MONKEYS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
138200.9676Surveillance of antimicrobial-resistant Escherichia coli in Sheltered dogs in the Kanto Region of Japan. There is a lack of an established antimicrobial resistance (AMR) surveillance system in animal welfare centers. Therefore, the AMR prevalence in shelter dogs is rarely known. Herein, we conducted a survey in animal shelters in Chiba and Kanagawa prefectures, in the Kanto Region, Japan, to ascertain the AMR status of Escherichia coli  (E. coli) prevalent in shelter dogs. E. coli was detected in the fecal samples of all 61 and 77 shelter dogs tested in Chiba and Kanagawa, respectively. The AMR was tested against 20 antibiotics. E. coli isolates derived from 16.4% and 26.0% of samples from Chiba and Kanagawa exhibited resistance to at least one antibiotic, respectively. E. coli in samples from Chiba and Kanagawa prefectures were commonly resistant to ampicillin, piperacillin, streptomycin, kanamycin, tetracycline, and nalidixic acid; that from the Kanagawa Prefecture to cefazolin, cefotaxime, aztreonam, ciprofloxacin, and levofloxacin and that from Chiba Prefecture to chloramphenicol and imipenem. Multidrug-resistant bacteria were detected in 18 dogs from both regions; β-lactamase genes (blaTEM, blaDHA-1, blaCTX-M-9 group CTX-M-14), quinolone-resistance protein genes (qnrB and qnrS), and mutations in quinolone-resistance-determining regions (gyrA and parC) were detected. These results could partially represent the AMR data in shelter dogs in the Kanto Region of Japan.202235031646
139310.9660Prevalence, antimicrobial resistance and detection of virulence genes of Escherichia coli and Salmonella spp. isolated from white-lipped peccaries and collared peccaries. Salmonella spp. and Escherichia coli are implicated in human and animal infections and require antimicrobial treatment in many situations. Faecal samples of healthy white-lipped peccaries (Pecari tajacu) (n = 30) and collared peccaries (Tayassu pecari ) (n = 60) obtained in three farms located in the Midwest Brazil. The antimicrobial profiles of commensal E. coli from P. tajacu and T. pecari from commercial herds in Brazil were isolated and analyzed and virulence genes were detected. Among 90 healthy animals, no Salmonella spp. were isolated. However, 30 samples (27%) tested positive for E. coli, with 18 isolates from P. tajacu and 12 from T. pecari, representing frequencies of 58.0% and 38.7%, respectively. Additionally, other Enterobacteriaceae family bacteria were detected but not included in this analysis. However, individual samples from 30 animals tested positive for E. coli, of which 16 were isolated from P. tajacu presenting multidrug resistance and six were isolated from T. pecari presenting a similar pattern. The E. coli virulence genes detected were papC (pilus-associated pyelonephritis) in five isolates, tsh (temperature-sensitive hemagglutinin) in one isolate, and eae (enteric attachment and effacement) in one isolate. The serum resistance gene, iss (increased serum survival), was detected in four isolates. An association between these genes and the presence of hemolysin was also observed in one isolate. Thus, T. pecari and P. tajacu are potential reservoirs of pathogenic and multidrug-resistant and E. coli. Faecal E. coli of healthy P. tajacu and T. pecari could act as a possible reservoir of antimicrobial resistance genes in environment.202438713279
264620.9652Detection of Antimicrobial Resistance Genes in Escherichia coli Isolated from Black Howler Monkeys (Alouatta pigra) and Domestic Animals in Fragmented Rain-Forest Areas in Tabasco, Mexico. The appearance and spread of antimicrobial resistance (AMR) in bacteria in natural environments and wildlife are related to agricultural and livestock activities and are a global health and conservation problem. We assessed the presence of AMR genes in Escherichia coli isolated from black howler monkeys (Alouatta pigra), sheep (Ovis aries), cattle (Bos taurus), and horses (Equus caballus) from a highly fragmented forest in southern Mexico. Fresh fecal samples were collected using swabs, seeded on eosin-methylene blue agar, and E. coli colonies identified by PCR; multiplex-PCR was performed on E. coli DNA for the detection of 10 AMR genes from four families (sulfonamides, tetracycline, β-lactamase, and chloramphenicol). We detected E. coli in 94% (48/51) of fecal samples, of which 33% (16/48) tested positive for at least one AMR gene. We detected AMR genes in at least one individual from each sampled animal species, with the most prevalent genes being tet(B) 18% (9/48), sul2 14% (7/48), sul1, and blaTEM 12% (6/48). Sheep samples contained AMR genes from the four families of antibiotics detected in this study and 50% (5/10) tested positive for the presence of at least one gene. A total of 12% (2/16) of fecal samples from black howler monkeys tested positive for AMR genes. The presence of AMR genes in A. pigra and domestic animals has not been reported in the Balancán area of Tabasco, Mexico. Transmission of AMR bacteria from domestic animals to monkeys is rare; however, this is a potential health risk for wildlife and species conservation.202032402234
129330.9642Antibiotic resistance in faecal bacteria (Escherichia coli, Enterococcus spp.) in feral pigeons. AIMS: To determine the presence of antibiotic-resistant faecal Escherichia coli and Enterococcus spp. in feral pigeons (Columba livia forma domestica) in the Czech Republic. METHODS AND RESULTS: Cloacal swabs of feral pigeons collected in the city of Brno in 2006 were cultivated for antibiotic-resistant E. coli. Resistance genes, class 1 and 2 integrons, and gene cassettes were detected in resistant isolates by polymerase chain reaction (PCR). The samples were also cultivated for enterococci. Species status of enterococci isolates was determined using repetitive extragenic palindromic-PCR. Resistance genes were detected in resistant enterococci by PCR. E. coli isolates were found in 203 of 247 pigeon samples. Antibiotic resistance was recorded in three (1·5%, n(E. coli) =203) isolates. Using agar containing ciprofloxacin, 12 (5%, n(samples) =247) E. coli strains resistant to ciprofloxacin were isolated. No ESBL-producing E. coli isolates were detected. A total of 143 enterococci were isolated: Ent. faecalis (36 isolates), Ent. faecium (27), Ent. durans (19), Ent. hirae (17), Ent. mundtii (17), Ent. gallinarum (12), Ent. casseliflavus (12) and Ent. columbae (3). Resistance to one to four antibiotics was detected in 45 (31%) isolates. Resistances were determined by tetK, tetL, tetM, tetO, aac(6')aph(2''), ant(4')-Ia, aph(3')-IIIa, ermB, pbp5, vanA and vanC1 genes. CONCLUSIONS: Antibiotic-resistant E. coli and Enterococcus spp. occurred in feral pigeons in various prevalences. SIGNIFICANCE AND IMPACT OF THE STUDY: Feral pigeon should be considered a risk species for spreading in the environment antimicrobial resistant E. coli and enterococci.201020602656
138440.9642Antimicrobial resistance in wildlife: detection of antimicrobial resistance genes in Apennine wolves (Canis lupus italicus Altobello, 1921) from Central Italy. The aim of this study was to molecularly investigate the presence of antimicrobial resistance genes (ARGs) in organ samples from 11 Apennine wolves (Canis lupus italicus) collected in Central Italy. Samples from lung, liver, spleen, kidney, tongue and intestine were investigated by PCRs targeting the following genes: tet(A), tet(B), tet(C), tet(D), tet(E), tet(G), tet(K), tet(L), tet(M), tet(O), tetA(P), tet(Q), tet(S), tet(X), sul1, sul2, sul3, bla(CTX-M), bla(SHV), bla(TEM) and mcr-1. A PCR positivity was highlighted for 13 out of the 21 tested genes; no positive results were obtained for tet(C), tet(D), tet(E), tet(G), sul3, bla(CTX), bla(SHV) and mcr-1 genes. All 11 animals sampled showed positivity for one or more resistance genes. The results confirm the potential role of the wolf as an indicator and/or vector of antimicrobial-resistant bacteria or ARGs.202438499909
123350.9642Prevalence, Antibiogram, and Resistance Profile of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates from Pig Farms in Luzon, Philippines. This cross-sectional study was conducted to determine the prevalence, antibiogram, and resistance profile of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) isolates from healthy pigs and pig farms in Luzon, Philippines. A total of 162 rectal samples from healthy finisher and breeder pigs and boot swab samples from pig houses were collected from 54 randomly selected pig farms. Bacteria were isolated and screened using MacConkey agar plate supplemented with 1 mg/L cefotaxime. Identification of bacteria and antimicrobial susceptibility test were carried out through Vitek(®) 2 and combined disk test. PCR amplifications were carried out in all isolates targeting bla(CTX-M) and its five major groupings, bla(TEM), and bla(SHV). The farm prevalence of ESBL-EC was 57.41% (95% confidence interval [CI] = 43.21-70.77). A total of 48 (29.63%) ESBL-EC isolates were isolated from samples that showed 14 different phenotypic multidrug resistance patterns. The prevalence of bla(CTX-M) gene was 91.67% (95% CI = 80.02-97.68). All major bla(CTX-M-groups) except bla(CTX-M-25group) were detected. The bla(CTX-M-1) was the most prevalent bla(CTX-M) gene, 75.0% (95% CI = 60.40-86.36). The prevalence of bla(TEM) and bla(SHV) genes was 91.67% (95% CI = 80.02-97.68) and 60.42% (95% CI = 45.27-74.23), respectively. Coexistence of different bla(CTX-M), bla(TEM), and bla(SHV) genes was observed in 44 isolates with 20 different genotypic patterns. High prevalence, diverse antibiogram profile, and genotypic resistance pattern of ESBL-EC isolates from healthy pigs and pig farms were observed in this study that could result in possible transmission to farm workers, susceptible bacteria, and the environment.202031532307
125960.9641Tetracycline resistance potential of heterotrophic bacteria isolated from freshwater fin-fish aquaculture system. AIMS: This study investigated the tetracycline resistance potential of heterotrophic bacteria isolated from twenty-four freshwater fin-fish culture ponds in Andhra Pradesh, India. METHODS AND RESULTS: A total of 261 tetracycline resistant bacteria (tetR) were recovered from pond water, pond sediment, fish gills, fish intestine, and fish feed. Bacteria with high tetracycline resistance (tetHR) (n = 30) that were resistant to tetracycline concentrations above 128  μg mL-1 were predominantly Lactococcus garvieae followed by Enterobacter spp., Lactococcus lactis, Enterobacter hormaechei, Staphylococcus arlettae, Streptococcus lutetiensis, Staphylococcus spp., Brevundimonas faecalis, Exiguobacterium profundum, Lysinibacillus spp., Stutzerimonas stutzeri, Enterobacter cloacae, and Lactococcus taiwanensis. Resistance to 1024 μg mL-1 of tetracycline was observed in L. garvieae, S. arlettae, Enterobacter spp., B. faecalis. Tet(A) (67%) was the predominant resistance gene in tetHR followed by tet(L), tet(S), tet(K), and tet(M). At similar concentrations of exposure, tetracycline procured at the farm level (69.5% potency) exhibited lower inhibition against tetHR bacteria compared to pure tetracycline (99% potency). The tetHR bacteria showed higher cross-resistance to furazolidone (100%) followed by co-trimoxazole (47.5%) and enrofloxacin (11%). CONCLUSIONS: The maximum threshold of tetracycline resistance at 1024 μg mL-1 was observed in S. arlettae, Enterobacter spp., B. faecalis, and L. garvieae and tet(A) was the major determinant found in this study.202336958862
132470.9641Molecular characterization of antimicrobial resistance in enterococci and Escherichia coli isolates from European wild rabbit (Oryctolagus cuniculus). A total of 44 Escherichia coli and 64 enterococci recovered from 77 intestinal samples of wild European rabbits in Portugal were analyzed for resistance to antimicrobial agents. Resistance in E. coli isolates was observed for ampicillin, tetracycline, sulfamethoxazole/trimethoprim, streptomycin, gentamicin, tobramycin, nalidixic acid, ciprofloxacin and chloramphenicol. None of the E. coli isolates produced extended-spectrum beta-lactamases (ESBLs). The bla(TEM), aadA, aac(3)-II, tet(A) and/or tet(B), and the catA genes were demonstrated in all ampicillin, streptomycin, gentamicin, tetracycline, and chloramphenicol-resistant isolates respectively, and the sul1 and/or sul2 and/or sul3 genes in 4 of 5 sulfamethoxazole/trimethoprim resistant isolates. Of the enterococcal isolates, Enterococcus faecalis was the most prevalent detected species (39 isolates), followed by E. faecium (21 isolates) and E. hirae (4 isolates). More than one-fourth (29.7%) of the isolates were resistant to tetracycline; 20.3% were resistant to erythromycin, 14.1% were resistant to ciprofloxacin and 10.9% were resistant to high-level-kanamycin. Lower level of resistance (<10%) was detected for ampicillin, quinupristin/dalfopristin and high-level-gentamicin, -streptomycin. No vancomycin-resistance was detected in the enterococci isolates. Resistance genes detected included aac(6')-aph(2''), ant(6)-Ia, tet(M) and/or tet(L) in all gentamicin, streptomycin and tetracycline-resistant isolates respectively. The aph(3')-IIIa gene was detected in 6 of 7 kanamycin-resistant isolates, the erm(B) gene in 11 of 13 erythromycin-resistant isolates and the vat(D) gene in the quinupristin/dalfopristin-resistant E. faecium isolate. This survey showed that faecal bacteria such as E. coli and enterococci of wild rabbits could be a reservoir of antimicrobial resistance genes.201020624632
122980.9640Detection of multi-drug resistance and AmpC β-lactamase/extended-spectrum β-lactamase genes in bacterial isolates of loggerhead sea turtles (Caretta caretta) from the Mediterranean Sea. Sea turtles are useful sentinels to monitor the dissemination of antimicrobial resistance (AMR) in the marine coastal ecosystems. Forty Gram negative bacteria were isolated from wounds of 52 injured Caretta caretta, living in the Mediterranean Sea. Bacteria were identified using 16S rRNA gene sequencing and tested for susceptibility to 15 antibiotics. In addition, NGS amplicon sequencing was performed to detect the presence of AmpC β-lactamase genes (bla(AmpC)) and extended-spectrum β-lactamase (ESBL) genes (bla(CTX-M,)bla(SHV,)bla(TEM)). Seventy-five percent of the isolates (30/40 isolates) exhibited multidrug resistance (MDR) phenotypes and 32.5% (13/40 isolates) were confirmed to be positive for at least one gene. The variants of ESBLs genes were bla(CTX-M-3,)bla(TEM-236) and bla(SHV-12). Variants of the bla(AmpC)β-lactamase gene i.e., bla(ACT-24), bla(ACT-2), bla(ACT-17), bla(DHA-4) and bla(CMY-37), were also detected. In addition, 4 isolates were found simultaneously harboring CTX and AmpC genes while 2 strains harbored 3 genes (bla(ACT-2+TEM-236+SHV-12), and bla(CTX-M-3+ACT-24+TEM-236)).202133513540
264590.9640High prevalence of a gene cluster conferring resistance to streptomycin, sulfonamide, and tetracycline in Escherichia coli isolated from indigenous wild birds. A total of 116 Escherichia coli isolates from cecal contents of 81 indigenous wild birds in Korea were tested for antimicrobial susceptibility. Seventy-one isolates from sparrows (Passer montanus) and one isolate from doves (Columba livia) were resistant to three antimicrobials, including streptomycin, sulfonamide, and tetracycline (SSuT). PCR and subsequent sequence analysis revealed the SSuT gene cluster region (approximately 13 kb) harboring genes encoding resistance to streptomycin (strA and strB), sulfonamide (sul2), and tetracycline (tetB, tetC, tetD, and tetR). In particular, tetracycline resistance genes were located on the transposon Tn10-like element. The SSuT element-harboring E. coli can be an important source of the transmission of antimicrobial resistance to other pathogenic bacteria. Therefore, strict sanitary measures in human and animal environments are necessary to prevent the spread of resistant bacteria through fecal residues of wild birds.202133487603
1383100.9639Detection of Tetracycline Resistance Genes in European Hedgehogs (Erinaceus europaeus) and Crested Porcupines (Hystrix cristata). Relatively little is known regarding the role of wildlife in the development of antibiotic resistance. Our aim was to assess the presence of the tetracycline resistance genes, tet(A), tet(B), tet(C), tet(D), tet(E), tet(G), tet(K), tet(L), tet(M), tet(O), tet(P), tet(Q), tet(S), and tet(X), in tissue samples of 14 hedgehogs (Erinaceus europaeus) and 15 crested porcupines (Hystrix cristata) using PCR assays. One or more tet genes were found in all but three hedgehogs and one crested porcupine. Of the 14 tetracycline resistance genes investigated, 13 were found in at least one sample; tet(G) was not detected. We confirmed the potential role of wild animals as bioindicators, reservoirs, or vectors of antibiotic-resistant bacteria in the environment.202031526277
3071110.9639Human Disturbance Increases Health Risks to Golden Snub-Nosed Monkeys and the Transfer Risk of Pathogenic Antibiotic-Resistant Bacteria from Golden Snub-Nosed Monkeys to Humans. From the perspective of interactions in the human-animal-ecosystem, the study and control of pathogenic bacteria that can cause disease in animals and humans is the core content of "One Health". In order to test the effect of human disturbance (HD) on the health risk of pathogenic antibiotic-resistant bacteria (PARBs) to wild animals and transfer risk of the PARBs from wild animals to humans, golden snub-nosed monkeys (Rhinopithecus roxellana) were used as sentinel animals. Metagenomic analysis was used to analyze the characteristics of PARBs in the gut microbiota of golden snub-nosed monkeys. Then, the total contribution of antibiotic resistance genes (ARGs) and virulence factors (VFs) of the PARBs were used to assess the health risk of PARBs to golden snub-nosed monkeys, and the antimicrobial drug resistance and bacterial infectious disease of PARBs were determined to assess the transfer risk of PARBs from golden snub-nosed monkeys to humans. There were 18 and 5 kinds of PARBs in the gut microbiota of golden snub-nosed monkeys under HD (HD group) and wild habitat environments (W group), respectively. The total health risks of PARBs to the W group and the HD group were -28.5 × 10(-3) and 125.8 × 10(-3), respectively. There were 12 and 16 kinds of KEGG pathways of human diseases in the PARBs of the W group and the HD group, respectively, and the gene numbers of KEGG pathways in the HD group were higher than those in the W group. HD increased the pathogenicity of PARBs to golden snub-nosed monkeys, and the PARBs in golden snub-nosed monkeys exhibited resistance to lincosamide, aminoglycoside, and streptogramin antibiotics. If these PARBs transfer from golden snub-nosed monkeys to humans, then humans may acquire symptoms of pathogens including Tubercle bacillus, Staphylococcus, Streptococcus, Yersinia, Pertussis, and Vibrio cholera.202337835689
1323120.9638Detection of antibiotic resistant enterococci and Escherichia coli in free range Iberian Lynx (Lynx pardinus). Thirty fecal samples from wild specimens of Iberian lynx were collected and analyzed for Enterococcus spp. (27 isolates) and Escherichia coli (18 isolates) recovery. The 45 isolates obtained were tested for antimicrobial resistance, molecular mechanisms of resistance, and presence of virulence genes. Among the enterococci, Enterococcus faecium and Enterococcus hirae were the most prevalent species (11 isolates each), followed by Enterococcus faecalis (5 isolates). High percentages of resistance to tetracycline and erythromycin (33% and 30%, respectively) were detected among enterococcal isolates. The tet(M) and/or tet(L), erm(B), aac(6')-Ie-aph(2″)-Ia, ant(6)-Ia, or aph(3')-IIIa genes were detected among resistant enterococci. Virulence genes were detected in one E. faecalis isolate (cpd, cylB, and cylL) and one E. hirae isolate (cylL). High percentages of resistance were detected in E. coli isolates to tetracycline (33%), streptomycin (28%), nalidixic acid (28%), and sulfamethoxazole-trimethoprim (SXT, 22%). Additionally, the blaTEM, tet(A), aadA, cmlA, and different combinations of sul genes were detected among most ampicillin, tetracycline, streptomycin, chloramphenicol and SXT-resistant isolates, respectively. Two isolates contained a class 1 integron with the gene cassette arrays dfrA1 + aadA1 and dfrA12 + aadA2. The E. coli isolates were ascribed to phylo-groups A (n=5); B1 (n=4); B2 (n=6), and D (n=3), with the virulence gene fimA present in all E. coli isolates. This study found resistance genes in wild specimens of Iberian lynx. Thus, it is important to notice that multiresistant bacteria have reached species as rare and completely non-synanthropic as the Iberian lynx. Furthermore, the susceptibility of this endangered species to bacterial infection may be affected by the presence of these virulence and resistance genes.201323588135
1227130.9638Antibiotic resistance among coliform bacteria isolated from carcasses of commercially slaughtered chickens. A total of 322 coliform bacteria Escherichia coli, Enterobacter spp., Citrobacter spp., Klebsiella spp. and Serratia spp., were isolated from 50 carcasses of commercially slaughtered chickens. Their resistance to ampicillin, tetracycline, gentamicin, chloramphenicol, cephalotine, cotrimoxazole, nalidixic acid and nitrofurantoin, were determined. The most commonly found resistance was to tetracycline followed by cephalotine, cotrimoxazole and nalidixic acid. A large percentage of E. coli (41%) and Klebsiella spp. (38%) showed multiple antibiotic resistance.19902282290
1322140.9637Phenotypic and genotypic characterization of antimicrobial resistance in faecal enterococci from wild boars (Sus scrofa). The objective was to study the prevalence of antimicrobial resistance and the mechanisms implicated in faecal enterococci of wild boars in Portugal. One hundred and thirty-four enterococci (67 E. faecium, 54 E. hirae, 2 E. faecalis, 2 E. durans and 9 Enterococcus spp.) were recovered from 67 wild boars (two isolates/sample), and were further analysed. High percentages of resistance were detected for erythromycin, tetracycline, and ciprofloxacin (48.5%, 44.8%, and 17.9%, respectively), and lower values were observed for high-level-kanamycin, -streptomycin, chloramphenicol, and ampicillin resistance (9%, 6.7%, 4.5%, and 3.7%, respectively). No isolates showed vancomycin or high-level-gentamicin resistance. The erm(B), tet(M), aph(3')-IIIa, and ant(6)-I genes were demonstrated in all erythromycin-, tetracycline-, kanamycin-, and streptomycin-resistant isolates, respectively. Specific genes of Tn916/Tn1545 and Tn5397 transposons were detected in 78% and 47% of our tet(M)-positive enterococci, respectively. The tet(S) and tet(K) genes were detected in one isolate of E. faecium and E. hirae, respectively. Three E. faecium isolates showed quinupristin-dalfopristin resistance and the vat(E) gene was found in all of them showing the erm(B)-vat(E) linkage. Four E. faecium isolates showed ampicillin-resistance and all of them presented seven amino acid substitutions in PBP5 protein (461Q-->K, 470H-->Q, 485M-->A, 496N-->K, 499A-->T, 525E-->D, and 629E-->V), in relation with the reference one; a serine insertion at 466' position was found in three of the isolates. Faecal enterococci from wild boars harbour a variety of antimicrobial resistance mechanisms and could be a reservoir of antimicrobial resistance genes and resistant bacteria that could eventually be transmitted to other animals or even to humans.200717658226
1321150.9635Antimicrobial Resistance and Resistance Genes in Aerobic Bacteria Isolated from Pork at Slaughter. The aim of this study was to investigate the phenotypic and genotypic antimicrobial resistance, integrons, and transferability of resistance markers in 243 aerobic bacteria recovered from pork at slaughter in the People's Republic of China. The organisms belonged to 22 genera of gram-negative bacteria (92.2%) and gram-positive bacteria (7.8%). High levels of resistance were detected to tetracycline, trimethoprim-sulfamethoxazole, and ampicillin (36.2 to 54.3%), and lower levels were detected to nitrofurantoin, cefotaxime, gentamicin, ciprofloxacin, and chloramphenicol (7.8 to 29.2%). Across species, genes conferring antimicrobial resistance were observed with the following frequencies: blaTEM, 40.7%; blaCMY-2, 15.2%; blaCTX-M, 11.5%; sul2, 27.2%; sul1, 14.4%; tet(A), 5.4%; tet(L), 5.4%; tet(M), 5.0%; tet(E), 3.7%; tet(C), 3.3%; tet(S), 2.5%; and tet(K), 0.8%. Various antimicrobial resistance genes were found in new carriers: blaTEM in Lactococcus garvieae, Myroides odoratimimus, Aeromonas hydrophila, Staphylococcus sciuri, Raoultella terrigena, Macrococcus caseolyticus, Acinetobacter ursingii, Sphingobacterium sp., and Oceanobacillus sp.; blaCMY-2 in Lactococcus lactis, Klebsiella oxytoca, Serratia marcescens, Acinetobacter baumannii, and Myroides phaeus; tet(L) in M. caseolyticus; sul1 in Vibrio cincinnatiensis; sul2 in Acinetobacter bereziniae, Acinetobacter johnsonii, and V. cincinnatiensis; and the class 1 integron and gene cassette aadA2 in V. cincinnatiensis. Approximately 6.6% of isolates contained class 1 integrons, and one isolate harbored class 2 integrons. Plasmid associated intI1 and androgen receptor- encoding genes were transferred into Escherichia coli J53 and E. coli DH5α by conjugation and transformation experiments, respectively. Our study highlights the importance of aerobic bacteria from pork as reservoirs for antimicrobial resistance genes and mobile genetic elements that can readily be transferred intra- and interspecies.201627052863
1365160.9634The frequency of tetracycline resistance genes in Escherichia coli strains isolated from healthy and diarrheic pet birds. BACKGROUND: Pet birds have close contact to human and resistant bacteria can transfer from birds to intestinal flora of human. AIMS: This study was carried out to determine the tetracycline resistance genes in Escherichia coli strains associated with enteric problem in pet birds. METHODS: Totally, 295 cloacal swabs were collected from 195 healthy and 100 diarrheic pet birds in Isfahan province, Iran. The presence of E. coli was identified by conventional bacteriological, biochemical, and molecular examinations. The presence of tetracycline resistance genes (tetA, tetB, tetC, tetD, tetE, tetG, tetK, tetL, tetM, tetO, and tetS genes) were examined using three multiplex PCR. RESULTS: The results showed that 18.9% and 43% of cloacal samples of healthy and diarrheic pet birds contained E. coli, respectively. The mean percentage of E. coli isolated from cloacal samples of diarrheic birds was significantly higher than the healthy birds (46.6 vs 23.1%). In healthy birds, out of 37 E. coli isolates, 10 isolates were resistant to tetracycline, harboring tetA and tetB genes (3 tetA vs 7 tetB), but in the diarrheic birds, of 26 resistance E. coli, 11, 12, and 3 strains contained tetA (42.3%), tetB (46.15), and tetA+tetB (11.53%) genes. The percentage of tet genes were significantly higher in diarrheic birds than healthy birds (58.9 vs 24.0%). CONCLUSION: Both resistant genes of tetA and tetB were detected in E. coli isolates that are related with efflux pump activity. These genes can be transferred between Gram-negative bacteria and they have the potential ability to be transferred to the environment and human flora.202135126542
1380170.9634Distribution of tetracycline and streptomycin resistance genes and class 1 integrons in Enterobacteriaceae isolated from dairy and nondairy farm soils. The prevalence of selected tetracycline and streptomycin resistance genes and class 1 integrons in Enterobacteriaceae (n = 80) isolated from dairy farm soil and nondairy soils was evaluated. Among 56 bacteria isolated from dairy farm soils, 36 (64.3%) were resistant to tetracycline, and 17 (30.4%) were resistant to streptomycin. Lower frequencies of tetracycline (9 of 24 or 37.5%) and streptomycin (1 of 24 or 4.2%) resistance were observed in bacteria isolated from nondairy soils. Bacteria (n = 56) isolated from dairy farm soil had a higher frequency of tetracycline resistance genes including tetM (28.6%), tetA (21.4%), tetW (8.9%), tetB (5.4%), tetS (5.4%), tetG (3.6%), and tetO (1.8%). Among 24 bacteria isolated from nondairy soils, four isolates carried tetM, tetO, tetS, and tetW in different combinations; whereas tetA, tetB, and tetG were not detected. Similarly, a higher prevalence of streptomycin resistance genes including strA (12.5%), strB (12.5%), ant(3'') (12.5), aph(6)-1c (12.5%), aph(3'') (10.8%), and addA (5.4%) was detected in bacteria isolated from dairy farm soils than in nondairy soils. None of the nondairy soil isolates carried aadA gene. Other tetracycline (tetC, tetD, tetE, tetK, tetL, tetQ, and tetT) and streptomycin (aph(6)-1c and ant(6)) resistance genes were not detected in both dairy and nondairy soil isolates. A higher distribution of multiple resistance genes was observed in bacteria isolated from dairy farm soil than in nondairy soil. Among 36 tetracycline- and 17 streptomycin-resistant isolates from dairy farm soils, 11 (30.6%) and 9 (52.9%) isolates carried multiple resistance genes encoding resistance to tetracycline and streptomycin, respectively, which was higher than in bacteria isolated from nondairy soils. One strain each of Citrobacter freundii and C. youngae isolated from dairy farm soils carried class 1 integrons with different inserted gene cassettes. Results of this small study suggest that the presence of multiple resistance genes and class 1 integrons in Enterobacteriaceae in dairy farm soil may act as a reservoir of antimicrobial resistance genes and could play a role in the dissemination of these antimicrobial resistance genes to other commensal and indigenous microbial communities in soil. However, additional longer-term studies conducted in more locations are needed to validate this hypothesis.200817701242
1385180.9634GENOMIC CHARACTERIZATION OF MULTIDRUG-RESISTANT EXTENDED-SPECTRUM β-LACTAMASE-PRODUCING ESCHERICHIA COLI AND KLEBSIELLA PNEUMONIAE FROM CHIMPANZEES (PAN TROGLODYTES) FROM WILD AND SANCTUARY LOCATIONS IN UGANDA. Farm and wild animals may serve as reservoirs of antimicrobial-resistant bacteria of human health relevance. We investigated the occurrence and genomic characteristics of extended spectrum β-lactamase (ESBL)-producing bacteria in Ugandan chimpanzees (Pan troglodytes) residing in two environments with or without close contact to humans. The ESBL-producing Escherichia coli and Klebsiella pneumoniae were isolated from fecal material of chimpanzees from Budongo Forest and Ngamba Island Chimpanzee Sanctuary in Uganda and were more commonly isolated from chimpanzees in Ngamba Island Chimpanzee Sanctuary, where animals have close contact with humans. Selected ESBL isolates (E. coli n=9, K. pneumoniae n=7) were analyzed by whole-genome sequencing to determine the presence of resistance genes, as well as sequence type and virulence potential; the blaCTX-M-15 gene was present in all strains. Additionally, the ESBL genes blaSHV-11 and blaSHV-12 were found in strains in the study. All strains were found to be multidrug resistant. The E. coli strains belonged to four sequence types (ST2852, ST215, ST405, and ST315) and the K. pneumoniae strains to two sequence types (ST1540 and ST597). Virulence genes did not indicate that strains were of common E. coli pathotype, but strains with the same sequence types as isolated in the current study have previously been reported from clinical cases in Africa. The findings indicate that chimpanzees in close contact with humans may carry ESBL bacteria at higher frequency than those in the wild, indicating a potential anthropogenic transmission.202235255126
1158190.9634Antibiotic Resistance Profiles and ARG Detection from Isolated Bacteria in a Culture-Dependent Study at the Codfish Industry Level. The antibiotic resistance phenomenon horizontally involves numerous bacteria cultured from fresh or processed seafood matrix microbiomes. In this study, the identified bacteria from food-producing processes and industrial environments were screened for phenotypic and genotypic resistance determinants. A total of 684 bacterial strains [537 from processed codfish (Gadus morhua and Gadus macrocephalus) products as salted and seasoned and soaked and 147 from environmental samples] were isolated. Antibiotic susceptibility tests showed resistance against tetracycline, oxacillin, and clindamycin in the Staphylococcus genus (both from food and environmental samples) and against beta-lactams (cefotaxime, carbapenems, etc.) and nitrofurans (nitrofurantoin) from E. coli and Salmonella enterica serovar. Enteritidis isolates. One-thousand and ten genetic determinants-tetracycline tetC (25.17%), tetK (21.06%), tetL (11.70%), clindamycin ermC (17.23%), ermB (7.60%), linezolid cfr (8.22%), optrA (3.62%), poxtA (2.05%), and oxacillin mecA (17.37%)-were amplified from Gram-positive resistant and phenotypically susceptible bacteria. Concerning Gram-negative bacteria, the beta-lactam-resistant genes (bla(TEM), bla(CIT), bla(CTX-M), bla(IMP), bla(KPC), bla(OXA-48-like)) represented 57.30% of the amplified ARGs. This study found high antibiotic resistance genes in circulation in the fish food industry chain from the macro- to microenvironment. The obtained data confirmed the diffusion of the "antibiotic resistance phenomenon" and its repercussions on the One-health and food-producing systems.202337107494