria, their AR genes, and geographical distribution in Africa are described here. Data were extracted and analyzed from English-language articles published between 2015 and December 2019. The genomes and AR genes of the various species, obtained from the Pathosystems Resource Integration Center (PATRIC) and NCBI were analyzed phylogenetically using Randomized Axelerated Maximum Likelihood (RAxML) and annotated with Figtree. The geographic location of resistant clones/clades was mapped manually. Thirty species from 31 countries and 24 genera from 41 countries were analyzed from 146 articles and 3,028 genomes, respectively. Genes mediating resistance to β-lactams (including bla (TEM-1), bla (CTX-M), bla (NDM), bla (IMP), bla (VIM), and bla (OXA-48/181)), fluoroquinolones (oqxAB, qnrA/B/D/S, gyrA/B, and parCE mutations, etc.), aminoglycosides (including armA and rmtC/F), sulfonamides (sul1/2/3), trimethoprim (dfrA), tetracycline [tet(A/B/C/D/G/O/M/39)], colistin (mcr-1), phenicols (catA/B, cmlA), and fosfomycin (fosA) were mostly found in Enterobacter spp. and Klebsiella pneumoniae, and also in Serratia marcescens, Escherichia coli, Salmonella enterica, Pseudomonas, Acinetobacter baumannii, etc., on mostly IncF-type, IncX(3/4), ColRNAI, and IncR plasmids, within IntI1 gene cassettes, insertion sequences, and transposons. Clonal and multiclonal outbreaks and dissemination of resistance genes across species and countries and between humans, animals, plants, and the environment were observed; Escherichia coli ST103, K. pneumoniae ST101, S. enterica ST1/2, and Vibrio cholerae ST69/515 were common strains. Most pathogens were of human origin, and zoonotic transmissions were relatively limited.IMPORTANCE Antibiotic resistance (AR) is one of the major public health threats and challenges to effective containment and treatment of infectious bacterial diseases worldwide. Here, we used different methods to map out the geographical hot spots, sources, and evolutionary epidemiology of AR. Escherichia coli, Klebsiella pneumoniae, Salmonella enterica, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., Neisseria meningitis/gonorrhoeae, Vibrio cholerae, Campylobacter jejuni, etc., were common pathogens shuttling AR genes in Africa. Transmission of the same clones/strains across countries and between animals, humans, plants, and the environment was observed. We recommend Enterobacter spp. or K. pneumoniae as better sentinel species for AR surveillance.202033234606
187070.9989Novel Insights into bla(GES) Mobilome Reveal Extensive Genetic Variation in Hospital Effluents. Mobile genetic elements contribute to the emergence and spread of multidrug-resistant bacteria by enabling the horizontal transfer of acquired antibiotic resistance among different bacterial species and genera. This study characterizes the genetic backbone of bla(GES) in Aeromonas spp. and Klebsiella spp. isolated from untreated hospital effluents. Plasmids ranging in size from 9 to 244 kb, sequenced using Illumina and Nanopore platforms, revealed representatives of plasmid incompatibility groups IncP6, IncQ1, IncL/M1, IncFII, and IncFII-FIA. Different GES enzymes (GES-1, GES-7, and GES-16) were located in novel class 1 integrons in Aeromonas spp. and GES-5 in previously reported class 1 integrons in Klebsiella spp. Furthermore, in Klebsiella quasipneumoniae, bla(GES-5) was found in tandem as a coding sequence that disrupted the 3' conserved segment (CS). In Klebsiella grimontii, bla(GES-5) was observed in two different plasmids, and one of them carried multiple IncF replicons. Three Aeromonas caviae isolates presented bla(GES-1), one Aeromonas veronii isolate presented bla(GES-7), and another A. veronii isolate presented bla(GES-16). Multilocus sequence typing (MLST) analysis revealed novel sequence types for Aeromonas and Klebsiella species. The current findings highlight the large genetic diversity of these species, emphasizing their great adaptability to the environment. The results also indicate a public health risk because these antimicrobial-resistant genes have the potential to reach wastewater treatment plants and larger water bodies. Considering that they are major interfaces between humans and the environment, they could spread throughout the community to clinical settings. IMPORTANCE In the "One Health" approach, which encompasses human, animal, and environmental health, emerging issues of antimicrobial resistance are associated with hospital effluents that contain clinically relevant antibiotic-resistant bacteria along with a wide range of antibiotic concentrations, and lack regulatory status for mandatory prior and effective treatment. bla(GES) genes have been reported in aquatic environments despite the low detection of these genes among clinical isolates within the studied hospitals. Carbapenemase enzymes, which are relatively unusual globally, such as GES type inserted into new integrons on plasmids, are worrisome. Notably, K. grimontii, a newly identified species, carried two plasmids with bla(GES-5), and K. quasipneumoniae carried two copies of bla(GES-5) at the same plasmid. These kinds of plasmids are primarily responsible for multidrug resistance among bacteria in both clinical and natural environments, and they harbor resistant genes against antibiotics of key importance in clinical therapy, possibly leading to a public health problem of large proportion.202235880869
572580.9989Commonality of Multidrug-Resistant Klebsiella pneumoniae ST348 Isolates in Horses and Humans in Portugal. Multidrug-resistant (MDR) Klebsiella pneumoniae is considered a major global concern by the World Health Organization. Evidence is growing on the importance of circulation of MDR bacterial populations between animals and humans. Horses have been shown to carry commensal isolates of this bacterial species and can act as human MDR bacteria reservoirs. In this study, we characterized an extended-spectrum β-lactamase (ESBL)-producing K. pneumoniae sequence type (ST) 348 isolate from a horse, an ST reported for the first time in an animal, using next-generation sequencing. We compared it with six other MDR K. pneumoniae ST348 human isolates previously identified in health-care facilities in Portugal using a core genome multi-locus sequence typing approach to evaluate a possible genetic link. The horse isolate was resistant to most of the antimicrobials tested, including 3rd generation cephalosporins, fluoroquinolones, and aminoglycosides, and presented several antimicrobial resistance genes, including bla (ESBL). Twenty-one allele differences were found between the horse isolate and the most similar human isolate, suggesting a recent common ancestor. Other similarities were observed regarding the content on antimicrobial resistance genes, plasmid incompatibility groups, and capsular and somatic antigens. This study illustrates the relevance of the dissemination of MDR strains, and enhances that identification of these types of bacterial strains in both human and veterinary settings is of significant relevance in order to understand and implement combined control strategies for MDR bacteria in animals and humans.201931379799
171290.9989Low-virulence Citrobacter species encode resistance to multiple antimicrobials. Citrobacter spp. are gram-negative commensal bacteria that infrequently cause serious nosocomial infections in compromised hosts. They are often resistant to cephalosporins due to overexpression of their chromosomal beta-lactamase. During a recent study of multidrug-resistant Enterobacteriaceae (MDRE) in solid-organ transplant patients, we found that almost half of patients colonized with MDRE carried one or more cefpodoxime-resistant Citrobacter freundii, Citrobacter braakii, or Citrobacter amalonaticus strains. Pulsed-field gel electrophoresis showed that 36 unique strains of Citrobacter were present among 32 patients. Genetic and phenotypic analysis of the resistance mechanisms of these bacteria showed that the extended-spectrum beta-lactamase (ESBL) SHV-5 or SHV-12 was encoded by 8 strains (26%) and expressed by 7 strains (19%). A number of strains were resistant to other drug classes, including aminoglycosides (28%), trimethoprim-sulfamethoxazole (31%), and fluoroquinolones (8%). PCR and DNA analysis of these multiresistant strains revealed the presence of class I integrons, including the first integrons reported for C. braakii and C. amalonaticus. The integrons encoded aminoglycoside resistance, trimethoprim resistance, or both. Despite the prevalence of MDR Citrobacter spp. in our solid-organ transplant patients, only a single infection with a colonizing strain was recorded over 18 months. Low-virulence Citrobacter spp., which can persist in the host for long periods, could influence pathogen evolution by accumulation of genes encoding resistance to multiple antimicrobial classes.200212384364
1575100.9989Widespread transfer of resistance genes between bacterial species in an intensive care unit: implications for hospital epidemiology. A transferable plasmid encoding SHV-12 extended-spectrum beta-lactamase, TEM-116, and aminoglycoside resistance was responsible for two sequential clonal outbreaks of Enterobacter cloacae and Acinetobacter baumannii bacteria. A similar plasmid was present among isolates of four different bacterial species. Recognition of plasmid transfer is crucial for control of outbreaks of multidrug-resistant nosocomial pathogens.200516145160
1842110.9989Emergence of mcr-9.1 in Extended-Spectrum-β-Lactamase-Producing Clinical Enterobacteriaceae in Pretoria, South Africa: Global Evolutionary Phylogenomics, Resistome, and Mobilome. Extended-spectrum-β-lactamase (ESBL)-producing Enterobacteriaceae are critical-priority pathogens that cause substantial fatalities. With the emergence of mobile mcr genes mediating resistance to colistin in Enterobacteriaceae, clinicians are now left with few therapeutic options. Eleven clinical Enterobacteriaceae strains with resistance to cephems and/or colistin were genomically analyzed to determine their resistomes, mobilomes, and evolutionary relationships to global strains. The global phylogenomics of mcr genes and mcr-9.1-bearing genomes were further analyzed. Ten isolates were ESBL positive. The isolates were multidrug resistant and phylogenetically related to global clones but distant from local strains. Multiple resistance genes, including bla (CTX-M-15) bla (TEM-1), and mcr-9.1, were found in single isolates; ISEc9, IS19, and Tn3 transposons bracketed bla (CTX-M-15) and bla (TEM-1) Common plasmid types included IncF, IncH, and ColRNAI. mcr-9 was of close sequence identity to mcr-3, mcr-5, mcr-7, mcr-8, and mcr-10. Genomes bearing mcr-9.1 clustered into six main phyletic groups (A to F), with those of this study belonging to clade B. Enterobacter species and Salmonella species are the main hosts of mcr-9.1 globally, although diverse promiscuous plasmids disseminate mcr-9.1 across different bacterial species. Emergence of mcr-9.1 in ESBL-producing Enterobacteriaceae in South Africa is worrying, due to the restricted therapeutic options. Intensive One Health molecular surveillance might discover other mcr alleles and inform infection management and antibiotic choices.IMPORTANCE Colistin is currently the last-resort antibiotic for difficult-to-treat bacterial infections. However, colistin resistance genes that can move from bacteria to bacteria have emerged, threatening the safe treatment of many bacterial infections. One of these genes, mcr-9.1, has emerged in South Africa in bacteria that are multidrug resistant, further limiting treatment options for clinicians. In this work, we show that this new gene is disseminating worldwide through Enterobacter and Salmonella species through multiple plasmids. This worrying observation requires urgent action to prevent further escalation of this gene in South Africa and Africa.202032430406
1682120.9989Multidrug-Resistant and Clinically Relevant Gram-Negative Bacteria Are Present in German Surface Waters. Water is considered to play a role in the dissemination of antibiotic-resistant Gram-negative bacteria including those encoding Extended-spectrum beta-lactamases (ESBL) and carbapenemases. To investigate the role of water for their spread in more detail, we characterized ESBL/Carbapenemase-producing bacteria from surface water and sediment samples using phenotypic and genotypic approaches. ESBL/Carbapenemase-producing isolates were obtained from water/sediment samples. Species and antibiotic resistance were determined. A subset of these isolates (n = 33) was whole-genome-sequenced and analyzed for the presence of antibiotic resistance genes and virulence determinants. Their relatedness to isolates associated with human infections was investigated using multilocus sequence type and cgMLST-based analysis. Eighty-nine percent of the isolates comprised of clinically relevant species. Fifty-eight percent exhibited a multidrug-resistance phenotype. Two isolates harbored the mobile colistin resistance gene mcr-1. One carbapenemase-producing isolate identified as Enterobacter kobei harbored bla (VIM-) (1). Two Escherichia coli isolates had sequence types (ST) associated with human infections (ST131 and ST1485) and a Klebsiella pneumoniae isolate was classified as hypervirulent. A multidrug-resistant (MDR) Pseudomonas aeruginosa isolate encoding known virulence genes associated with severe lung infections in cystic fibrosis patients was also detected. The presence of MDR and clinically relevant isolates in recreational and surface water underlines the role of aquatic environments as both reservoirs and hot spots for MDR bacteria. Future assessment of water quality should include the examination of the multidrug resistance of clinically relevant bacterial species and thus provide an important link regarding the spread of MDR bacteria in a One Health context.201931849911
1851130.9989Phylogenomics, epigenomics, virulome and mobilome of Gram-negative bacteria co-resistant to carbapenems and polymyxins: a One Health systematic review and meta-analyses. Gram-negative bacteria (GNB) continue to develop resistance against important antibiotics including last-resort ones such as carbapenems and polymyxins. An analysis of GNB with co-resistance to carbapenems and polymyxins from a One Health perspective is presented. Data of species name, country, source of isolation, resistance genes (ARGs), plasmid type, clones and mobile genetic elements (MGEs) were deduced from 129 articles from January 2016 to March 2021. Available genomes and plasmids were obtained from PATRIC and NCBI. Resistomes and methylomes were analysed using BAcWGSTdb and REBASE whilst Kaptive was used to predict capsule typing. Plasmids and other MEGs were identified using MGE Finder and ResFinder. Phylogenetic analyses were done using RAxML and annotated with MEGA 7. A total of 877 isolates, 32 genomes and 44 plasmid sequences were analysed. Most of these isolates were reported in Asian countries and were isolated from clinical, animal and environmental sources. Colistin resistance was mostly mediated by mgrB inactivation (37%; n = 322) and mcr-1 (36%; n = 312), while OXA-48/181 was the most reported carbapenemase. IncX and IncI were the most common plasmids hosting carbapenemases and mcr genes. The isolates were co-resistant to other antibiotics, with floR (chloramphenicol) and fosA3 (fosfomycin) being common; E. coli ST156 and K. pneumoniae ST258 strains were common globally. Virulence genes and capsular KL-types were also detected. Type I, II, III and IV restriction modification systems were detected, comprising various MTases and restriction enzymes. The escalation of highly resistant isolates drains the economy due to untreatable bacterial infections, which leads to increasing global mortality rates and healthcare costs.202235129271
1548140.9989Metallo-beta-lactamases of Pseudomonas aeruginosa--a novel mechanism resistance to beta-lactam antibiotics. Since about twenty years, following the introduction into therapeutic of news beta-lactam antibiotics (broad-spectrum cephalosporins, monobactams and carbapenems), a very significant number of new beta-lactamases appeared. These enzymes confer to the bacteria which put them, the means of resisting new molecules. The genetic events involved in this evolution are of two types: evolution of old enzymes by mutation and especially appearance of new genes coming for some, from bacteria of the environment. Numerous mechanisms of enzymatic resistance to the carbapenems have been described in Pseudomonas aeruginosa. The important mechanism of inactivation carbapenems is production variety of b-lactam hydrolysing enzymes associated to carbapenemases. The metallo-beta-enzymes (IMP, VIM, SPM, GIM types) are the most clinically significant carbapenemases. P. aeruginosa posses MBLs and seem to have acquired them through transmissible genetic elements (plasmids or transposons associated with integron) and can be transmission to other bacteria. They have reported worldwide but mostly from South East Asia and Europe. The enzymes, belonging to the molecular class B family, are the most worrisome of all beta-lactamases because they confer resistance to carbapenems and all the beta-lactams (with the exception of aztreonam) and usually to aminoglycosides and quinolones. The dissemination of MBLs genes is thought to be driven by regional consumption of extended--spectrum antibiotics (e.g. cephalosporins and carbapenems), and therefore care must be taken that these drugs are not used unnecessarily.200818519228
5015150.9989beta-Lactam resistance and beta-lactamases in bacteria of animal origin. beta-Lactams are among the most clinically important antimicrobials in both human and veterinary medicine. Bacterial resistance to beta-lactams has been increasingly observed in bacteria, including those of animal origin. The mechanisms of beta-lactam resistance include inaccessibility of the drugs to their target, target alterations and/or inactivation of the drugs by beta-lactamases. The latter contributes predominantly to beta-lactam resistance in Gram-negative bacteria. A variety of beta-lactamases have been identified in bacteria derived from food-producing and companion animals and may further serve as a reservoir for beta-lactamase-producing bacteria in humans. While this review mainly describes beta-lactamases from animal-derived Escherichia coli and Salmonella spp., beta-lactamases from animal-derived Campylobacter spp., Enterococcus spp., Staphylococcus spp. and other pathogens are also discussed. Of particular concern are the increasingly-isolated plasmid-encoded AmpC-type CMY and extended-spectrum CTX-M beta-lactamases, which mediate acquired resistance to extended-spectrum beta-lactams. The genes encoding these enzymes often coexist with other antimicrobial resistance determinants and can also be associated with transposons/integrons, increasing the potential enrichment of multidrug resistant bacteria by multiple antimicrobial agents as well as dissemination of the resistance determinants among bacterial species. Characterization of beta-lactam-resistant animal-derived bacteria warrants further investigation of the type and distribution of beta-lactamases in bacteria of animal origin and their potential impact on human medicine.200717306475
1843160.9989Chromosome-Based blaOXA-48-Like Variants in Shewanella Species Isolates from Food-Producing Animals, Fish, and the Aquatic Environment. Carbapenems are considered last-resort antibiotics in health care. Increasing reports of carbapenemase-producing bacteria in food-producing animals and in the environment indicate the importance of this phenomenon in public health. Surveillance for carbapenemase genes and carbapenemase-producing bacteria in Dutch food-producing animals, environmental freshwater, and imported ornamental fish revealed several chromosome-based bla(OXA-48)-like variants in Shewanella spp., including two new alleles, bla(OXA-514) and bla(OXA-515) Carbapenemase genes were not associated with mobile genetic elements or Enterobacteriaceae.201727855066
1920170.9989Exploring the resistome, virulome, and mobilome of multidrug-resistant Klebsiella pneumoniae isolates: deciphering the molecular basis of carbapenem resistance. BACKGROUND: Klebsiella pneumoniae, a notorious pathogen for causing nosocomial infections has become a major cause of neonatal septicemia, leading to high morbidity and mortality worldwide. This opportunistic bacterium has become highly resistant to antibiotics due to the widespread acquisition of genes encoding a variety of enzymes such as extended-spectrum beta-lactamases (ESBLs) and carbapenemases. We collected Klebsiella pneumoniae isolates from a local tertiary care hospital from February 2019-February 2021. To gain molecular insight into the resistome, virulome, and genetic environment of significant genes of multidrug-resistant K. pneumoniae isolates, we performed the short-read whole-genome sequencing of 10 K. pneumoniae isolates recovered from adult patients, neonates, and hospital tap water samples. RESULTS: The draft genomes of the isolates varied in size, ranging from 5.48 to 5.96 Mbp suggesting the genome plasticity of this pathogen. Various genes conferring resistance to different classes of antibiotics e.g., aminoglycosides, quinolones, sulfonamides, tetracycline, and trimethoprim were identified in all sequenced isolates. The highest resistance was observed towards carbapenems, which has been putatively linked to the presence of both class B and class D carbapenemases, bla(NDM,) and bla(OXA), respectively. Moreover, the biocide resistance gene qacEdelta1 was found in 6/10 of the sequenced strains. The sequenced isolates exhibited a broad range of sequence types and capsular types. The significant antibiotic resistance genes (ARGs) were bracketed by a variety of mobile genetic elements (MGEs). Various spontaneous mutations in genes other than the acquired antibiotic-resistance genes were observed, which play an indirect role in making these bugs resistant to antibiotics. Loss or deficiency of outer membrane porins, combined with ESBL production, played a significant role in carbapenem resistance in our sequenced isolates. Phylogenetic analysis revealed that the study isolates exhibited evolutionary relationships with strains from China, India, and the USA suggesting a shared evolutionary history and potential dissemination of similar genes amongst the isolates of different origins. CONCLUSIONS: This study provides valuable insight into the presence of multiple mechanisms of carbapenem resistance in K. pneumoniae strains including the acquisition of multiple antibiotic-resistance genes through mobile genetic elements. Identification of rich mobilome yielded insightful information regarding the crucial role of insertion sequences, transposons, and integrons in shaping the genome of bacteria for the transmission of various resistance-associated genes. Multi-drug resistant isolates that had the fewest resistance genes exhibited a significant number of mutations. K. pneumoniae isolate from water source displayed comparable antibiotic resistance determinants to clinical isolates and the highest number of virulence-associated genes suggesting the possible interplay of ARGs amongst bacteria from different sources.202438664636
1916180.9989Species Diversity of Environmental GIM-1-Producing Bacteria Collected during a Long-Term Outbreak. Reports of outbreaks concerning carbapenemase-producing Gram-negative bacteria in which the main source of transmission is the hospital environment are increasing. This study describes the results of environmental sampling in a protracted polyspecies metallo-beta-lactamase GIM-1 outbreak driven by plasmids and bacterial clones of Enterobacter cloacae and Pseudomonas aeruginosa in a tertiary care center. Environmental sampling targeting wet locations (especially sinks) was carried out on a surgical intensive care unit and on a medical ward on several occasions in 2012 and 2013. We were able to demonstrate 43 blaGIM-1-carrying bacteria (mainly nonfermenters but also Enterobacteriaceae) that were either related or unrelated to clinical strains in 30 sinks and one hair washbasin. GIM-1 was found in 12 different species, some of which are described here as carriers of GIM-1. Forty out of 43 bacteria displayed resistance to carbapenems and, in addition, to various non-beta-lactam antibiotics. Colistin resistance was observed in two E. cloacae isolates with MICs above 256 mg/liter. The blaGIM-1 gene was harbored in 12 different class 1 integrons, some without the typical 3' end. The blaGIM-1 gene was localized on plasmids in five isolates. In vitro plasmid transfer by conjugation was successful in one isolate. The environment, with putatively multispecies biofilms, seems to be an important biological niche for multidrug-resistant bacteria and resistance genes. Biofilms may serve as a "melting pot" for horizontal gene transfer, for dissemination into new species, and as a reservoir to propagate future hospital outbreaks. IMPORTANCE: In Gram-negative bacteria, resistance to the clinically relevant broad-spectrum carbapenem antibiotics is a major public health concern. Major reservoirs for these resistant organisms are not only the gastrointestinal tracts of animals and humans but also the (hospital) environment. Due to the difficulty in eradicating biofilm formation in the latter, a sustained dissemination of multidrug-resistant bacteria from the environment can occur. In addition, horizontal transfer of resistance genes on mobile genetic elements within biofilms adds to the total "resistance gene pool" in the environment. To gain insight into the transmission pathways of a rare and locally restricted carbapenemases resistance gene (blaGIM-1), we analyzed the genetic background of the blaGIM-1 gene in environmental bacteria during a long-term polyspecies outbreak in a German hospital.201627060121
1557190.9989Carbapenemase-producing Klebsiella pneumoniae. The continuing emergence of infections due to multidrug resistant bacteria is a serious public health problem. Klebsiella pneumoniae, which commonly acquires resistance encoded on mobile genetic elements, including ones that encode carbapenemases, is a prime example. K. pneumoniae carrying such genetic material, including both blaKPC and genes encoding metallo-β-lactamases, have spread globally. Many carbapenemase-producing K. pneumoniae are resistant to multiple antibiotic classes beyond β-lactams, including tetracyclines, aminoglycosides, and fluoroquinolones. The optimal treatment, if any, for infections due to these organisms is unclear but, paradoxically, appears to often require the inclusion of an optimally administered carbapenem.201425343037