# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5512 | 0 | 0.9996 | Incidence and diversity of antimicrobial multidrug resistance profiles of uropathogenic bacteria. The aim of this study was to assess the most frequent multidrug resistant (MDR) profiles of the main bacteria implicated in community-acquired urinary tract infections (UTI). Only the MDR profiles observed in, at least, 5% of the MDR isolates were considered. A quarter of the bacteria were MDR and the most common MDR profile, including resistance to penicillins, quinolones, and sulfonamides (antibiotics with different mechanisms of action, all mainly recommended by the European Association of Urology for empirical therapy of uncomplicated UTI), was observed, alone or in association with resistance to other antimicrobial classes, in the main bacteria implicated in UTI. The penicillin class was included in all the frequent MDR profiles observed in the ten main bacteria and was the antibiotic with the highest prescription during the study period. The sulfonamides class, included in five of the six more frequent MDR profiles, was avoided between 2000 and 2009. The results suggest that the high MDR percentage and the high diversity of MDR profiles result from a high prescription of antibiotics but also from antibiotic-resistant genes transmitted with other resistance determinants on mobile genetic elements and that the UTI standard treatment guidelines must be adjusted for the community of Aveiro District. | 2015 | 25834814 |
| 5537 | 1 | 0.9996 | Four novel Acinetobacter lwoffii strains isolated from the milk of cows in China with subclinical mastitis. BACKGROUND: Acinetobacter lwoffii (A. lwoffii) is a Gram-negative bacteria common in the environment, and it is the normal flora in human respiratory and digestive tracts. The bacteria is a zoonotic and opportunistic pathogen that causes various infections, including nosocomial infections. The aim of this study was to identify A. lwoffii strains isolated from bovine milk with subclinical mastitis in China and get a better understanding of its antimicrobial susceptibility and resistance profile. This is the first study to analyze the drug resistance spectrum and corresponding mechanisms of A. lwoffii isolated in raw milk. RESULTS: Four A. lwoffii strains were isolated by PCR method. Genetic evolution analysis using the neighbor-joining method showed that the four strains had a high homology with Acinetobacter lwoffii. The strains were resistant to several antibiotics and carried 17 drug-resistance genes across them. Specifically, among 23 antibiotics, the strains were completely susceptible to 6 antibiotics, including doxycycline, erythromycin, polymyxin, clindamycin, imipenem, and meropenem. In addition, the strains showed variable resistance patterns. A total of 17 resistance genes, including plasmid-mediated resistance genes, were detected across the four strains. These genes mediated resistance to 5 classes of antimicrobials, including beta-lactam, aminoglycosides, fluoroquinolones, tetracycline, sulfonamides, and chloramphenicol. CONCLUSION: These findings indicated that multi-drug resistant Acinetobacter lwoffii strains exist in raw milk of bovine with subclinical mastitis. Acinetobacter lwoffii are widespread in natural environmental samples, including water, soil, bathtub, soap box, skin, pharynx, conjunctiva, saliva, gastrointestinal tract, and vaginal secretions. The strains carry resistance genes in mobile genetic elements to enhance the spread of these genes. Therefore, more attention should be paid to epidemiological surveillance and drug resistant A. lwoffii. | 2024 | 38918815 |
| 1962 | 2 | 0.9996 | European multicenter study on antimicrobial resistance in bacteria isolated from companion animal urinary tract infections. BACKGROUND: There is a growing concern regarding the increase of antimicrobial resistant bacteria in companion animals. Yet, there are no studies comparing the resistance levels of these organisms in European countries. The aim of this study was to investigate geographical and temporal trends of antimicrobial resistant bacteria causing urinary tract infection (UTI) in companion animals in Europe. The antimicrobial susceptibility of 22 256 bacteria isolated from dogs and cats with UTI was determined. Samples were collected between 2008 and 2013 from 16 laboratories of 14 European countries. The prevalence of antimicrobial resistance of the most common bacteria was determined for each country individually in the years 2012-2013 and temporal trends of bacteria resistance were established by logistic regression. RESULTS: The aetiology of uropathogenic bacteria differed between dogs and cats. For all bacterial species, Southern countries generally presented higher levels of antimicrobial resistance compared to Northern countries. Multidrug-resistant Escherichia coli were found to be more prevalent in Southern countries. During the study period, the level of fluoroquinolone-resistant E. coli isolated in Belgium, Denmark, France and the Netherlands decreased significantly. A temporal increase in resistance to amoxicillin-clavulanate and gentamicin was observed among E. coli isolates from the Netherlands and Switzerland, respectively. Other country-specific temporal increases were observed for fluoroquinolone-resistant Proteus spp. isolated from companion animals from Belgium. CONCLUSIONS: This work brings new insights into the current status of antimicrobial resistance in bacteria isolated from companion animals with UTI in Europe and reinforces the need for strategies aiming to reduce resistance. | 2016 | 27658466 |
| 5583 | 3 | 0.9995 | High prevalence of antimicrobial-resistant Escherichia coli from animals at slaughter: a food safety risk. BACKGROUND: There has been concern about the increase of antimicrobial resistant bacteria and protection of animal and public health, along with food safety. In the present study, we evaluate the incidence of antimicrobial resistance among 192 strains of Escherichia coli isolated from faecal samples of healthy food-producing animals at slaughter in Portugal. RESULTS: Ninety-seven % of the pig isolates, 74% from sheep and 55% from cattle were resistant to one or more antimicrobial agents, with the resistances to ampicillin, streptomycin, tetracycline and trimethoprim-sulfamethoxazole the most common phenotype detected. Genes encoding resistance to antimicrobial agents were detected in most of the resistant isolates. Ninety-three % of the resistant isolates were included in the A or B1 phylogenetic groups, and the virulence gene fimA (alone or in association with papC or aer genes) was detected in 137 of the resistant isolates. Five isolates from pigs belonging to phylogroup B2 and D were resistant to five different antimicrobial agents. CONCLUSION: Our data shows a high percentage of antibiotic resistance in E. coli isolates from food animals, and raises important questions in the potential impact of antibiotic use in animals and the possible transmission of resistant bacteria to humans through the food chain. | 2013 | 22836880 |
| 5530 | 4 | 0.9995 | Antimicrobial resistance of enterococci isolated from food in South Brazil: Comparing pre- and post-RDC 20/2011. Antimicrobial resistance has been attributed to the overuse of antibiotics. To control the use of antibiotics, Brazil adopted the RDC 20/2011. A comparison the antibiotic-resistance profile of bacterial has provided important insights into resistance evolution. Enterococci are ubiquitous bacteria recommended to be used as a sentinel organism, in national surveillance systems, for tracking antimicrobial resistance through the food chain. The present study aimed to evaluate the diversity and antimicrobial resistance of enterococci collected from food in South Brazil in 2017 (pos-RDC 20/11) for comparison with isolated in 2007 (pre-RDC 20/11). A total of 310 enterococci were isolated from vegetables and products of animal origin, identified by PCR and MALDI-TOF, tested for antimicrobial susceptibility and screened for resistance genes. Enterococcus casseliflavus was dominant in vegetables and E. faecalis in products of animal origin. Enterococcal isolates in 2017 were mostly sensitive to ampicillin, gentamicin, chloramphenicol, and vancomycin when compared to isolated collected in 2007. While resistance levels to most compounds remained relatively stable, multidrug resistance decreased by 24% during this period. Our results suggest that RDC 20/11 had a positive outcome in controlling the spread of antimicrobial resistance. This study provides baseline data to measure future changes in the prevalence of resistant enterococci. | 2022 | 35293513 |
| 1634 | 5 | 0.9995 | Sick pets as potential reservoirs of antibiotic-resistant bacteria in Singapore. An analysis of 186 diagnostic reports collected from a veterinary clinic in Singapore between 2014 to 2016 showed that sick companion animals can carry bacteria that are of significance to human health. Among the 186 specimens submitted, 82 showed polymicrobial growth (45%, 82/186) and in total, 359 bacteria were isolated. Of the 359 bacteria reported, 45% (162/359) were multi-drug resistant and 18% (66/359) were extended-spectrum-beta-lactamase species. Resistance to broad-spectrum antibiotics were also observed among individual species. Namely, methicillin-resistance among Staphylococcus pseudintermedius (63%, 32/51) and Staphylococcus aureus (50%, 4/8); fluoroquinolone-resistance among Escherichia coli (40%, 17/42) and carbapenem-resistance among Klebsiella pneumoniae (7%, 2/30) were noted. Our analysis suggests that sick pets may contribute to the pool of clinically relevant antibiotic-resistant bacteria and play a role in the spread of antibiotic resistance in Singapore. A more extensive study to better understand the extent of distribution and the factors affecting transmission of antibiotic-resistant bacteria to and from pets is necessary. | 2018 | 30186596 |
| 1965 | 6 | 0.9995 | Phenotypic Investigation of Florfenicol Resistance and Molecular Detection of floR Gene in Canine and Feline MDR Enterobacterales. Florfenicol is a promising antibiotic for use in companion animals, especially as an alternative agent for infections caused by MDR bacteria. However, the emergence of resistant strains could hinder this potential. In this study, florfenicol resistance was investigated in a total of 246 MDR Enterobacterales obtained from canine and feline clinical samples in Greece over a two-year period (October 2020 to December 2022); a total of 44 (17,9%) florfenicol-resistant strains were recognized and further investigated. Most of these isolates originated from urine (41.9%) and soft tissue (37.2%) samples; E. coli (n = 14) and Enterobacter cloacae (n = 12) were the predominant species. The strains were examined for the presence of specific florfenicol-related resistance genes floR and cfr. In the majority of the isolates (31/44, 70.5%), the floR gene was detected, whereas none carried cfr. This finding creates concerns of co-acquisition of plasmid-mediated florfenicol-specific ARGs through horizontal transfer, along with several other resistance genes. The florfenicol resistance rates in MDR isolates seem relatively low but considerable for a second-line antibiotic; thus, in order to evaluate the potential of florfenicol to constitute an alternative antibiotic in companion animals, continuous monitoring of antibiotic resistance profiles is needed in order to investigate the distribution of florfenicol resistance under pressure of administration of commonly used agents. | 2024 | 38393089 |
| 1963 | 7 | 0.9995 | Antimicrobial resistance in bacteria isolated from diseased horses in France. BACKGROUND: Horses are one of the potential reservoirs of antimicrobial resistance (AMR) determinants that could be transferred to human subjects. OBJECTIVE: To describe the AMR patterns of major bacteria isolated from diseased horses in France. STUDY DESIGN: Retrospective observational study. METHODS: Data collected between 2012 and 2016 by RESAPATH, the French national surveillance network for AMR, were analysed. Only antimicrobials relevant in veterinary and human medicine for the isolated bacteria were considered. Mono- and multidrug resistance were calculated. The resistance proportions of major equine diseases were assessed and compared. Where data permitted, resistance trends were investigated using nonlinear analysis (generalised additive models). RESULTS: A total of 12,695 antibiograms were analysed. The five most frequently isolated bacteria were Streptococcus spp., Escherichia coli, Pseudomonas spp., Staphylococcus aureus, Pantoea spp. and Klebsiella spp. The highest proportions of resistance to gentamicin were found for S. aureus (22.1%) and Pseudomonas spp. (26.9%). Klebsiella spp. and E. coli had the highest proportions of resistance to trimethoprim-sulfamethoxazole (15.5 and 26.2%, respectively). Proportions of resistance to tetracycline were among the highest for all the bacteria considered. Resistance to third-generation cephalosporins was below 10% for all Enterobacteriaceae. The highest proportions of multidrug resistance (22.5%) were found among S. aureus isolates, which is worrying given their zoonotic potential. From 2012 to 2016, resistance proportions decreased in Pseudomonas spp. isolates, but remained the same for S. aureus. For Streptococcus spp. and E. coli, resistance proportions to trimethoprim-sulfamethoxazole increased. MAIN LIMITATIONS: Since antibiograms are not systematic analyses, any selection bias could impact the results. CONCLUSIONS: Such studies are essential to estimate the magnitude of the potential threat of AMR to public health, to design efficient control strategies and to measure their effectiveness. These findings may also guide the initial empirical treatment of horse diseases. | 2020 | 31033041 |
| 1956 | 8 | 0.9995 | Wounds of Companion Animals as a Habitat of Antibiotic-Resistant Bacteria That Are Potentially Harmful to Humans-Phenotypic, Proteomic and Molecular Detection. Skin wounds and their infections by antibiotic-resistant bacteria (ARB) are very common in small animals, posing the risk of acquiring ARB by pet owners or antibiotic resistance gene (ARG) transfer to the owners' microbiota. The aim of this study was to identify the most common pathogens infecting wounds of companion animals, assess their antibiotic resistance, and determine the ARGs using culture-based, molecular, and proteomic methods. A total of 136 bacterial strains were isolated from wound swabs. Their species was identified using chromogenic media, followed by MALDI-TOF spectrometry. Antibiotic resistance was tested using disc diffusion, and twelve ARGs were detected using PCRs. The dominant species included Staphylococcus pseudintermedius (9.56%), E. coli, and E. faecalis (both n = 11, 8.09%). Enterobacterales were mostly resistant to amoxicillin/clavulanic acid (68.3% strains), all Pseudomonas were resistant to ceftazidime, piperacillin/tazobactam, imipenem, and tylosin, Acinetobacter were mostly resistant to tylosin (55.5%), all Enterococcus were resistant to imipenem, and 39.2% of Staphylococci were resistant to clindamycin. Among ARGs, strA (streptomycin resistance), sul3 (sulfonamide resistance), and blaTEM, an extended-spectrum beta-lactamase determinant, were the most frequent. The risk of ARB and ARG transfer between animals and humans causes the need to search for new antimicrobial therapies in future veterinary medicine. | 2024 | 38542095 |
| 2400 | 9 | 0.9995 | Antimicrobial susceptibility and distribution of antimicrobial-resistance genes among Enterococcus and coagulase-negative Staphylococcus isolates recovered from poultry litter. Data on the prevalence of antimicrobial resistant enterococci and staphylococci from the poultry production environment are sparse in the United States. This information is needed for science-based risk assessments of antimicrobial use in animal husbandry and potential public-health consequences. In this study, we assessed the susceptibility of staphylococci and enterococci isolated from poultry litter, recovered from 24 farms across Georgia, to several antimicrobials of veterinary and human health importance. Among the 90 Enterococcus isolates recovered, E. hirae (46%) was the most frequently encountered species, followed by E. faecium (27%), E. gallinarum (12%), and E. faecalis (10%). Antimicrobial resistance was most often observed to tetracycline (96%), followed by clindamycin (90%), quinupristin-dalfopristin (62%), penicillin (53%), erythromycin (50%), nitrofurantoin (49%), and clarithromycin (48%). Among the 110 staphylococci isolates recovered, only coagulase-negative staphylococci (CNS) were identified with the predominant Staphylococcus species being S. sciuri (38%), S. lentus (21%), S. xylosus (14%) and S. simulans (12%). Resistance was less-frequently observed among the Staphylococcus isolates for the majority of antimicrobials tested, as compared with Enterococcus isolates, and was primarily limited to clarithromycin (71%), erythromycin (71%), clindamycin (48%), and tetracycline (38%). Multidrug resistance (MDR) phenotypes were prevalent in both Enterococcus and Staphylococcus; however, Enterococcus exhibited a statistically significant difference in the median number of antimicrobials to which resistance was observed (median = 5.0) compared with Staphylococcus species (median = 3.0). Because resistance to several of these antimicrobials in gram-positive bacteria may be attributed to the shuttling of common drug-resistance genes, we also determined which common antimicrobial-resistance genes were present in both enterococci and staphylococci. The antimicrobial resistance genes vat(D) and erm(B) were present in enterococci, vgaB in staphylococci, and mobile genetic elements Tn916 and pheromone-inducible plasmids were only identified in enterococci. These data suggest that the disparity in antimicrobial-resistance phenotypes and genotypes between enterococci and staphylococci isolated from the same environment is, in part, because of barriers preventing exchange of mobile DNA elements. | 2007 | 18251398 |
| 2687 | 10 | 0.9995 | Antimicrobial resistance in E. coli isolated from dairy calves and bedding material. INTRODUCTION: E. coli is a ubiquitous bacterium commonly used as a sentinel in antimicrobial resistance studies. Here, E. coli was isolated from three groups (sick calves, healthy calves and bedding material), to assess the presence of antimicrobial resistance, describe resistance profiles, and compare these resistances among groups. MATERIAL AND METHODS: Samples were collected from calves and calving pens from 20 dairy farms. Using the disc diffusion method, E. coli isolates were screened for antimicrobial resistance against seven antimicrobials: Amoxicillin, Ceftiofur, Gentamicin, Enrofloxacin, Trimethoprim-sulfamethoxazole, Florfenicol and Oxytetracycline. Isolates resistant to all these seven antimicrobials were tested again against an extended 19 antimicrobial drug panel and for the presence of the most common E. coli pathogenicity genes through PCR. RESULTS & DISCUSSION: Three hundred forty-nine E. coli isolates were obtained; most isolates were resistant to a single antimicrobial, but 2.3% (8) were resistant to 16 to 19 of the antimicrobials tested. The group with the highest percentage of multiresistant isolates was the calves with diarrhea group. Younger calves provided samples with higher antimicrobial resistance levels. CONCLUSIONS: There is a high rate of antimicrobial resistance in dairy farms calving pens. These bacteria could not only be a resistance gene reservoir, but also could have the potential to spread these determinants through horizontal gene transfer to other susceptible bacteria. Measures should be taken to protect colonization of younger calves, based on hygienic measures and proper management. | 2019 | 31844709 |
| 1702 | 11 | 0.9995 | Molecular Epidemiology and Antimicrobial Resistance of Outbreaks of Klebsiella pneumoniae Clinical Mastitis in Chinese Dairy Farms. Klebsiella pneumoniae is an opportunistic pathogen that causes serious infections in humans and animals. However, the availability of epidemiological information on clinical mastitis due to K. pneumoniae is limited. To acquire new information regarding K. pneumoniae mastitis, data were mined about K. pneumoniae strains on dairy cattle farms (farms A to H) in 7 Chinese provinces in 2021. Hypermucoviscous strains of K. pneumoniae were obtained by the string test. MICs of antimicrobial agents were determined via the broth microdilution method. Ten antimicrobial resistance genes and virulence genes were identified by PCR. The prevalence of K. pneumoniae was 35.91% (65/181), and 100% of the bacteria were sensitive to enrofloxacin. Nine antimicrobial resistance genes and virulence genes were identified and compared among farms. The hypermucoviscous phenotype was present in 94.44% of isolates from farm B, which may be a function of the rmpA virulence gene. Based on these data, the multidrug-resistant strains SD-14 and HB-21 were chosen and sequenced. Genotypes were assayed for K. pneumoniae isolates from different countries and different hosts using multilocus sequence typing (MLST). Ninety-four sequence types (STs) were found, and 6 STs present a risk for spreading in specific regions. Interestingly, ST43 was observed in bovine isolates for the first time. Our study partially reveals the current distribution characteristics of bovine K. pneumoniae in China and may provide a theoretical basis for the prevention and treatment of bovine K. pneumoniae mastitis. IMPORTANCE K. pneumonia is ubiquitous in nature and infects a wide range of hosts, including animals, and humans. It is one of the leading inducements of clinical mastitis (CM) in dairy cows, a prevalent and costly disease that is predominantly associated with bacterial infection. In general, CM caused by Gram-negative bacteria is more difficult to cure than that associated with Gram-positive pathogens, with an average cost per case of 211.03 U.S. dollars (USD) for Gram-negative bacterial infections compared with 133.73 USD for Gram-positive bacterial CM cases. After Escherichia coli, K. pneumoniae is the second most common Gram-negative cause of bovine CM, but it is the most detrimental in terms of decreased milk yield, discarded milk, treatment costs, death, and culling. In view of the economic implications of K. pneumoniae infection in dairy farming, research into population structure and antibiotic resistance is particularly important. | 2022 | 36374018 |
| 1964 | 12 | 0.9995 | Antimicrobial resistance of pet-derived bacteria in China, 2000-2020. With the rapid growth of the pet industry in China, bacterial infectious diseases in pets have increased, highlighting the need to monitor antimicrobial resistance (AMR) in pet-derived bacteria to improve the diagnosis and treatment. Before the establishment of the China Antimicrobial Resistance Surveillance Network for Pets (CARPet) in 2021, a comprehensive analysis of such data in China was lacking. Our review of 38 point-prevalence surveys conducted between 2000 and 2020 revealed increasing trends in AMR among pet-derived Escherichia coli, Klebsiella pneumoniae, Staphylococcus spp., Enterococcus spp., and other bacterial pathogens in China. Notable resistance to β-lactams and fluoroquinolones, which are largely used in both pets and livestock animals, was observed. For example, resistance rates for ampicillin and ciprofloxacin in E. coli frequently exceeded 50.0%, with up to 41.3% of the isolates producing extended-spectrum β-lactamases. The emergence of carbapenem-resistant K. pneumoniae and E. coli, carrying bla(NDM) and bla(OXA) genes, highlighted the need for vigilant monitoring. The detection rate of SCCmec (Staphylococcal Cassette Chromosome mec), a genetic element associated with methicillin resistance, in Staphylococcus pseudintermedius isolated from pets in China was found to be over 40.0%. The resistance rate of E. faecalis to vancomycin was 2.1% (5/223) in East China, which was higher than the detection rate of human-derived vancomycin-resistant Enterococcus (0.1%, 12/11,215). Establishing the national AMR surveillance network CARPet was crucial, focusing on representative cities, diverse clinical samples, and including both commonly used antimicrobial agents in veterinary practice and critically important antimicrobial agents for human medicine, such as carbapenems, tigecycline, and vancomycin. | 2025 | 40135877 |
| 1622 | 13 | 0.9995 | Antimicrobial Susceptibility and Frequency of bla and qnr Genes in Salmonella enterica Isolated from Slaughtered Pigs. Salmonella enterica is known as one of the most common foodborne pathogens worldwide. While salmonellosis is usually self-limiting, severe infections may require antimicrobial therapy. However, increasing resistance of Salmonella to antimicrobials, particularly fluoroquinolones and cephalosporins, is of utmost concern. The present study aimed to investigate the antimicrobial susceptibility of S. enterica isolated from pork, the major product in Philippine livestock production. Our results show that both the qnrS and the bla(TEM) antimicrobial resistance genes were present in 61.2% of the isolates. While qnrA (12.9%) and qnrB (39.3%) were found less frequently, co-carriage of bla(TEM) and one to three qnr subtypes was observed in 45.5% of the isolates. Co-carriage of bla(TEM) and bla(CTX-M) was also observed in 3.9% of the isolates. Antimicrobial susceptibility testing revealed that the majority of isolates were non-susceptible to ampicillin and trimethoprim/sulfamethoxazole, and 13.5% of the isolates were multidrug-resistant (MDR). MDR isolates belonged to either O:3,10, O:4, or an unidentified serogroup. High numbers of S. enterica carrying antimicrobial resistance genes (ARG), specifically the presence of isolates co-carrying resistance to both β-lactams and fluoroquinolones, raise a concern on antimicrobial use in the Philippine hog industry and on possible transmission of ARG to other bacteria. | 2021 | 34943653 |
| 1949 | 14 | 0.9995 | Multidrug Resistance Profiles and Resistance Mechanisms to β-Lactams and Fluoroquinolones in Bacterial Isolates from Hospital Wastewater in Bangladesh. Multidrug resistance (MDR) is one of the deadliest public health concerns of the 21st century, rendering many powerful antibiotics ineffective. The current study provides important insights into the prevalence and mechanisms of antibiotic resistance in hospital wastewater isolates. In this study, we determined the MDR profile of 68 bacterial isolates collected from five different hospitals in Dhaka, Bangladesh. Of them, 48 bacterial isolates were identified as Enterobacteriaceae. Additionally, we investigated the prevalence and distribution of five beta-lactam resistance genes, as well as quinolone resistance mechanisms among the isolates. The results of this study showed that 87% of the wastewater isolates were resistant to at least three different antibiotic classes, as revealed using the disc diffusion method. Resistance to β-lactams was the most common, with 88.24% of the isolates being resistant, closely followed by macrolides (80.88% resistant). Polymyxin was found to be the most effective against wastewater isolates, with 29.41% resistant isolates. The most common β-lactam resistance genes found in wastewater isolates were bla(TEM) (76.09%), bla(CTX-M1) (71.74%), and bla(NDM) (67.39%). Two missense mutations in the quinolone resistance-determining region (QRDR) of gyrA (S83L and D87N) and one in both parC (S80I) and parE (S458A) were identified in all isolates, and one in parE (I529L), which had not previously been identified in Bangladesh. These findings suggest that hospital wastewater acts as an important reservoir of antibiotic-resistant bacteria wherein resistance mechanisms to β-lactams and fluoroquinolones are obvious. Our data also emphasize the need for establishing a nationwide surveillance system for antibiotic resistance monitoring to ensure that hospitals sanitize their wastewater before disposal, and regulation to ensure hospital wastewater is kept away from community settings. | 2023 | 37623228 |
| 2696 | 15 | 0.9995 | Carriage of antimicrobial resistant Escherichia coli in adult intestinal flora. Knowledge of antibiotic resistance in bacteria strains colonizing healthy people is important for several reasons, one of which is that; these organisms form one of the largest reservoirs of resistant genes. Frequency of resistance to eleven different antimicrobial agents was examined in faecal flora of adults with no history of recent antimicrobial treatment. Using the disc diffusion sensitivity test, 106 strains of Escherichia coli were examined, 68% of these were resistant to tetracycline, and 57% were resistant to ampicillin and cotrimoxazole respectively. There was no resistance to cefuroxime but resistance to ceftazidime was 13%. Fifty six out of the eighty eight (64%) isolates, which showed any resistance, were resistant to three or more antimicrobials. The most common resistant pattern was to three drugs tetracycline, ampicillin and cotrimoxazole. Six strains were susceptible to all antibiotics. One strain of Escherichia coli was resistant to eight antimicrobials. Thirty per cent of the Escherichia coli were resistant to gentamicin. This study reveals a high prevalence of resistant bacteria in faecal flora of healthy adults. | 2002 | 12081343 |
| 5582 | 16 | 0.9995 | Detection and prevalence of antimicrobial resistance genes in Campylobacter spp. isolated from chickens and humans. Campylobacter spp. are common pathogenic bacteria in both veterinary and human medicine. Infections caused by Campylobacter spp. are usually treated using antibiotics. However, the injudicious use of antibiotics has been proven to spearhead the emergence of antibiotic resistance. The purpose of this study was to detect the prevalence of antibiotic resistance genes in Campylobacter spp. isolated from chickens and human clinical cases in South Africa. One hundred and sixty one isolates of Campylobacter jejuni and Campylobacter coli were collected from chickens and human clinical cases and then screened for the presence of antimicrobial resistance genes. We observed a wide distribution of the tetO gene, which confers resistance to tetracycline. The gyrA genes that are responsible quinolone resistance were also detected. Finally, our study also detected the presence of the blaOXA-61, which is associated with ampicillin resistance. There was a higher (p < 0.05) prevalence of the studied antimicrobial resistance genes in chicken faeces compared with human clinical isolates. The tetO gene was the most prevalent gene detected, which was isolated at 64% and 68% from human and chicken isolates, respectively. The presence of gyrA genes was significantly (p < 0.05) associated with quinolone resistance. In conclusion, this study demonstrated the presence of gyrA (235 bp), gyrA (270 bp), blaOXA-61 and tetO antimicrobial resistance genes in C. jejuni and C. coli isolated from chickens and human clinical cases. This indicates that Campylobacter spp. have the potential of resistance to a number of antibiotic classes. | 2017 | 28582978 |
| 5580 | 17 | 0.9995 | Multiresistant Bacteria Isolated from Intestinal Faeces of Farm Animals in Austria. In recent years, antibiotic-resistant bacteria with an impact on human health, such as extended spectrum β-lactamase (ESBL)-containing Enterobacteriaceae, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE), have become more common in food. This is due to the use of antibiotics in animal husbandry, which leads to the promotion of antibiotic resistance and thus also makes food a source of such resistant bacteria. Most studies dealing with this issue usually focus on the animals or processed food products to examine the antibiotic resistant bacteria. This study investigated the intestine as another main habitat besides the skin for multiresistant bacteria. For this purpose, faeces samples were taken directly from the intestines of swine (n = 71) and broiler (n = 100) during the slaughter process and analysed. All samples were from animals fed in Austria and slaughtered in Austrian slaughterhouses for food production. The samples were examined for the presence of ESBL-producing Enterobacteriaceae, MRSA, MRCoNS and VRE. The resistance genes of the isolated bacteria were detected and sequenced by PCR. Phenotypic ESBL-producing Escherichia coli could be isolated in 10% of broiler casings (10 out of 100) and 43.6% of swine casings (31 out of 71). In line with previous studies, the results of this study showed that CTX-M-1 was the dominant ESBL produced by E. coli from swine (n = 25, 83.3%) and SHV-12 from broilers (n = 13, 81.3%). Overall, the frequency of positive samples with multidrug-resistant bacteria was lower than in most comparable studies focusing on meat products. | 2021 | 33923903 |
| 1948 | 18 | 0.9995 | Identification and Characterization of Cefotaxime Resistant Bacteria in Beef Cattle. Third-generation cephalosporins are an important class of antibiotics that are widely used in treatment of serious Gram-negative bacterial infections. In this study, we report the isolation of bacteria resistant to the third-generation cephalosporin cefotaxime from cattle with no previous cefotaxime antibiotic exposure. The prevalence of cefotaxime-resistant bacteria was examined by a combination of culture based and molecular typing methods in beef cattle (n = 1341) from 8 herds located in North Central Florida. The overall prevalence of cefotaxime-resistant bacteria was 15.8% (95% CI: 13.9, 17.8), varied between farms, and ranged from 5.2% to 100%. A subset of isolates (n = 23) was further characterized for the cefotaxime minimum inhibitory concentration (MIC) and antibiotic susceptibility against 10 different antibiotics, sequencing of nine β- lactamase genes, and species identification by 16S rRNA sequencing. Most of the bacterial isolates were resistant to cefotaxime (concentrations, > 64 μg/mL) and showed high levels of multi-drug resistance. Full length 16S rRNA sequences (~1300 bp) revealed that most of the isolates were not primary human or animal pathogens; rather were more typical of commensal, soil, or other environmental origin. Six extended spectrum β-lactamase (ESBL) genes identical to those in clinical human isolates were identified. Our study highlights the potential for carriage of cefotaxime resistance (including "human" ESBL genes) by the bacterial flora of food animals with no history of cefotaxime antibiotic exposure. A better understanding of the origin and transmission of resistance genes in these pre-harvest settings will be critical to development of strategies to prevent the spread of antimicrobial resistant microorganisms to hospitals and communities. | 2016 | 27642751 |
| 5599 | 19 | 0.9995 | Antimicrobial susceptibility profiles of Staphylococcus spp. contaminating raw goat milk. BACKGROUND AND AIM: Antimicrobial resistance poses a major threat to global public health. Foodstuff of animal origin can serve as potential vehicles for the dissemination of antimicrobial-resistant bacteria and resistance genes to consumers. In view of the lack of knowledge about antimicrobial resistance in bacteria associated with goat milk, the aim of this study was to report species-level identification and antimicrobial susceptibility profiles of a large collection of Staphylococcus spp. isolates recovered from raw goat milk in Brazil. MATERIALS AND METHODS: A total of 434 Staphylococcus spp. isolates originated from 510 goat milk samples in Northeast Brazil were investigated. The isolates were obtained by conventional microbiological methods. Species identification and antimicrobial susceptibility testing were performed by means of a semi-automated system using a panel for biochemical tests and broth microdilution method for 19 antimicrobial drugs. RESULTS: Although Staphylococcus aureus (22.6%) accounted for the majority of the isolates, a total of 13 different non-aureus staphylococci spp. were identified. High resistance rates against erythromycin (40.8%), and the beta-lactams ampicillin (45.9%) and penicillin (42.9%) were observed among S. aureus isolates. The most significant findings were related to the resistance against quinupristin-dalfopristin, a drug of last resort used in human medicine to treat infections caused by vancomycin-resistant S. aureus and enterococci. CONCLUSION: The high diversity of Staphylococcus spp. showing phenotypic resistance against different antimicrobial drugs encourages further investigations on the real impact of these bacteria as reservoirs of antimicrobial resistance genes to consumers. Furthermore, the potential impact of technological processes, such as pasteurization, fermentation, and maturation, on the maintenance and dissemination of antimicrobial resistance among the microbial populations in milk and dairy products must also be investigated. | 2021 | 34220106 |