MODELLED - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
905500.9853siRNA-AGO2 complex inhibits bacterial gene translation: A promising therapeutic strategy for superbug infection. Silencing resistance genes of pathogenic bacteria by RNA interference (RNAi) is a potential strategy to fight antibiotic-resistant bacterial infections. Currently, RNAi cannot be achieved in bacteria due to the lack of RNA-induced silencing complex machinery and the difficulty of small interfering RNA (siRNA) delivery. Here, we show that exosomal siRNAs can be efficiently delivered into bacterial cells and can silence target genes primarily through translational repression without mRNA degradation. The exosomal Argonaute 2 (AGO2) protein forms a complex with siRNAs, which is essential for bacterial gene silencing. Both in vitro and in vivo-generated exosome-packaged siRNAs resensitize methicillin-resistant Staphylococcus aureus (MRSA) to methicillin treatment by silencing the mecA gene, which is the primary beta-lactam resistance determinant of MRSA. This approach significantly enhances the therapeutic effect in a mouse model of MRSA infection. In summary, our study provides a method for siRNA delivery to bacteria that may facilitate the treatment of antibiotic-resistant bacterial infection.202540054457
843710.9845Tocopherol polyethylene glycol succinate-modified hollow silver nanoparticles for combating bacteria-resistance. Multiple drug resistance and the increase in the appearance of superbugs together with the exceedingly scant development of new potent antibiotic drugs pose an urgent global medical threat and imminent public security crisis. In the present study, we fabricated well-dispersed tocopherol polyethylene glycol succinate (TPGS)-capped silver nanoparticles (AgNPs) of about 10 nm in size. The hollow structure of the TPGS-capped AgNPs (TPGS/AgNPs) was confirmed and applied to load antibiotics. The TPGS/AgNPs proved to be able to cross the bacterial cell wall and penetrate into bacteria, thereby delivering more of the antibiotic to the interior of bacteria and thus enhancing the in vitro antibacterial effect of the antibiotic, even overcoming the drug-resistance in drug-resistant E. coli and Acinetobacter baumannii. It was found that the TPGS modification in the TPGS/AgNPs could decrease the activity of the efflux pumps AdeABC and AdeIJK in drug-resistant Acinetobacter baumannii via inhibiting the efflux pump genes adeB and adeJ, thus increasing the accumulation of the delivered antibiotic and overcoming the drug-resistance. Tigecycline delivered by TPGS/AgNPs could effectively antagonize drug-resistance in an acute peritonitis model mice, thereby increasing the survival rate and alleviating the inflammatory response. TPGS/AgNPs were developed as a novel and effective antibiotic delivery system and TPGS was demonstrated to have great potential as a pharmaceutical excipient for use in drug-resistant infection therapy.201930968093
855620.9843Bubbles Expand the Dissemination of Antibiotic Resistance in the Aquatic Environment. Antibiotic resistance is a global health challenge, and the COVID-19 pandemic has amplified the urgency to understand its airborne transmission. The bursting of bubbles is a fundamental phenomenon in natural and industrial processes, with the potential to encapsulate or adsorb antibiotic-resistant bacteria (ARB). However, there is no evidence to date for bubble-mediated antibiotic resistance dissemination. Here, we show that bubbles can eject abundant bacteria to the air, form stable biofilms over the air-water interface, and provide opportunities for cell-cell contact that facilitates horizontal gene transfer at and over the air-liquid interface. The extracellular matrix (ECM) on bacteria can increase bubble attachment on biofilms, increase bubble lifetime, and, thus, produce abundant small droplets. We show through single-bubble probe atomic force microscopy and molecular dynamics simulations that hydrophobic interactions with polysaccharides control how the bubble interacts with the ECM. These results highlight the importance of bubbles and its physicochemical interaction with ECM in facilitating antibiotic resistance dissemination and fulfill the framework on antibiotic resistance dissemination.202337379503
650230.9842A critical review on the occurrence of resistomes in the environment and their removal from wastewater using apposite treatment technologies: Limitations, successes and future improvement. Recent reports are pointing towards the potential increasing risks of resistomes in human host. With no permissible limit in sight, resistomes are continually multiplying at an alarming rate in the ecosystem, with a disturbing level in drinking water source. The morphology and chemical constituent of resistomes afford them to resist degradation, elude membrane and counter ionic charge, thereby, rendering both conventional and advanced water and wastewater treatment inefficient. Water and wastewater matrix may govern the propagation of individual resistomes sub-type, co-selection and specific interaction towards precise condition may have enhanced the current challenge. This review covers recent reports (2011-2019) on the occurrence of ARB/ARGs and ease of spread of resistance genes in the aquatic ecosystem. The contributions of water matrix to the spread and mitigation, treatment options, via bulk removal or capture, and intracellular and extracellular DNA lysis were discussed. A complete summary of recent occurrences of ARB/ARGs, fate after disinfection and optimum conditions of individual treatment technology or in tandem, including process limitations, with a brief assessment of removal or degradation mechanism were highlighted.202032224385
826540.9841Mathematical modelling of CRISPR-Cas system effects on biofilm formation. Clustered regularly interspaced short palindromic repeats (CRISPR), linked with CRISPR associated (Cas) genes, can confer adaptive immunity to bacteria, against bacteriophage infections. Thus from a therapeutic standpoint, CRISPR immunity increases biofilm resistance to phage therapy. Recently, however, CRISPR-Cas genes have been implicated in reducing biofilm formation in lysogenized cells. Thus CRISPR immunity can have complex effects on phage-host-lysogen interactions, particularly in a biofilm. In this contribution, we develop and analyse a series of dynamical systems to elucidate and disentangle these interactions. Two competition models are used to study the effects of lysogens (first model) and CRISPR-immune bacteria (second model) in the biofilm. In the third model, the effect of delivering lysogens to a CRISPR-immune biofilm is investigated. Using standard analyses of equilibria, stability and bifurcations, our models predict that lysogens may be able to displace CRISPR-immune bacteria in a biofilm, and thus suggest strategies to eliminate phage-resistant biofilms.201728426329
860950.9841Nano-biochar regulates phage-host interactions, reducing antibiotic resistance genes in vermicomposting systems. Biochar amendment reshapes microbial community dynamics in vermicomposting, but the mechanism of how phages respond to this anthropogenic intervention and regulate the dissemination of antibiotic resistance genes (ARGs) remains unclear. In this study, we used metagenomics, viromics, and laboratory validation to explore how nano-biochar affects phage-host interactions and ARGs dissemination in vermicomposting. Our results revealed distinct niche-specific phage life strategies. In vermicompost, lytic phages dominated and used a "kill-the-winner" strategy to suppress antibiotic-resistant bacteria (ARB). In contrast, lysogenic phages prevailed in the earthworm gut, adopting a "piggyback-the-winner" strategy that promoted ARGs transduction through mutualistic host interactions. Nano-biochar induced the conversion of lysogenic to lytic phages in the earthworm gut, while concurrently reducing the abundance of lysogenic phages and their encoded auxiliary metabolic genes carried by ARB. This shift disrupted phage-host mutualism and inhibited ARGs transmission via a "phage shunting" mechanism. In vitro validation with batch culture experiments further confirmed that lysogenic phages increased transduction of ARGs in the earthworm gut, while nano-biochar reduced the spread of ARGs by enhancing lysis infectivity. Our study constructs a mechanistic framework linking nano-biochar induced shifts in phage lifestyles that suppress ARG spread, offering insights into phage-host coadaptation and resistance mitigation strategies in organic waste treatment ecosystems.202540838886
957760.9841Doxycycline post-exposure prophylaxis and off-target antimicrobial resistance: potential amplification within sexual networks. Doxycycline post-exposure prophylaxis (doxyPEP) is now included in many clinical guidelines, yet concerns remain regarding antimicrobial resistance (AMR), particularly off-target effects on commensal bacteria in the oropharynx, with intimate behaviours potentially facilitating resistance transmission within sexual networks.202540830028
793370.9840Removal of antibiotic microbial resistance by micro- and ultrafiltration of secondary wastewater effluents at pilot scale. Low-pressure membrane filtration was investigated at pilot scale with regard to its removal of antimicrobial resistance genes (ARGs) in conventional secondary treated wastewater plant effluents. While operating microfiltration (MF) and ultrafiltration (UF) membranes, key operational parameters for antimicrobial resistance (AMR) studies and key factors influencing AMR removal efficiencies of low-pressure membrane filtration processes were examined. The main factor for AMR removal was the pore size of the membrane. The formation of the fouling layer on capillary membranes had only a small additive effect on intra- and extrachromosomal ARG removal and a significant additive effect on mobile ARG removal. Using feeds with different ARGs abundances revealed that higher ARG abundance in the feed resulted in higher ARG abundance in the filtrate. Live-Dead cell counting in UF filtrate showed intact bacteria breaking through the UF membrane. Strong correlations between 16S rRNA genes (as surrogate for bacteria quantification) and the sul1 gene in UF filtrate indicated ARBs likely breaking through UF membranes.202235598662
937280.9840The population genetics of collateral resistance and sensitivity. Resistance mutations against one drug can elicit collateral sensitivity against other drugs. Multi-drug treatments exploiting such trade-offs can help slow down the evolution of resistance. However, if mutations with diverse collateral effects are available, a treated population may evolve either collateral sensitivity or collateral resistance. How to design treatments robust to such uncertainty is unclear. We show that many resistance mutations in Escherichia coli against various antibiotics indeed have diverse collateral effects. We propose to characterize such diversity with a joint distribution of fitness effects (JDFE) and develop a theory for describing and predicting collateral evolution based on simple statistics of the JDFE. We show how to robustly rank drug pairs to minimize the risk of collateral resistance and how to estimate JDFEs. In addition to practical applications, these results have implications for our understanding of evolution in variable environments.202134889185
857090.9839Metagenomic analysis of antibiotic resistance genes (ARGs) during refuse decomposition. Landfill is important reservoirs of residual antibiotics and antibiotic resistance genes (ARGs), but the mechanism of landfill application influence on antibiotic resistance remains unclear. Although refuse decomposition plays a crucial role in landfill stabilization, its impact on the antibiotic resistance has not been well characterized. To better understand the impact, we studied the dynamics of ARGs and the bacterial community composition during refuse decomposition in a bench-scale bioreactor after long term operation (265d) based on metagenomics analysis. The total abundances of ARGs increased from 431.0ppm in the initial aerobic phase (AP) to 643.9ppm in the later methanogenic phase (MP) during refuse decomposition, suggesting that application of landfill for municipal solid waste (MSW) treatment may elevate the level of ARGs. A shift from drug-specific (bacitracin, tetracycline and sulfonamide) resistance to multidrug resistance was observed during the refuse decomposition and was driven by a shift of potential bacteria hosts. The elevated abundance of Pseudomonas mainly contributed to the increasing abundance of multidrug ARGs (mexF and mexW). Accordingly, the percentage of ARGs encoding an efflux pump increased during refuse decomposition, suggesting that potential bacteria hosts developed this mechanism to adapt to the carbon and energy shortage when biodegradable substances were depleted. Overall, our findings indicate that the use of landfill for MSW treatment increased antibiotic resistance, and demonstrate the need for a comprehensive investigation of antibiotic resistance in landfill.201829660875
7812100.9839Using the heat generated from electrically conductive concrete slabs to reduce antibiotic resistance in beef cattle manure. Proper treatment is necessary to reduce antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in livestock manure before land application. Conventional stockpiling suffers unreliable removal efficiency, while composting can be complicated and expensive. The objective of this study was to test the feasibility of a novel heat-based technology, i.e., stockpiling manure on conductive concrete slabs, to inactivate ARB and ARGs in beef cattle manure. In this study, two independent bench-scale trials were conducted. In both trials, samples were taken from manure piles on conductive concrete slabs and regular slabs (i.e., heated and unheated piles). In the heated pile of the first trial, 25.9% and 83.5% of the pile volume met the EPA Class A and Class B biosolids standards, respectively. For the heated pile of the second trial, the two values were 43.9% and 74.2%. In both trials, nearly all forms of the total and resistant Escherichia coli and enterococci were significantly lower in the heated piles than in the unheated piles. Besides, significant reduction of ARGs in heated piles was observed in the first trial. Through this proof-of-concept study, the new technology based on conductive concrete slabs offers an alternative manure storage method to conventional stockpiling and composting with respect to reduce ARB and ARGs in manure.202133736325
9087110.9839Complementary supramolecular drug associates in perfecting the multidrug therapy against multidrug resistant bacteria. The inappropriate and inconsistent use of antibiotics in combating multidrug-resistant bacteria exacerbates their drug resistance through a few distinct pathways. Firstly, these bacteria can accumulate multiple genes, each conferring resistance to a specific drug, within a single cell. This accumulation usually takes place on resistance plasmids (R). Secondly, multidrug resistance can arise from the heightened expression of genes encoding multidrug efflux pumps, which expel a broad spectrum of drugs from the bacterial cells. Additionally, bacteria can also eliminate or destroy antibiotic molecules by modifying enzymes or cell walls and removing porins. A significant limitation of traditional multidrug therapy lies in its inability to guarantee the simultaneous delivery of various drug molecules to a specific bacterial cell, thereby fostering incremental drug resistance in either of these paths. Consequently, this approach prolongs the treatment duration. Rather than using a biologically unimportant coformer in forming cocrystals, another drug molecule can be selected either for protecting another drug molecule or, can be selected for its complementary activities to kill a bacteria cell synergistically. The development of a multidrug cocrystal not only improves tabletability and plasticity but also enables the simultaneous delivery of multiple drugs to a specific bacterial cell, philosophically perfecting multidrug therapy. By adhering to the fundamental tenets of multidrug therapy, the synergistic effects of these drug molecules can effectively eradicate bacteria, even before they have the chance to develop resistance. This approach has the potential to shorten treatment periods, reduce costs, and mitigate drug resistance. Herein, four hypotheses are presented to create complementary drug cocrystals capable of simultaneously reaching bacterial cells, effectively destroying them before multidrug resistance can develop. The ongoing surge in the development of novel drugs provides another opportunity in the fight against bacteria that are constantly gaining resistance to existing treatments. This endeavour holds the potential to combat a wide array of multidrug-resistant bacteria.202438415251
9088120.9838Cocrystallizing and Codelivering Complementary Drugs to Multidrugresistant Tuberculosis Bacteria in Perfecting Multidrug Therapy. Bacteria cells exhibit multidrug resistance in one of two ways: by raising the genetic expression of multidrug efflux pumps or by accumulating several drug-resistant components in many genes. Multidrug-resistive tuberculosis bacteria are treated by multidrug therapy, where a few certain antibacterial drugs are administered together to kill a bacterium jointly. A major drawback of conventional multidrug therapy is that the administration never ensures the reaching of different drug molecules to a particular bacterium cell at the same time, which promotes growing drug resistivity step-wise. As a result, it enhances the treatment time. With additional tabletability and plasticity, the formation of a cocrystal of multidrug can ensure administrating the multidrug chemically together to a target bacterium cell. With properly maintaining the basic philosophy of multidrug therapy here, the synergistic effects of drug molecules can ensure killing the bacteria, even before getting the option to raise the drug resistance against them. This can minimize the treatment span, expenditure and drug resistance. A potential threat of epidemic from tuberculosis has appeared after the Covid-19 outbreak. An unwanted loop of finding molecules with the potential to kill tuberculosis, getting their corresponding drug approvals, and abandoning the drug after facing drug resistance can be suppressed here. This perspective aims to develop the universal drug regimen by postulating the principles of drug molecule selection, cocrystallization, and subsequent harmonisation within a short period to address multidrug-resistant bacteria.202337150990
8571130.9838Efficient elimination of antibiotics and antibiotic resistance genes in hyperthermophilic sludge composting. Composting is widely applied in recycling ever-increasing sewage sludge. However, the insufficient elimination of antibiotics and antibiotic resistance genes (ARGs) in conventional compost fertilizer poses considerable threat to agriculture safety and human health. Here we investigated the efficacy and potential mechanisms in the removal of antibiotics and ARGs from sludge in hyperthermophilic composting (HTC) plant. Our results demonstrated that the HTC product was of high maturity. HTC led to complete elimination of antibiotics and potential pathogens, as well as removal of 98.8 % of ARGs and 88.1 % of mobile genetic elements (MGEs). The enrichment of antibiotic-degrading candidates and related metabolic functions during HTC suggested that biodegradation played a crucial role in antibiotic removal. Redundancy analysis (RDA) and structural equation modelling (SEM) revealed that the reduction of ARGs was attributed to the decline of ARG-associated bacteria, mainly due to the high-temperature selection. These findings highlight the feasibility of HTC in sludge recycling and provide a deeper understanding of its mechanism in simultaneous removal of antibiotics and ARGs.202439217943
8339140.9838Dynamical model of antibiotic responses linking expression of resistance genes to metabolism explains emergence of heterogeneity during drug exposures. Antibiotic responses in bacteria are highly dynamic and heterogeneous, with sudden exposure of bacterial colonies to high drug doses resulting in the coexistence of recovered and arrested cells. The dynamics of the response is determined by regulatory circuits controlling the expression of resistance genes, which are in turn modulated by the drug's action on cell growth and metabolism. Despite advances in understanding gene regulation at the molecular level, we still lack a framework to describe how feedback mechanisms resulting from the interdependence between expression of resistance and cell metabolism can amplify naturally occurring noise and create heterogeneity at the population level. To understand how this interplay affects cell survival upon exposure, we constructed a mathematical model of the dynamics of antibiotic responses that links metabolism and regulation of gene expression, based on the tetracycline resistancetetoperon inE. coli. We use this model to interpret measurements of growth and expression of resistance in microfluidic experiments, both in single cells and in biofilms. We also implemented a stochastic model of the drug response, to show that exposure to high drug levels results in large variations of recovery times and heterogeneity at the population level. We show that stochasticity is important to determine how nutrient quality affects cell survival during exposure to high drug concentrations. A quantitative description of how microbes respond to antibiotics in dynamical environments is crucial to understand population-level behaviors such as biofilms and pathogenesis.202438412523
563150.9838Exit tunnel modulation as resistance mechanism of S. aureus erythromycin resistant mutant. The clinical use of the antibiotic erythromycin (ery) is hampered owing to the spread of resistance genes that are mostly mutating rRNA around the ery binding site at the entrance to the protein exit tunnel. Additional effective resistance mechanisms include deletion or insertion mutations in ribosomal protein uL22, which lead to alterations of the exit tunnel shape, located 16 Å away from the drug's binding site. We determined the cryo-EM structures of the Staphylococcus aureus 70S ribosome, and its ery bound complex with a two amino acid deletion mutation in its ß hairpin loop, which grants the bacteria resistance to ery. The structures reveal that, although the binding of ery is stable, the movement of the flexible shorter uL22 loop towards the tunnel wall creates a wider path for nascent proteins, thus enabling bypass of the barrier formed by the drug. Moreover, upon drug binding, the tunnel widens further.201931391518
9178160.9838Targeting non-multiplying organisms as a way to develop novel antimicrobials. Increasing resistance and decreasing numbers of antibiotics reaching the market point to a growing need for novel antibacterial drugs. Most antibiotics are very inefficient at killing non-multiplying bacteria, which live side by side with multiplying ones of the same strain in a clinical infection. Although non-multiplying bacteria do not usually cause disease, they can revert to the multiplying state that leads to overt disease, at which time resistance can emerge. Here we discuss the concept of developing antibacterial drugs by targeting non-multiplying organisms. We define non-multiplying bacteria, discuss the efficacy of existing antibiotics, and assess whether targeting these bacteria might lead to new antibiotics that will decrease the rate of emergence of resistance. Lastly, we review the potential of new molecular targets and live non-multiplying bacteria as possible routes for the development of novel antimicrobial drugs.200818262665
8554170.9838Nanomaterial-Enhanced Hybrid Disinfection: A Solution to Combat Multidrug-Resistant Bacteria and Antibiotic Resistance Genes in Wastewater. This review explores the potential of nanomaterial-enhanced hybrid disinfection methods as effective strategies for addressing the growing challenge of multidrug-resistant (MDR) bacteria and antibiotic resistance genes (ARGs) in wastewater treatment. By integrating hybrid nanocomposites and nanomaterials, natural biocides such as terpenes, and ultrasonication, this approach significantly enhances disinfection efficiency compared to conventional methods. The review highlights the mechanisms through which hybrid nanocomposites and nanomaterials generate reactive oxygen species (ROS) under blue LED irradiation, effectively disrupting MDR bacteria while improving the efficacy of natural biocides through synergistic interactions. Additionally, the review examines critical operational parameters-such as light intensity, catalyst dosage, and ultrasonication power-that optimize treatment outcomes and ensure the reusability of hybrid nanocomposites and other nanomaterials without significant loss of photocatalytic activity. Furthermore, this hybrid method shows promise in degrading ARGs, thereby addressing both microbial and genetic pollution. Overall, this review underscores the need for innovative wastewater treatment solutions that are efficient, sustainable, and scalable, contributing to the global fight against antimicrobial resistance.202439591087
562180.9838Macrolones target bacterial ribosomes and DNA gyrase and can evade resistance mechanisms. Growing resistance toward ribosome-targeting macrolide antibiotics has limited their clinical utility and urged the search for superior compounds. Macrolones are synthetic macrolide derivatives with a quinolone side chain, structurally similar to DNA topoisomerase-targeting fluoroquinolones. While macrolones show enhanced activity, their modes of action have remained unknown. Here, we present the first structures of ribosome-bound macrolones, showing that the macrolide part occupies the macrolide-binding site in the ribosomal exit tunnel, whereas the quinolone moiety establishes new interactions with the tunnel. Macrolones efficiently inhibit both the ribosome and DNA topoisomerase in vitro. However, in the cell, they target either the ribosome or DNA gyrase or concurrently both of them. In contrast to macrolide or fluoroquinolone antibiotics alone, dual-targeting macrolones are less prone to select resistant bacteria carrying target-site mutations or to activate inducible macrolide resistance genes. Furthermore, because some macrolones engage Erm-modified ribosomes, they retain activity even against strains with constitutive erm resistance genes.202439039256
8485190.9838Nonsteroidal anti-inflammatory drug diclofenac accelerates the emergence of antibiotic resistance via mutagenesis. Overuse of antimicrobial agents are generally considered to be a key factor in the occurrence of antibiotic resistance bacteria (ARB). Nevertheless, it is unclear whether ARB can be induced by non-antibiotic chemicals such as nonsteroidal anti-inflammatory drug (NSAID). Thus, the objective of this study is to investigate whether NSAID diclofenac (DCF) promote the emergence of antibiotic resistance in Escherichia coli K12 MG1655. Our results suggested that DCF induced the occurrence of ARB which showed hereditary stability of resistance. Meanwhile, gene variation was identified on chromosome of the ARB, and DCF can cause bacterial oxidative stress and SOS response. Subsequently, transcriptional levels of antioxidant (soxS, sodA, sodC, gor, katG, ahpF) and SOS (recA, lexA, uvrA, uvrB, ruvA, ruvB, dinB, umuC, polB) system-related genes were enhanced. However, the expression of related genes cannot be increased in high-dosage treatment compared with low-dosage samples because of cytotoxicity and cellular damage. Simultaneously, high-dosage DCF decreased the mutation frequency but enhanced the resistance of mutants. Our findings expand our knowledge of the promoting effect on the emergence of ARB caused by DCF. More attention and regulations should be given to these potential ecological and health risks for widespread DCF.202336958653