MONTHS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
524500.9957Antimicrobial Resistance in U.S. Retail Ground Beef with and without Label Claims Regarding Antibiotic Use. ABSTRACT: Antibiotics used during food animal production account for approximately 77% of U.S. antimicrobial consumption by mass. Ground beef products labeled as raised without antibiotics (RWA) are perceived to harbor lower levels of antimicrobial-resistant bacteria than conventional (CONV) products with no label claims regarding antimicrobial use. Retail ground beef samples were obtained from six U.S. cities. Samples with an RWA or U.S. Department of Agriculture Organic claim (n = 299) were assigned to the RWA production system. Samples lacking these claims (n = 300) were assigned to the CONV production system. Each sample was cultured for the detection of five antimicrobial-resistant bacteria. Genomic DNA was isolated from each sample, and a quantitative PCR assay was used to determine the abundance of 10 antimicrobial resistance (AMR) genes. Prevalence of tetracycline-resistant Escherichia coli (CONV, 46.3%; RWA, 34.4%; P < 0.01) and erythromycin-resistant Enterococcus (CONV, 48.0%; RWA, 37.5%; P = 0.01) was higher in CONV ground beef. Salmonella was detected in 1.2% of samples. The AMR gene blaCTX-M (CONV, 4.1 log-normalized abundance; RWA, 3.8 log-normalized abundance; P < 0.01) was more abundant in CONV ground beef. The AMR genes mecA (CONV, 4.4 log-normalized abundance; RWA, 4.9 log-normalized abundance; P = 0.05), tet(A) (CONV, 3.9 log-normalized abundance; RWA, 4.5 log-normalized abundance; P < 0.01), tet(B) (CONV, 3.9 log-normalized abundance; RWA, 4.5 log-normalized abundance; P < 0.01), and tet(M) (CONV, 5.4 log-normalized abundance; RWA, 5.8 log-normalized abundance; P < 0.01) were more abundant in RWA ground beef. Although these results suggest that antimicrobial use during U.S. cattle production does not increase human exposure to antimicrobial-resistant bacteria via ground beef, quantitative microbiological risk assessments are required for authoritative determination of the human health impacts of the use of antimicrobial agents during beef production.202133302298
528210.9955Occupational Exposure and Carriage of Antimicrobial Resistance Genes (tetW, ermB) in Pig Slaughterhouse Workers. OBJECTIVES: Slaughterhouse staff is occupationally exposed to antimicrobial resistant bacteria. Studies reported high antimicrobial resistance gene (ARG) abundances in slaughter pigs. This cross-sectional study investigated occupational exposure to tetracycline (tetW) and macrolide (ermB) resistance genes and assessed determinants for faecal tetW and ermB carriage among pig slaughterhouse workers. METHODS: During 2015-2016, 483 faecal samples and personal questionnaires were collected from workers in a Dutch pig abattoir, together with 60 pig faecal samples. Human dermal and respiratory exposure was assessed by examining 198 carcass, 326 gloves, and 33 air samples along the line, next to 198 packed pork chops to indicate potential consumer exposure. Samples were analyzed by qPCR (tetW, ermB). A job exposure matrix was created by calculating the percentage of tetW and ermB positive carcasses or gloves for each job position. Multiple linear regression models were used to link exposure to tetW and ermB carriage. RESULTS: Workers are exposed to tetracycline and macrolide resistance genes along the slaughter line. Tetw and ermB gradients were found for carcasses, gloves, and air filters. One packed pork chop contained tetW, ermB was non-detectable. Human faecal tetW and ermB concentrations were lower than in pig faeces. Associations were found between occupational tetW exposure and human faecal tetW carriage, yet, not after model adjustments. Sampling round, nationality, and smoking were determinants for ARG carriage. CONCLUSION: We demonstrated clear environmental tetracycline and macrolide resistance gene exposure gradients along the slaughter line. No robust link was found between ARG exposure and human faecal ARG carriage.202031883001
524620.9953Food Service Pork Chops from Three U.S. Regions Harbor Similar Levels of Antimicrobial Resistance Regardless of Antibiotic Use Claims. Pork products from animals "raised without antibiotics" (RWA) are assumed to harbor lower levels of antimicrobial resistance (AMR) than conventional (CONV) pork products with no claims regarding use of antimicrobial agents during production. A total of 372 pork chop samples from CONV (n = 190) and RWA (n = 182) production systems were collected over 13 months from three food service suppliers. The following bacteria were cultured: Escherichia coli, tetracycline-resistant (TET(r)) E. coli, third-generation cephalosporin-resistant (3GC(r)) E. coli, Salmonella enterica, TET(r) Salmonella, 3GC(r) Salmonella, nalidixic acid-resistant Salmonella, Enterococcus spp., TET(r) Enterococcus, erythromycin-resistant Enterococcus, Staphylococcus aureus, and methicillin-resistant S. aureus. Production system did not significantly impact the detection of cultured bacteria (P > 0.05). Metagenomic DNA was isolated from each sample, and equal amounts of metagenomic DNA were pooled by supplier, month, and production system for 75 pooled samples (38 CONV, 37 RWA). Quantitative PCR was used to assess the abundances of the following 10 AMR genes: aac(6')-Ie-aph(2″)-Ia, aadA1, bla(CMY-2), bla(CTX-M), bla(KPC-2), erm(B), mecA, tet(A), tet(B), and tet(M). For all 10 AMR genes, abundances did not differ significantly (P > 0.05) between production systems. These results suggest that use of antimicrobial agents during swine production minimally impacts the AMR of bacteria in pork chops.201931532250
524730.9953Similar Levels of Antimicrobial Resistance in U.S. Food Service Ground Beef Products with and without a "Raised without Antibiotics" Claim. U.S. ground beef with "raised without antibiotics" (RWA) label claims are perceived as harboring fewer bacteria with antimicrobial resistance (AMR) than are found in conventional (CONV) ground beef with no such label claim. A total of 370 ground beef samples from CONV ( n = 191) and RWA ( n = 179) production systems were collected over 13 months from three food service suppliers. The following bacteria were cultured: Escherichia coli, tetracycline-resistant (TET(r)) E. coli, third-generation cephalosporin-resistant (3GC(r)) E. coli, Salmonella enterica, TET(r) S. enterica, 3GC(r) S. enterica, nalidixic acid-resistant S. enterica, Enterococcus spp., erythromycin-resistant Enterococcus spp., TET(r) Enterococcus spp., Staphylococcus aureus, and methicillin-resistant S. aureus. TET(r) E. coli was more frequently detected in CONV ground beef (CONV, 54.2%; RWA, 35.2%; P < 0.01), but supplier ( P < 0.01) and production system × suppler interaction ( P < 0.01) effects were also significant. Metagenomic DNA was isolated from each sample, and equal amounts of metagenomic DNA were pooled by supplier, month, and production system for 75 pooled samples (38 CONV, 37 RWA). The abundance of aac(6')-Ie-aph(2″)-Ia, aadA1, bla(CMY-2), bla(CTX-M), bla(KPC-2), erm(B), mecA, tet(A), tet(B), and tet(M) genes was assessed by quantitative PCR. The tet(A) (2.9-log(2)-fold change, P = 0.04) and tet(B) (5.6-log(2)-fold change) ( P = 0.03) genes were significantly more abundant in RWA ground beef. Phylogenetic analyses revealed that ground beef microbiomes differed more by supplier than by production system. These results were consistent with prior research suggesting antimicrobial use in U.S. beef cattle has minimal impact on the AMR of bacteria found in these products. These results should spur a reevaluation of assumptions regarding the impact of antimicrobial use during U.S. beef production on the AMR of bacteria in ground beef.201830476443
528740.9951Presence of antibiotic-resistant commensal bacteria in samples from agricultural, city, and national park environments evaluated by standard culture and real-time PCR methods. This study examined the presence of antibiotic-resistant commensal bacteria among cattle operations representing areas heavily affected by agriculture, city locations representing areas affected by urban activities and indirectly affected by agriculture, and a national park representing an area not affected by agriculture. A total of 288 soil, fecal floor, and water samples were collected from cattle operations, from the city of Fort Collins, and from Rocky Mountain National Park (RMNP) in Colorado. In addition, a total of 42 new and unused feed, unused bedding, compost, and manure samples were obtained from the cattle operations. Total, tetracycline-resistant, and ceftiofur-resistant bacterial populations were enumerated by both standard culture plating and real-time PCR methods. Only wastewater samples from the cattle operations demonstrated both higher tetracycline-resistant bacterial counts (enumerated by the culture plating method) and tetracycline resistance gene copies (quantified by real-time PCR) compared to water samples collected from non-farm environments. The ceftiofur resistance gene, blaCMY-2, was not detectable in any of the samples, while the tetracycline resistance genes examined in this study, tet(B), tet(C), tet(W), and tet(O), were detected in all types of tested samples, except soil samples from RMNP. Tetracycline resistance gene pools quantified from the tet(O) and tet(W) genes were bigger than those from the tet(B) and tet(C) genes in fecal and water samples. Although only limited resistance genes, instead of a full set, were selected for real-time PCR quantification in this study, our results point to the need for further studies to determine natural and urban impacts on antibiotic resistance.201020921986
354350.9951Precipitation influences pathogenic bacteria and antibiotic resistance gene abundance in storm drain outfalls in coastal sub-tropical waters. Stormwater contamination can threaten the health of aquatic ecosystems and human exposed to runoff via nutrient and pathogen influxes. In this study, the concentrations of 11 bacterial pathogens and 47 antibiotic resistance genes (ARGs) were determined by using high-throughput microfluidic qPCR (MFQPCR) in several storm drain outfalls (SDOs) during dry and wet weather in Tampa Bay, Florida, USA. Data generated in this study were also compared with the levels of fecal indicator bacteria (FIB) and sewage-associated molecular markers (i.e., Bacteroides HF183 and crAssphage markers) in same SDOs collected in a recent study (Ahmed et al., 2018). Concentration of FIB, sewage-associated markers, bacterial pathogens and many ARGs in water samples were relatively high and SDOs may be potentially hotspots for microbial contamination in Tampa Bay. Mean concentrations of culturable E. coli and Enterococcus spp. were tenfold higher in wet compared to dry weather. The majority of microbiological contaminants followed this trend. E. coli eaeA, encoding the virulence factor intimin, was correlated with levels of 20 ARGs, and was more frequently detected in wet weather than dry weather samples. The bla(KPC) gene associated with carbapenem resistant Enterobacteriaceae and the beta-lactam resistant gene (bla(NPS)) were only detected in wet weather samples. Frequency of integron genes Intl2 and Intl3 detection increased by 42% in wet weather samples. Culturable E. coli and Enterococcus spp. significantly correlated with 19 of 47 (40%) ARG tested. Sewage-associated markers crAssphage and HF183 significantly correlated (p < 0.05) with the following ARGs: intl1, sul1, tet(M), ampC, mexB, and tet(W). The presence of sewage-associated marker genes along with ARGs associated with sewage suggested that aging sewage infrastructure contributed to contaminant loading in the Bay. Further research should focus on collecting spatial and temporal data on the microbiological contaminants especially viruses in SDOs.201829754026
524460.9951Potentially pathogenic bacteria and antimicrobial resistance in bioaerosols from cage-housed and floor-housed poultry operations. BACKGROUND: Antibiotics are used in animal confinement buildings, such as cage-housed (CH) and floor-housed (FH) poultry operations, to lower the likeliness of disease transmission. In FH facilities, antibiotics may also be used at sub-therapeutic levels for growth promotion. Low levels of antibiotic create a selective pressure toward antimicrobial resistance (AMR) in chicken fecal bacteria. OBJECTIVE: The objective of this study was to compare bacteria and AMR genes in bioaerosols from CH and FH poultry facilities. METHODS: Bioaerosols were collected from 15 CH and 15 FH poultry operations, using stationary area samplers as well as personal sampling devices. Bacteria concentrations were determined by genus- or species-specific quantitative polymerase chain reaction (PCR) and AMR genes were detected using endpoint PCR. RESULTS: Enterococcus spp., Escherichia coli, and Staphylococcus spp. were significantly higher in bioaerosols of FH poultry operations than CH bioaerosols (P < 0.001) while Clostridium perfringens was significantly higher in area bioaerosols of CH operations than FH area bioaerosols (P < 0.05). Campylobacter spp. were detected only in bioaerosols of FH facilities. Zinc bacitracin resistance gene, bcrR, erythromycin resistance gene, ermA, and tetracycline resistance gene, tetA/C, were more prevalent in bioaerosols of FH facilities than CH bioaerosols (P < 0.01, P < 0.01, and P < 0.05, respectively). CONCLUSIONS: Most bacteria are more concentrated and most AMR genes are more prevalent in bioaerosols of FH poultry operations, where growth-promoting antibiotics may be used.201222156572
272770.9950Prevalence and Antibiotic Resistance Pattern of Streptococcus, Staphylococcus, Neisseria meningitidis and Enterobacteriaceae in Two Reference Hospitals of Yaoundé: An Overview before and during COVID-19 Pandemic Era. The COVID-19 pandemic led to tremendously use of antimicrobial due to the lack of proper treatment strategies, raising concerns about emergence of antimicrobial resistance (AMR). This study aimed at determining the prevalence and antibiotic resistance pattern of selected bacteria isolates in 02 referral health facilities in Yaoundé before and during the COVID-19 pandemic era. We conducted a retrospective study over a period of 03 years (from 1 January 2019 to 31 December 2021) in the bacteriology units of the Central and General Hospitals of Yaoundé, Cameroon. Data on bacteria genera (Streptococcus, Staphylococcus, Neisseria meningitidis and Enterobacteriaceae) as well as their corresponding specifics antibiotics: Cefixime, azythromycin and erythromycin were obtained from laboratory records. The global resistance rate of bacteria as well as their correlation with antibiotics according to COVID-19 pandemic era was determined and compared. For p < 0.05, the difference was statistically significant. In all, 426 bacterial strains were included. It appeared that the highest number of bacteria isolates and lowest rate of bacterial resistance were recorded during the pre-COVID-19 period in 2019 (160 isolates vs. 58.8% resistance rate). Conversely, lower bacteria strains but greater resistance burden were recorded during the pandemic era (2020 and 2021) with the lowest bacteria amount and peak of bacteria resistance registered in 2020, the year of COVID-19 onset (120 isolates vs. 70% resistance in 2020 and 146 isolates vs. 58.9% resistance in 2021). In contrast to almost all others groups of bacteria where the resistance burden was quite constant or decreasing over years, the Enterobacteriaceae exhibited greater resistance rate during the pandemic period [60% (48/80) in 2019 to 86.9% (60/69) in 2020 and 64.5% (61/95) in 2021)]. Concerning antibiotics, unlike erythromycin, azythromycin related resitance increased during the pandemic period and the resistance to Cefixim tends to decrease the year of the pandemic onset (2020) and re-increase one year therafter. A significant association was found between resistant Enterobacteriaceae strains and cefixime (R = 0.7; p = 0.0001) and also, between resistant Staphylococcus strains and erythromycin (R = 0.8; p = 0.0001). These retrospective data showed a herogeneous MDR bacteria rate and antibiotic resistance pattern over time before and during the COVID-19 pandemic era suggesting that antimicrobial resistance needs to be more closely monitored.202337237832
277880.9950The investigation of antibiotic residues, antibiotic resistance genes and antibiotic-resistant organisms in a drinking water reservoir system in Germany. Between August 2018 and June 2019, a river system in Germany that supplies a drinking water reservoir and is subject to the discharge from two sewage treatment plants was monitored for antibiotic residues via liquid chromatography-tandem mass spectrometry, antibiotic resistance genes (including bla(NDM), bla(VIM), bla(OXA-48), bla(KPC), bla(GIM), bla(SME), bla(IMI), bla(IMP), bla(SPM), bla(SIM), bla(OXA-23), bla(OXA-24), bla(OXA-51), bla(OXA-58), mcr) via qualitative real-time PCR and antibiotic-resistant bacteria [belonging to the ESKAPE-group (Enterococcus faecium, Staphyhlococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter ssp.; with resistance against Carbapenemases, Cephalosporines and Colistin) and Escherichia coli] based on cultivation methods followed by a characterization via MALDI-TOF MS and susceptibility testing applying microdilution. Residues of macrolide antibiotics such as clarithromycin (up to 0.60 μg/L) and residues of sulfamethoxazole (up to 0.40 μg/L) and trimethoprim (up to 0.39 μg/L) were detected downstream of the sewage treatment plants. In addition, no antibiotic residues were detected upstream the respective sewage treatment plants, except for anhydroerythromycin (n = 1, 202031978723
526490.9950Comparison of Culture- and Quantitative PCR-Based Indicators of Antibiotic Resistance in Wastewater, Recycled Water, and Tap Water. Standardized methods are needed to support monitoring of antibiotic resistance in environmental samples. Culture-based methods target species of human-health relevance, while the direct quantification of antibiotic resistance genes (ARGs) measures the antibiotic resistance potential in the microbial community. This study compared measurements of tetracycline-, sulphonamide-, and cefotaxime-resistant presumptive total and fecal coliforms and presumptive enterococci versus a suite of ARGs quantified by quantitative polymerase chain reaction (qPCR) across waste-, recycled-, tap-, and freshwater. Cross-laboratory comparison of results involved measurements on samples collected and analysed in the US and Portugal. The same DNA extracts analysed in the US and Portugal produced comparable qPCR results (variation <28%), except for bla(OXA-1) gene (0%-57%). Presumptive total and fecal coliforms and cefotaxime-resistant total coliforms strongly correlated with bla(CTX-M) and intI1 (0.725 ≤ R(2) ≤ 0.762; p < 0.0001). Further, presumptive total and fecal coliforms correlated with the Escherichia coli-specific biomarkers, gadAB, and uidA, suggesting that both methods captured fecal-sourced bacteria. The genes encoding resistance to sulphonamides (sul1 and sul2) were the most abundant, followed by genes encoding resistance to tetracyclines (tet(A) and tet(O)) and β-lactams (bla(OXA-1) and(,)bla(CTX-M)), which was in agreement with the culture-based enumerations. The findings can help inform future application of methods being considered for international antibiotic resistance surveillance in the environment.201931671709
7117100.9950Persistence of antibiotic resistance genes in beef cattle backgrounding environment over two years after cessation of operation. Confined animal feeding operations can facilitate the spread of genes associated with antibiotic resistance. It is not known how cattle removal from beef cattle backgrounding operation affects the persistence of antibiotic resistance genes (ARGs) in the environment. We investigated the effect of cessation of beef cattle backgrounding operation on the persistence and distribution of ARGs in the beef cattle backgrounding environment. The study was conducted at a pasture-feedlot type beef cattle backgrounding operation which consisted of feeding and grazing areas that were separated by a fence with an access gate. Backgrounding occurred for seven years before cattle were removed from the facility. Soil samples (n = 78) from 26 georeferenced locations were collected at the baseline before cattle were removed, and then one year and two years after cattle were removed. Metagenomic DNA was extracted from the soil samples and total bacterial population (16S rRNA), total Enterococcus species and class 1 integrons (intI1), and erythromycin (ermB and ermF), sulfonamide (sul1 and sul2) and tetracycline (tetO, tetW and tetQ) resistance genes were quantified. Concentrations of total bacteria, Enterococcus spp., class 1 integrons, and ARGs were higher in the feeding area and its immediate vicinity (around the fence and the gate) followed by a gradient decline along the grazing area. Although the concentrations of total bacteria, Enterococcus spp., class 1 integrons and ARGs in the feeding area significantly decreased two years after cattle removal, their concentrations were still higher than that observed in the grazing area. Higher concentrations over two years in the feeding area when compared to the grazing area suggest a lasting effect of confined beef cattle production system on the persistence of bacteria and ARGs in the soil.201930768641
5263110.9949Seasonal Variations in Water-Quality, Antibiotic Residues, Resistant Bacteria and Antibiotic Resistance Genes of Escherichia coli Isolates from Water and Sediments of the Kshipra River in Central India. OBJECTIVES: To characterize the seasonal variation, over one year, in water-quality, antibiotic residue levels, antibiotic resistance genes and antibiotic resistance in Escherichia coli isolates from water and sediment of the Kshipra River in Central India. METHODS: Water and sediment samples were collected from seven selected points from the Kshipra River in the Indian city of Ujjain in the summer, rainy season, autumn and winter seasons in 2014. Water quality parameters (physical, chemical and microbiological) were analyzed using standard methods. High-performance liquid chromatography⁻tandem mass spectrometry was used to determine the concentrations of antibiotic residues. In river water and sediment samples, antibiotic resistance and multidrug resistance patterns of isolated E. coli to 17 antibiotics were tested and genes coding for resistance and phylogenetic groups were detected using multiplex polymerase chain reaction. One-way analysis of variance (ANOVA) and Fisher tests were applied to determine seasonal variation. RESULTS: In river water, seasonal variation was significantly associated with various water quality parameters, presence of sulfamethoxazole residues, bacteria resistant to ampicillin, cefepime, meropenem, amikacin, gentamicin, tigecycline, multidrug resistance and CTX-M-1 gene. The majority of the Extended Spectrum Beta-Lactamase (ESBL)-producing E. coli isolates from river water and sediment in all different seasons belonged to phylogenetic group A or B1. CONCLUSIONS: Antibiotic pollution, resistance and resistance genes in the Kshipra River showed significant seasonal variation. Guidelines and regulatory standards are needed to control environmental dissemination of these “pollutants” in this holy river.201829914198
5258120.9949Occurrence of seventeen veterinary antibiotics and resistant bacterias in manure-fertilized vegetable farm soil in four provinces of China. This study focused on the occurrence of seventeen veterinary antibiotics and six resistant bacterias in soils from the vegetable farms fertilized with animal manure in China. Seventeen veterinary antibiotics, including sulfonamides, quinolones, tetracyclines, macrolides and amphenicols, were detected by high performance liquid chromatography/tandem mass spectrometer in all the 53 soil samples collected in four provinces during August 2016. The concentrations of target antibiotics in the soil samples ranged from not detectable to 415.00 μg/kg dry weight with the mean residual levels of the five classes followed order: tetracyclines (82.75 μg/kg) > quinolones (12.78 μg/kg) > macrolides (12.24 μg/kg) > sulfonamides (2.61 μg/kg) > amphenicols (0.06 μg/kg). Moreover, the highest antibiotic levels were found mainly in soil from organic vegetable farms. Risk assessment by using the methods of risk quotient, suggested that oxytetracycline, chlortetracycline, enrofloxacin and ciprofloxacin could pose severe ecological risk in sampled soils. Resistant strains were isolated in 30 samples, with Escherichia coli and Klebsiella pneumonia found the dominant bacterial hosts with resistance genes. Antibiotic resistance genes, including tetA, tetB, qnrS, oqxA, sul1, sul2, ermA and floR, were detected in the strains resistant to: tetracyclines, quinolones, sulfonamides, macrolides and amphenicols resistance, respectively. Overall, there was a correlation between the results of antibiotic risk assessment with the detection of resistance genes from isolated strains in the soils.201930317094
2847130.9949Phenotypic and genotypic antimicrobial resistance patterns of Escherichia coli and Klebsiella isolated from dairy farm milk, farm slurry and water in Punjab, India. Antibiotic resistance is a mushrooming pandemic at national and international levels which if not controlled at this very moment, can lead to global problems. Main reason for emerging bacterial resistance is repeated exposure of bacteria to antimicrobial agents and access of bacteria to increasingly large pools of antimicrobial resistance genes in mixed bacterial populations. A total of 51 villages were sampled in the current study contributing to a total of 153 farms. A total of 612 samples comprising 153 each of raw pooled milk samples, slurry, animal drinking water and human drinking water were gathered from small, medium and large farms located in all seven tehsils of Ludhiana district of Punjab. In addition to that, 37 samples of village pond water were also collected from the targeted villages. Out of total 153 slurry, raw pooled milk samples, animal drinking water and human drinking water samples (each), the prevalence of 24.8%, 60%, 26.7% and 16.3% was found for E. coli respectively. On the other hand, for Klebsiella, the overall prevalence of 19.6%, 51%, 20.2% and 5.8% was found from slurry, raw pooled milk samples, animal drinking water and human drinking water respectively. In all matrices, the comparative frequency of resistance genes in positive isolates of E. coli and K. pneumoniae was: tetA > tetB > tetC, qnrS > qnrB > qnrA, sulII > sulI > sulIII. The highest proportion of resistance genes was found in slurry (193 genes) followed by milk (71 genes). The overall pattern of resistant genes was tetA > sulII > qnrS. In conclusion, data from the present study suggested that commensal E. coli and Klebsiella may act as reservoirs of antimicrobial drug resistance genes which may be mobilised into human populations and untreated animal waste may be considered an important source of resistant bacteria leading to environmental pollution.202133544346
5261140.9949Prevalence of antibiotic resistance genes from effluent of coastal aquaculture, South Korea. The wide use of antibiotics in aquaculture for prophylactic and therapeutic purposes can potentially lead to the prevalence of antibiotic resistance genes (ARGs). This study reports for the first time the profile of ARGs from effluents of coastal aquaculture located in South Jeolla province and Jeju Island, South Korea. Using quantitative PCR (qPCR), twenty-two ARGs encoding tetracycline resistance (tetA, tetB, tetD, tetE, tetG, tetH, tetM, tetQ, tetX, tetZ, tetBP), sulfonamide resistance (sul1, sul2), quinolone resistance (qnrD, qnrS, aac(6')-Ib-cr), β-lactams resistance (bla(TEM), bla(CTX), bla(SHV)), macrolide resistance (ermC), florfenicol resistance (floR) and multidrug resistance (oqxA) and a class 1 integrons-integrase gene (intI1) were quantified. In addition, Illumina Miseq sequencing was applied to investigate microbial community differences across fish farm effluents. Results from qPCR showed that the total number of detected ARGs ranged from 4.24 × 10(-3) to 1.46 × 10(-2) copies/16S rRNA gene. Among them, tetB and tetD were predominant, accounting for 74.8%-98.0% of the total ARGs. Furthermore, intI1 gene showed positive correlation with tetB, tetD, tetE, tetH, tetX, tetZ tetQ and sul1. Microbial community analysis revealed potential host bacteria for ARGs and intI1. Two genera, Vibrio and Marinomonas belonging to Gammaproteobacteria, showed significant correlation with tetB and tetD, the most dominant ARGs in all samples. Also, operational taxonomic units (OTUs)-based network analysis revealed that ten OTUs, classified into the phyla Proteobacteria, Cyanobacteria/Chloroplast, Bacteroidetes, Verrucomicrobia and an unclassified phylum, were potential hosts of tetracycline resistance genes (i.e., tetA, tetG, tetH, tetM, tetQ and tetZ). Further systematic monitoring of ARGs is warranted for risk assessment and management of antibacterial resistance from fish farm effluents.201829031406
5266150.9949Distribution analysis of tetracycline resistance genes in Escherichia coli isolated from floor surface and effluent of pig slaughterhouses in Banten Province, Indonesia. BACKGROUND AND AIM: Slaughterhouses and their effluents could serve as a "hotspot" for the occurrence and distribution of antibiotic-resistant bacteria in the environment. This study aimed to understand the distribution of tetracycline resistance genes in Escherichia coli isolated from the floor surface and effluent samples of pig slaughterhouses in Banten Province, Indonesia. MATERIALS AND METHODS: Ten samples, each from floor surface swabs and effluents, were collected from 10 pig slaughterhouses in Banten Province. Escherichia coli strains were isolated and identified by referring to the protocol of the Global Tricycle Surveillance extended-spectrum beta-lactamase E. coli from the WHO (2021). Quantitative real-time polymerase chain reaction (qPCR) was used to detect the tet genes. RESULTS: The tetA, tetB, tetC, tetM, tetO, and tetX genes were distributed in the isolates from the floor surface samples, and the tetA, tetC, tetE, tetM, tetO, and tetX genes were distributed in the isolates from the effluent samples. The tetO gene (60%) was the most dominant gene in the isolates from floor surface samples, while the tetA gene was the dominant one in the isolates from the effluent samples (50%). The tetA + tetO gene combination was the dominant pattern (15%) in the E. coli isolates. CONCLUSION: The high prevalence and diversity of the tet genes in floor surface and effluent samples from pig slaughterhouses in Banten Province indicated that the transmission of the tet genes had occurred from pigs to the environment; thus, this situation should be considered a serious threat to public health.202337041843
2877160.9949Metagenomic insights into isolable bacterial communities and antimicrobial resistance in airborne dust from pig farms. This study aims to investigate bacterial communities and antimicrobial resistance (AMR) in airborne dust from pig farms. Airborne dust, pig feces and feed were collected from nine pig farms in Thailand. Airborne dust samples were collected from upwind and downwind (25 meters from pig house), and inside (in the middle of the pig house) of the selected pig house. Pig feces and feed samples were individually collected from the pen floor and feed trough from the same pig house where airborne dust was collected. A direct total bacteria count on each sampling plate was conducted and averaged. The ESKAPE pathogens together with Escherichia coli, Salmonella, and Streptococcus were examined. A total of 163 bacterial isolates were collected and tested for MICs. Pooled bacteria from the inside airborne dust samples were analyzed using Metagenomic Sequencing. The highest bacterial concentration (1.9-11.2 × 10(3) CFU/m(3)) was found inside pig houses. Staphylococcus (n = 37) and Enterococcus (n = 36) were most frequent bacterial species. Salmonella (n = 3) were exclusively isolated from feed and feces. Target bacteria showed a variety of resistance phenotypes, and the same bacterial species with the same resistance phenotype were found in airborne dust, feed and fecal from each farm. Metagenomic Sequencing analysis revealed 1,652 bacterial species across all pig farms, of which the predominant bacterial phylum was Bacillota. One hundred fifty-nine AMR genes of 12 different antibiotic classes were identified, with aminoglycoside resistance genes (24%) being the most prevalent. A total of 251 different plasmids were discovered, and the same plasmid was detected in multiple farms. In conclusion, the phenotypic and metagenomic results demonstrated that airborne dust from pig farms contained a diverse array of bacterial species and genes encoding resistance to a range of clinically important antimicrobial agents, indicating the significant role in the spread of AMR bacterial pathogens with potential hazards to human health. Policy measurements to address AMR in airborne dust from livestock farms are mandatory.202438872793
7081170.9949Seasonal variations in export of antibiotic resistance genes and bacteria in runoff from an agricultural watershed in Iowa. Seasonal variations of antimicrobial resistance (AMR) indicators in runoff water can help improve our understanding of AMR sources and transport within an agricultural watershed. This study aimed to monitor multiple areas throughout the Black Hawk Lake (BHL) watershed (5324 ha) in central Iowa during 2017 and 2018 that consists of both swine and cattle feeding operations as well as known areas with manure application. The measured indicators included plate counts for fecal indicator bacteria (FIB) E. coli, Enterococcus, antibiotic resistant fecal indicator bacteria (ARBs) tylosin resistant Enterococcus, tetracycline resistant Enterococcus, and antibiotic resistance genes (ARGs): ermB, ermF (macrolide), tetA, tetM, tetO, tetW (tetracycline), sul1, sul2 (sulfonamide), aadA2 (aminoglycoside), vgaA, and vgaB (pleuromutilin). Both the plate count and the ARG analyses showed seasonal trends. Plate counts were significantly greater during the growing season, while the ARGs were greater in the pre-planting and post-harvest seasons (Wilcoxon Rank-Sum Test p < 0.05). The ermB gene concentration was significantly correlated (p < 0.05) with E. coli and Enterococcus concentrations in 2017, suggesting a potential use of this ARG as an indicator of environmental AMR and human health risk. Flow rate was not a significant contributor to annual variations in bacteria and AMR indicators. Based on observed seasonal patterns, we concluded that manure application was the likely contributor to elevated ARG indicators observed in the BHL watershed, while the driver of elevated ARB indictors in the growing season can only be speculated. Understanding AMR export patterns in agricultural watersheds provides public health officials knowledge of seasonal periods of higher AMR load to recreational waters.202032806354
5284180.9949Long-term impact of oral surgery with or without amoxicillin on the oral microbiome-A prospective cohort study. Routine postoperative antibiotic prophylaxis is not recommended for third molar extractions. However, amoxicillin still continues to be used customarily in several clinical practices worldwide to prevent infections. A prospective cohort study was conducted in cohorts who underwent third molar extractions with (group EA, n = 20) or without (group E, n = 20) amoxicillin (250 mg three times daily for 5 days). Further, a control group without amoxicillin and extractions (group C, n = 17) was included. Salivary samples were collected at baseline, 1-, 2-, 3-, 4-weeks and 3 months to assess the bacterial shift and antibiotic resistance gene changes employing 16S rRNA gene sequencing (Illumina-Miseq) and quantitative polymerase chain reaction. A further 6-month follow-up was performed for groups E and EA. Seven operational taxonomic units reported a significant change from baseline to 3 months for group EA (adjusted p < 0.05). No significant change in relative abundance of bacteria and β-lactamase resistance genes (TEM-1) was observed over 6 months for any group (adjusted p > 0.05). In conclusion, the salivary microbiome is resilient to an antibiotic challenge by a low-dose regimen of amoxicillin. Further studies evaluating the effect of routinely used higher dose regimens of amoxicillin on gram-negative bacteria and antibiotic resistance genes are warranted.201931822712
3544190.9948Monitoring Urban Beach Quality on a Summer Day: Determination of the Origin of Fecal Indicator Bacteria and Antimicrobial Resistance at Prophète Beach, Marseille (France). A highly frequented beach in Marseille, France, was monitored on an hourly basis during a summer day in July 2018, to determine possible water and sand fecal pollution, in parallel with influx of beach users from 8 a.m. to 8 p.m. Fecal indicator bacteria were enumerated, together with four host-associated fecal molecular markers selected to discriminate human, dog, horse, or gull/seagull origins of the contamination. The antimicrobial resistance of bacteria in water and sand was evaluated by quantifying (i) the class 1, 2, and 3 integron integrase genes intI, and (ii) bla (TEM), bla (CTX-M), and bla (SHV) genes encoding endemic beta-lactamase enzymes. The number of beach users entering and leaving per hour during the observation period was manually counted. Photographs of the beach and the bathing area were taken every hour and used to count the number of persons in the water and on the sand, using a photo-interpretation method. The number of beach users increased from early morning to a peak by mid-afternoon, totaling more than 1,800, a very large number of users for such a small beach (less than 1 ha). An increase in fecal contamination in the water corresponded to the increase in beach attendance and number of bathers, with maximum numbers observed in the mid-afternoon. The human-specific fecal molecular marker HF183 indicated the contamination was of human origin. In the water, the load of Intl2 and 3 genes was lower than Intl1 but these genes were detected only during peak attendance and highest fecal contamination. The dynamics of the genes encoding B-lactamases involved in B-lactams resistance notably was linked to beach attendance and human fecal contamination. Fecal indicator bacteria, integron integrase genes intI, and genes encoding B-lactamases were detected in the sand. This study shows that bathers and beach users can be significant contributors to contamination of seawater and beach sand with bacteria of fecal origin and with bacteria carrying integron-integrase genes and beta lactamase encoding genes. High influx of users to beaches is a significant factor to be considered in order to reduce contamination and manage public health risk.202134512587