# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 535 | 0 | 0.9570 | Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Improved broad-host-range plasmid vectors were constructed based on existing plasmids RSF1010 and RK404. The new plasmids pDSK509, pDSK519, and pRK415, have several additional cloning sites and improved antibiotic-resistance genes which facilitate subcloning and mobilization into various Gram-negative bacteria. Several new polylinker sites were added to the Escherichia coli plasmids pUC118 and pUC119, resulting in the new plasmids, pUC128 and pUC129. These plasmids facilitate the transfer of cloned DNA fragments to the broad-host-range vectors. Finally, the broad-host-range cosmid cloning vector pLAFR3 was improved by the addition of a double cos casette to generate the new plasmid, pLAFR5. This latter cosmid simplifies vector preparation and has permitted the rapid cloning of genomic DNA fragments generated with Sau3A. The resulting clones may be introduced into other Gram-negative bacteria by conjugation. | 1988 | 2853689 |
| 5209 | 1 | 0.9567 | Complete Nucleotide Sequence of pGA45, a 140,698-bp IncFIIY Plasmid Encoding bla IMI-3-Mediated Carbapenem Resistance, from River Sediment. Plasmid pGA45 was isolated from the sediments of Haihe River using Escherichia coli CV601 (gfp-tagged) as recipients and indigenous bacteria from sediment as donors. This plasmid confers reduced susceptibility to imipenem which belongs to carbapenem group. Plasmid pGA45 was fully sequenced on an Illumina HiSeq 2000 sequencing system. The complete sequence of plasmid pGA45 was 140,698 bp in length with an average G + C content of 52.03%. Sequence analysis shows that pGA45 belongs to IncFIIY group and harbors a backbone region which shares high homology and gene synteny to several other IncF plasmids including pNDM1_EC14653, pYDC644, pNDM-Ec1GN574, pRJF866, pKOX_NDM1, and pP10164-NDM. In addition to the backbone region, plasmid pGA45 harbors two notable features including one bla IMI-3-containing region and one type VI secretion system region. The bla IMI-3-containing region is responsible for bacteria carbapenem resistance and the type VI secretion system region is probably involved in bacteria virulence, respectively. Plasmid pGA45 represents the first complete nucleotide sequence of the bla IMI-harboring plasmid from environment sample and the sequencing of this plasmid provided insight into the architecture used for the dissemination of bla IMI carbapenemase genes. | 2016 | 26941718 |
| 3007 | 2 | 0.9558 | Analysis of the complete nucleotide sequence of an Actinobacillus pleuropneumoniae streptomycin-sulfonamide resistance plasmid, pMS260. pMS260 is an 8.1-kb non-conjugative but mobilizable plasmid that was isolated from Actinobacillus pleuropneumoniae and encodes streptomycin (SM) and sulfonamide (SA) resistances. The analysis of the complete nucleotide sequence of the plasmid revealed a high degree of similarity between pMS260 and the broad-host-range IncQ family plasmids. pMS260 had a single copy of an origin of vegetative replication (oriV). This sequence was identical to a functional oriV of the IncQ-like plasmid pIE1130 that had been exogenously isolated from piggery manure. However, pMS260 did not carry the second IncQ plasmid RSF1010-like oriV region present in pIE1130. A pIE1130-identical transfer origin was also found in pMS260. In addition, the deduced amino acid sequences from 10 open reading frames identified in pMS260 were entirely or nearly identical to those from genes for the replication, mobilization, and SM-SA resistance of pIE1130, indicating that pMS260 belongs to the IncQ-1 gamma subgroup. pMS260 is physically indistinguishable from pIE1130 apart from two DNA regions that contain the chloramphenicol and kanamycin resistance genes (catIII and aphI, respectively) and the second oriV-like region of pIE1130. The codon bias analysis of each gene of pIE1130 and the presence of potential recombination sites in the sulII-strA intergenic regions suggest that pIE1130 seems to have acquired the catIII and aphI genes more recently than the other genes of pIE1130. Therefore, pMS260 may be the ancestor of pIE1130. Information regarding the broad-host-range replicon of pMS260 will be useful in the development of genetic systems for a wide range of bacteria including A. pleuropneumoniae. | 2004 | 14711528 |
| 812 | 3 | 0.9557 | Characterization of plQ5 plasmid originating fromKlebsiella pneumoniae. plQ5 plasmid consists of a group of genes specifying resistance to ampicillin, chloramphenicol, carbencillin, kanamycin and trimethoprim-sulphamethoxazole. It is isolated inKlebslella pneumoniae ZD532, is about 26.8 Kb and is freely transmissible to various bacterial species of Gram-negative bacteria. Physical characterization revealed that plQ5 plasmid has a single site forHindill,BamHI,EcoRI and two sites forBglII restriction enzyme. | 1990 | 24429982 |
| 820 | 4 | 0.9551 | Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria. A class II Tn3-type transposable element, designated Tn5393 and located on plasmid pEa34 from streptomycin-resistant strain CA11 of Erwinia amylovora, was identified by its ability to move from pEa34 to different sites in plasmids pGEM3Zf(+) and pUCD800. Nucleotide sequence analysis reveals that Tn5393 consists of 6,705 bp with 81-bp terminal inverted repeats and generates 5-bp duplications of the target DNA following insertion. Tn5393 contains open reading frames that encode a putative transposase (tnpA) and resolvase (tnpR) of 961 and 181 amino acids, respectively. The two open reading frames are separated by a putative recombination site (res) consisting of 194 bp. Two streptomycin resistance genes, strA and strB, were identified on the basis of their DNA sequence homology to streptomycin resistance genes in plasmid RSF1010. StrA is separated from tnpR by a 1.2-kb insertion element designated IS1133. The tnpA-res-tnpR region of Tn5393 was detected in Pseudomonas syringae pv. papulans Psp36 and in many other gram-negative bacteria harboring strA and strB. Except for some strains of Erwinia herbicola, these other gram-negative bacteria lacked insertion sequence IS1133. The prevalence of strA and strB could be accounted for by transposition of Tn5393 to conjugative plasmids that are then disseminated widely among gram-negative bacteria. | 1993 | 8380801 |
| 3036 | 5 | 0.9551 | Complete nucleotide sequences of 84.5- and 3.2-kb plasmids in the multi-antibiotic resistant Salmonella enterica serovar Typhimurium U302 strain G8430. The multi-antibiotic resistant (MR) Salmonella enterica serovar Typhimurium phage type U302 strain G8430 exhibits the penta-resistant ACSSuT-phenotype (ampicillin, chloramphenicol, streptomycin, sulfonamides and tetracycline), and is also resistant to carbenicillin, erythromycin, kanamycin, and gentamicin. Two plasmids, 3.2- and 84.5-kb in size, carrying antibiotic resistance genes were isolated from this strain, and the nucleotide sequences were determined and analyzed. The 3.2-kb plasmid, pU302S, belongs to the ColE1 family and carries the aph(3')-I gene (Kan(R)). The 84.5-kb plasmid, pU302L, is an F-like plasmid and contains 14 complete IS elements and multiple resistance genes including aac3, aph(3')-I, sulII, tetA/R, strA/B, bla(TEM-1), mph, and the mer operon. Sequence analyses of pU302L revealed extensive homology to various plasmids or transposons, including F, R100, pHCM1, pO157, and pCTX-M3 plasmids and TnSF1 transposon, in regions involved in plasmid replication/maintenance functions and/or in antibiotic resistance gene clusters. Though similar to the conjugative plasmids F and R100 in the plasmid replication regions, pU302L does not contain oriT and the tra genes necessary for conjugal transfer. This mosaic pattern of sequence similarities suggests that pU302L acquired the resistance genes from a variety of enteric bacteria and underscores the importance of a further understanding of horizontal gene transfer among the enteric bacteria. | 2007 | 16828159 |
| 5211 | 6 | 0.9549 | Pediococcus pentosaceus IMI 507025 genome sequencing data. The genome sequence data for the pickled cucumbers isolate, Pediococcus pentosaceus IMI 507025, is reported. The raw reads and analysed genome reads were deposited at NCBI under Bioproject with the accession number PRJNA814992. The number of contigs before and after trimming were 17 and 12 contigs, respectively. The total size of the genome was 1,795,439 bp containing 1,811 total genes, of which 1,751 were coding sequences. IMI 507025 identity was determined via average nucleotide identity (ANI), obtaining an identity value of 99.5994% between IMI 507025 and the type strain P. pentosaceus ATCC 33316, identifying the strain as P. pentosaceus. Screening for the antimicrobial resistance (AMR) and virulence genes in the genome of IMI 507025 showed no hits, confirming the safety of the tested strain. Presence of plasmids was not found. | 2022 | 35864877 |
| 3008 | 7 | 0.9548 | Sequence of conjugative plasmid pIP1206 mediating resistance to aminoglycosides by 16S rRNA methylation and to hydrophilic fluoroquinolones by efflux. Self-transferable IncFI plasmid pIP1206, isolated from an Escherichia coli clinical isolate, carries two new resistance determinants: qepA, which confers resistance to hydrophylic fluoroquinolones by efflux, and rmtB, which specifies a 16S rRNA methylase conferring high-level aminoglycoside resistance. Analysis of the 168,113-bp sequence (51% G+C) revealed that pIP1206 was composed of several subregions separated by copies of insertion sequences. Of 151 open reading frames, 56 (37%) were also present in pRSB107, isolated from a bacterium in a sewage treatment plant. pIP1206 contained four replication regions (RepFIA, RepFIB, and two partial RepFII regions) and a transfer region 91% identical with that of pAPEC-O1-ColBM, a plasmid isolated from an avian pathogenic E. coli. A putative oriT region was found upstream from the transfer region. The antibiotic resistance genes tet(A), catA1, bla(TEM-1), rmtB, and qepA were clustered in a 33.5-kb fragment delineated by two IS26 elements that also carried a class 1 integron, including the sulI, qacEDelta1, aad4, and dfrA17 genes and Tn10, Tn21, and Tn3-like transposons. The plasmid also possessed a raffinose operon, an arginine deiminase pathway, a putative iron acquisition gene cluster, an S-methylmethionine metabolism operon, two virulence-associated genes, and a type I DNA restriction-modification (R-M) system. Three toxin/antitoxin systems and the R-M system ensured stabilization of the plasmid in the host bacteria. These data suggest that the mosaic structure of pIP1206 could have resulted from recombination between pRSB107 and a pAPEC-O1-ColBM-like plasmid, combined with structural rearrangements associated with acquisition of additional DNA by recombination and of mobile genetic elements by transposition. | 2008 | 18458128 |
| 3021 | 8 | 0.9547 | Sequencing and comparative analysis of IncP-1α antibiotic resistance plasmids reveal a highly conserved backbone and differences within accessory regions. Although IncP-1 plasmids are important for horizontal gene transfer among bacteria, in particular antibiotic resistance spread, so far only three plasmids from the subgroup IncP-1α have been completely sequenced. In this study we doubled this number. The three IncP-1α plasmids pB5, pB11 and pSP21 were isolated from bacteria of two different sewage treatment plants and sequenced by a combination of next-generation and capillary sequencing technologies. A comparative analysis including the previously analysed IncP-1α plasmids RK2, pTB11 and pBS228 revealed a highly conserved plasmid backbone (at least 99.9% DNA sequence identity) comprising 54 core genes. The accessory elements of the plasmid pB5 constitute a class 1 integron interrupting the parC gene and an IS6100 copy inserted into the integron. In addition, the tetracycline resistance genes tetAR and the ISTB11-like element are located between the klc operon and the trfA-ssb operon. Plasmid pB11 is loaded with a Tn5053-like mercury resistance transposon between the parCBA and parDE operons and contains tetAR that are identical to those identified in plasmid pB5 and the insertion sequence ISSP21. Plasmid pSP21 harbours an ISPa7 element in a Tn402 transposon including a class 1 integron between the partitioning genes parCBA and parDE. The IS-element ISSP21 (99.89% DNA sequence identity to ISSP21 from pB11), inserted downstream of the tetR gene and a copy of ISTB11 (identical to ISTB11 on pTB11) inserted between the genes pncA and pinR. On all three plasmids the accessory genes are almost always located between the backbone modules confirming the importance of the backbone functions for plasmid maintenance. The striking backbone conservation among the six completely sequenced IncP-1α plasmids is in contrast to the much higher diversity within the IncP-1β subgroup. | 2011 | 21115076 |
| 826 | 9 | 0.9541 | Sequence identity with type VIII and association with IS176 of type IIIc dihydrofolate reductase from Shigella sonnei. An uncommon dihydrofolate reductase (DHFR), type IIIc, was coded for by Shigella sonnei that harbors plasmid pBH700 and that was isolated in North Carolina. The trimethoprim resistance gene carried on pBH700 was subcloned and sequenced. The nucleotide sequence of the gene encoding type IIIc DHFR was identical to the gene encoding type VIII DHFR. The type IIIc amino acid sequence was approximately 50% similar to those of DHFRs commonly found in enteric bacteria. Furthermore, this gene was flanked by IS176 (IS26), an insertion sequence usually associated with those of aminoglycoside resistance genes. The gene for type IIIc DHFR was located by hybridization within a 1,993-bp PstI fragment in each of eight conjugative plasmids from geographically diverse strains of S. sonnei. Each plasmid also conferred resistance to ampicillin, streptomycin, and sulfamethoxazole and belonged to incompatibility group M. Plasmids carrying this new trimethoprim resistance gene, which is uniquely associated with IS176, have disseminated throughout the United States. | 1995 | 7695291 |
| 3039 | 10 | 0.9540 | Distinct recent lineages of the strA- strB streptomycin-resistance genes in clinical and environmental bacteria. We report the linkage of the strA-strB streptomycin-resistance genes with Class 1 integron sequences on pSTR1, a 75-kb multiple antibiotic-resistance plasmid from Shigella flexneri. strA-strB had previously been detected only within Tn 5393, a Tn 3-family transposon, and on small nonconjugative broad-host-range plasmids such as RSF1010. The geographic range of Tn 5393 was also extended to Pseudomonas spp. isolated from apple trees in New Zealand and soil in the USA. Comparative sequence analyses indicated that strA-strB from Tn 5393 and nonconjugative plasmids constitute distinct recent lineages with strA-strB from pSTR1 intermediate between the other two. The carriage of strA-strB within an integron, a transposon, and on broad-host-range plasmids has facilitated the world-wide dissemination of this determinant among at least 21 bacterial genera. | 2002 | 12029529 |
| 818 | 11 | 0.9540 | Characterization of a staphylococcal plasmid related to pUB110 and carrying two novel genes, vatC and vgbB, encoding resistance to streptogramins A and B and similar antibiotics. We isolated and sequenced a plasmid, named pIP1714 (4,978 bp), which specifies resistance to streptogramins A and B and the mixture of these compounds. pIP1714 was isolated from a Staphylococcus cohnii subsp. cohnii strain found in the environment of a hospital where pristinamycin was extensively used. Resistance to both compounds and related antibiotics is encoded by two novel, probably cotranscribed genes, (i) vatC, encoding a 212-amino-acid (aa) acetyltransferase that inactivates streptogramin A and that exhibits 58.2 to 69.8% aa identity with the Vat, VatB, and SatA proteins, and (ii) vgbB, encoding a 295-aa lactonase that inactivates streptogramin B and that shows 67% aa identity with the Vgb lactonase. pIP1714 includes a 2,985-bp fragment also found in two rolling-circle replication and mobilizable plasmids, pUB110 and pBC16, from gram-positive bacteria. In all three plasmids, the common fragment was delimited by two direct repeats of four nucleotides (GGGC) and included (i) putative genes closely related to repB, which encodes a replication protein, and to pre(mob), which encodes a protein required for conjugative mobilization and site-specific recombination, and (ii) sequences very similar to the double- and single-strand origins (dso, ssoU) and the recombination site, RSA. The antibiotic resistance genes repB and pre(mob) carried by each of these plasmids were found in the same transcriptional orientation. | 1998 | 9661023 |
| 3040 | 12 | 0.9540 | Similarity in the Structure of tetD-Carrying Mobile Genetic Elements in Bacterial Strains of Different Genera Isolated from Cultured Yellowtail. Structure analysis was performed on the antibiotic-resistance-gene region of conjugative plasmids of four fish farm bacteria.The kanamycin resistance gene, IS26, and tetracycline resistance gene (tetA(D)) were flanked by two IS26s in opposite orientation in Citrobacter sp. TA3 and TA6, and Alteromonas sp. TA55 from fish farm A. IS26-Inner was disrupted with ISRSB101. The chloramphenicol resistance gene, IS26 and tetA (D) were flanked by two IS26s in direct orientation in Salmonella sp. TC67 from farm C. Structures of tetA (D) and IS26 were identical among the four bacteria, but there was no insertion within the IS26-Inner of Salmonella sp. TC67. Horizontal gene transfer between the strains of two different genera in fish farm A was suggested by the structure homologies of mobile genetic elements and antibiotic resistance genes. | 2016 | 27667524 |
| 3018 | 13 | 0.9539 | The large Bacillus plasmid pTB19 contains two integrated rolling-circle plasmids carrying mobilization functions. Plasmid pTB19 is a 27-kb plasmid originating from a thermophilic Bacillus species. It was shown previously that pTB19 contains an integrated copy of the rolling-circle type plasmid pTB913. Here we describe the analysis of a 4324-bp region of pTB19 conferring resistance to tetracycline. The nucleotide sequence of this region revealed all the characteristics of a second plasmid replicating via the rolling-circle mechanism. This sequence contained (i) the tetracycline resistance marker of pTB19, which is highly similar to other tetL-genes of gram-positive bacteria; (ii) a hybrid mob gene, which bears relatedness to both the mob-genes of pUB110 and pTB913; (iii) a palU type minus origin identical to those of pUB110 and pTB913; and (iv) a plus origin of replication similar to that of pTB913. A repB-type replication initiation gene sequence identical to that of pTB913 was present, which lacked the middle part (492 bp), thus preventing autonomous replication of this region. The hybrid mob gene was functional in conjugative mobilization of plasmids between strains of Bacillus subtilis. | 1991 | 1946749 |
| 360 | 14 | 0.9539 | Broad host range cloning vectors for gram-negative bacteria. A series of cloning vectors has been constructed based on the broad-host-range plasmid R300B. One of these vectors, pGSS33, has a size of 13.4 kb and carries four antibiotic resistance genes [ampicillin (Apr), chloramphenicol (Cmr), streptomycin (Smr) and tetracycline (Tcr)], all of which have restriction sites for insertional inactivation. The derivation, structure and uses of the plasmids are described. | 1984 | 6092235 |
| 3047 | 15 | 0.9538 | Formaldehyde-resistance in Enterobacteriaceae and Pseudomonas aeruginosa: identification of resistance genes by DNA-hybridization. A 4.1. Kb large DNA fragment of a E. coli plasmid pVU 3695, on which the genes for formaldehyde-resistance are located, was used as a DNA probe to identify bacteria that carry this segment among formaldehyde-resistant bacteria. It was shown by Southern Blot-, Dot Blot-, and Colony Blot- Hybridization studies that the DNA of all formaldehyde-resistant E. coli, Serratia marcescens, Enterobacter cloacae, Citrobacter freundii and Klebsiella pneumoniae strains tested hybridize with the DNA probe from E. coli. In contrast the E. coli DNA probe does not hybridize with the DNA from formaldehyde-resistant Pseudomonas aeruginosa strains. | 1991 | 1909132 |
| 3060 | 16 | 0.9537 | Integron mobilization unit as a source of mobility of antibiotic resistance genes. Antibiotic resistance genes are spread mostly through plasmids, integrons (as a form of gene cassettes), and transposons in gram-negative bacteria. We describe here a novel genetic structure, named the integron mobilization unit (IMU), that has characteristics similar to those of miniature inverted transposable elements (MITEs). Two IMUs (288 bp each) were identified from a carbapenem-resistant Enterobacter cloacae isolate that formed a composite structure encompassing a defective class 1 integron containing the carbapenem resistance gene bla(GES-5). This beta-lactamase gene was located on a 7-kb IncQ-type plasmid named pCHE-A, which was sequenced completely. The plasmid pCHE-A was not self conjugative but was mobilizable, and it was successfully transferred from E. cloacae to Pseudomonas aeruginosa. The in silico analysis of the extremities of the IMU elements identified similarities with those of insertion sequence ISSod9 from Shewanella oneidensis MR-1. The mobilization of the IMU composite structure was accomplished by using the transposase activity of ISSod9 that was provided in trans. This is the first identification of MITE-type structures as a source of gene mobilization, implicating here a clinically relevant antibiotic resistance gene. | 2009 | 19332679 |
| 3038 | 17 | 0.9537 | Biotinylated probes for epidemiological studies of drug resistance in Salmonella krefeld. A gene probe for ampicillin resistance and one for sulphonamide resistance were prepared to study the origin and the relation of multiple drug resistances in Salmonella krefeld. The resistance genes were cloned into the pACYC184 vector of Escherichia coli from a common plasmid of S. krefeld that encoded for resistance to ampicillin, chloramphenicol, kanamycin, streptomycin, sulphonamide and tetracycline resistance. Restriction map analysis and deletion analysis of a recombinant plasmid (pACSS1) showed that the gene determining ampicillin resistance was located on a 1.34 and 1.12 kb PstI fragment, and that the gene for sulphonamide resistance was located on a 0.85 kb PstI fragment. These fragments were used as probes. Their specificity was tested by colony hybridization with various bacterial species, including sensitive and resistance S. krefeld isolates. Further study indicated that the ampicillin resistance gene probe reacted with the gene for TEM-1 beta-lactamase and that the gene probe for sulphonamide resistance reacted with the gene for type II dihydropteroate synthase. The two probes were sufficiently specific to allow study of the epidemiology of resistance in S. krefeld and other enteric bacteria. | 1990 | 2190970 |
| 3054 | 18 | 0.9535 | Acquisition by a Campylobacter-like strain of aphA-1, a kanamycin resistance determinant from members of the family Enterobacteriaceae. A Campylobacter-like organism, BM2196, resistant to kanamycin and streptomycin-spectinomycin was isolated from the feces of a patient with acute enteritis. The kanamycin and streptomycin-spectinomycin resistances were not transferable to Camplylobacter sp. or to Escherichia coli, and no plasmid DNA was detected in this strain. The resistance genes were therefore tentatively assigned to a chromosomal locality. Analysis by the phosphocellulose paper-binding assay of extracts from BM2196 indicated that resistance to kanamycin and structurally related antibiotics was due to the synthesis of 3'-aminoglycoside phosphotransferase type I [APH(3')-I], an enzyme specific for gram-negative bacteria, and that resistance to streptomycin-spectinomycin was secondary to the presence of a 3",9-aminoglycoside adenylyltransferase. Homology between BM2196 and an APH(3')-I probe was detected by DNA-DNA hybridization. A 2.2-kilobase BM2196 DNA fragment conferring resistance to kanamycin was cloned in E. coli and was sequenced partially. The resistance gene appeared nearly identical to that of Tn903 from E. coli and was adjacent to IS15-delta, an insertion sequence widespread in gram-negative bacteria, thus indicating that Campylobacter species can act as a recipient for genes originating in members of the family Enterobacteriaceae. | 1987 | 2821885 |
| 1391 | 19 | 0.9534 | Faecal carriage of extended-spectrum β-lactamase-producing and AmpC β-lactamase-producing bacteria among Danish army recruits. During May and June 2008, 84 Danish army recruits were tested for faecal carriage of extended-spectrum β-lactamase (ESBL)-producing and AmpC β-lactamase-producing bacteria. Three ESBL-producing (CTX-M-14a) Escherichia coli isolates, two AmpC-producing (CMY-2) E. coli isolates and one AmpC-producing (CMY-34) Citrobacter freundii isolate were detected. Two of the CTX-M-14a E. coli isolates had similar pulsed-field gel electrophoresis and multilocus sequence typing profiles, indicating the same origin or transmission between the two army recruits. The bla(CTX-M-14a) genes were transferable to an E. coli recipient. These commensal bacteria therefore constitute a reservoir of resistance genes that can be transferred to other pathogenic bacteria in the intestine. | 2011 | 20718802 |