MINING - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
608900.9964Genomic analyses of metal resistance genes in three plant growth promoting bacteria of legume plants in Northwest mine tailings, China. To better understand the diversity of metal resistance genetic determinant from microbes that survived at metal tailings in northwest of China, a highly elevated level of heavy metal containing region, genomic analyses was conducted using genome sequence of three native metal-resistant plant growth promoting bacteria (PGPB). It shows that: Mesorhizobium amorphae CCNWGS0123 contains metal transporters from P-type ATPase, CDF (Cation Diffusion Facilitator), HupE/UreJ and CHR (chromate ion transporter) family involved in copper, zinc, nickel as well as chromate resistance and homeostasis. Meanwhile, the putative CopA/CueO system is expected to mediate copper resistance in Sinorhizobium meliloti CCNWSX0020 while ZntA transporter, assisted with putative CzcD, determines zinc tolerance in Agrobacterium tumefaciens CCNWGS0286. The greenhouse experiment provides the consistent evidence of the plant growth promoting effects of these microbes on their hosts by nitrogen fixation and/or indoleacetic acid (IAA) secretion, indicating a potential in-site phytoremediation usage in the mining tailing regions of China.201525597676
867010.9955Complete Genome Analysis of Subtercola sp. PAMC28395: Genomic Insights into Its Potential Role for Cold Adaptation and Biotechnological Applications. This study reports the complete genome sequence of Subtercola sp. PAMC28395, a strain isolated from cryoconite in Uganda. This strain possesses several active carbohydrate-active enzyme (CAZyme) genes involved in glycogen and trehalose metabolism. Additionally, two specific genes associated with α-galactosidase (GH36) and bacterial alpha-1,2-mannosidase (GH92) were identified in this strain. The presence of these genes indicates the likelihood that they can be expressed, enabling the strain to break down specific polysaccharides derived from plants or the shells of nearby crabs. The authors performed a comparative analysis of CAZyme patterns and biosynthetic gene clusters (BGCs) in several Subtercola strains and provided annotations describing the unique characteristics of these strains. The comparative analysis of BGCs revealed that four strains, including PAMC28395, have oligosaccharide BGCs, and we confirmed that the pentose phosphate pathway was configured perfectly in the genome of PAMC28395, which may be associated with adaptation to low temperatures. Additionally, all strains contained antibiotic resistance genes, indicating a complex self-resistance system. These results suggest that PAMC28395 can adapt quickly to the cold environment and produce energy autonomously. This study provides valuable information on novel functional enzymes, particularly CAZymes, that operate at low temperatures and can be used for biotechnological applications and fundamental research purposes.202337374983
870420.9953Unraveling nitrogen metabolism, cold and stress adaptation in polar Bosea sp. PAMC26642 through comparative genome analysis. Nitrogen metabolism, related genes, and other stress-resistance genes are poorly understood in Bosea strain. To date, most of the research work in Bosea strains has been focused on thiosulfate oxidation and arsenic reduction. This work aimed to better understand and identify genomic features that enable thiosulfate-oxidizing lichen-associated Bosea sp. PAMC26642 from the Arctic region of Svalbard, Norway, to withstand harsh environments. Comparative genomic analysis was performed using various bioinformatics tools to compare Bosea sp. PAMC26642 with other strains of the same genus, emphasizing nitrogen metabolism and stress adaptability. During genomic analysis of Bosea sp. PAMC26642, assimilatory nitrogen metabolic pathway and its associated enzymes such as nitrate reductase, NAD(P)H-nitrite reductase, ferredoxin-nitrite reductase, glutamine synthetase, glutamine synthase, and glutamate dehydrogenase were identified. In addition, carbonic anhydrase, cyanate lyase, and nitronate monooxygenase were also identified. Furthermore, the strain demonstrated nitrate reduction at two different temperatures (15°C and 25°C). Enzymes associated with various stress adaptation pathways, including oxidative stress (superoxide dismutase, catalase, and thiol peroxidase), osmotic stress (OmpR), temperature stress (Csp and Hsp), and heavy metal resistance, were also identified. The average Nucleotide Identity (ANI) value is found to be below the threshold of 94-95%, indicating this bacterium might be a potential new species. This study is very helpful in determining the diversity of thiosulfate-oxidizing nitrate-reducing bacteria, as well as their ability to adapt to extreme environments. These bacteria can be used in the future for environmental, biotechnological, and agricultural purposes, particularly in processes involving sulfur and nitrogen transformation.202439925882
16630.9953Cupriavidus metallidurans: evolution of a metal-resistant bacterium. Cupriavidus metallidurans CH34 has gained increasing interest as a model organism for heavy metal detoxification and for biotechnological purposes. Resistance of this bacterium to transition metal cations is predominantly based on metal resistance determinants that contain genes for RND (resistance, nodulation, and cell division protein family) proteins. These are part of transenvelope protein complexes, which seem to detoxify the periplasm by export of toxic metal cations from the periplasm to the outside. Strain CH34 contains 12 predicted RND proteins belonging to a protein family of heavy metal exporters. Together with many efflux systems that detoxify the cytoplasm, regulators and possible metal-binding proteins, RND proteins mediate an efficient defense against transition metal cations. To shed some light into the origin of genes encoding these proteins, the genomes of C. metallidurans CH34 and six related proteobacteria were investigated for occurrence of orthologous and paralogous proteins involved in metal resistance. Strain CH34 was not much different from the other six bacteria when the total content of transport proteins was compared but CH34 had significantly more putative transition metal transport systems than the other bacteria. The genes for these systems are located on its chromosome 2 but especially on plasmids pMOL28 and pMOL30. Cobalt-nickel and chromate resistance determinants located on plasmid pMOL28 evolved by gene duplication and horizontal gene transfer events, leading to a better adaptation of strain CH34 to serpentine-like soils. The czc cobalt-zinc-cadmium resistance determinant, located on plasmid pMOL30 in addition copper, lead and mercury resistance determinants, arose by duplication of a czcICAB core determinant on chromosome 2, plus addition of the czcN gene upstream and the genes czcD, czcRS, czcE downstream of czcICBA. C. metallidurans apparently evolved metal resistance by horizontal acquisition and by duplication of genes for transition metal efflux, mostly on the two plasmids, and decreased the number of uptake systems for those metals.200918830684
513840.9953Diversity and role of plasmids in adaptation of bacteria inhabiting the Lubin copper mine in Poland, an environment rich in heavy metals. The Lubin underground mine, is one of three mining divisions in the Lubin-Glogow Copper District in Lower Silesia province (Poland). It is the source of polymetallic ore that is rich in copper, silver and several heavy metals. Black shale is also significantly enriched in fossil organic matter in the form of long-chain hydrocarbons, polycyclic aromatic hydrocarbons, organic acids, esters, thiophenes and metalloporphyrins. Biological analyses have revealed that this environment is inhabited by extremophilic bacteria and fungi. Kupfershiefer black shale and samples of water, bottom and mineral sediments from the underground (below 600 m) Lubin mine were taken and 20 bacterial strains were isolated and characterized. All exhibited multi-resistant and hypertolerant phenotypes to heavy metals. We analyzed the plasmidome of these strains in order to evaluate the diversity and role of mobile DNA in adaptation to the harsh conditions of the mine environment. Experimental and bioinformatic analyses of 11 extrachromosomal replicons were performed. Three plasmids, including a broad-host-range replicon containing a Tn3 family transposon, carried genes conferring resistance to arsenic, cadmium, cobalt, mercury and zinc. Functional analysis revealed that the resistance modules exhibit host specificity, i.e., they may increase or decrease tolerance to toxic ions depending on the host strain. The other identified replicons showed diverse features. Among them we identified a catabolic plasmid encoding enzymes involved in the utilization of histidine and vanillate, a putative plasmid-like prophage carrying genes responsible for NAD biosynthesis, and two repABC-type plasmids containing virulence-associated genes. These findings provide an unique molecular insight into the pool of extrachromosomal replicons and highlight their role in the biology and adaptation of extremophilic bacteria inhabiting terrestrial deep subsurface.201526074880
13150.9952Characterization of Two Highly Arsenic-Resistant Caulobacteraceae Strains of Brevundimonas nasdae: Discovery of a New Arsenic Resistance Determinant. Arsenic (As), distributed widely in the natural environment, is a toxic substance which can severely impair the normal functions in living cells. Research on the genetic determinants conferring functions in arsenic resistance and metabolism is of great importance for remediating arsenic-contaminated environments. Many organisms, including bacteria, have developed various strategies to tolerate arsenic, by either detoxifying this harmful element or utilizing it for energy generation. More and more new arsenic resistance (ars) determinants have been identified to be conferring resistance to diverse arsenic compounds and encoded in ars operons. There is a hazard in mobilizing arsenic during gold-mining activities due to gold- and arsenic-bearing minerals coexisting. In this study, we isolated 8 gold enrichment strains from the Zijin gold and copper mine (Longyan, Fujian Province, China) wastewater treatment site soil, at an altitude of 192 m. We identified two Brevundimonas nasdae strains, Au-Bre29 and Au-Bre30, among these eight strains, having a high minimum inhibitory concentration (MIC) for As(III). These two strains contained the same ars operons but displayed differences regarding secretion of extra-polymeric substances (EPS) upon arsenite (As(III)) stress. B. nasdae Au-Bre29 contained one extra plasmid but without harboring any additional ars genes compared to B. nasdae Au-Bre30. We optimized the growth conditions for strains Au-Bre29 and Au-Bre30. Au-Bre30 was able to tolerate both a lower pH and slightly higher concentrations of NaCl. We also identified folE, a folate synthesis gene, in the ars operon of these two strains. In most organisms, folate synthesis begins with a FolE (GTP-Cyclohydrolase I)-type enzyme, and the corresponding gene is typically designated folE (in bacteria) or gch1 (in mammals). Heterologous expression of folE, cloned from B. nasdae Au-Bre30, in the arsenic-hypersensitive strain Escherichia coli AW3110, conferred resistance to As(III), arsenate (As(V)), trivalent roxarsone (Rox(III)), pentavalent roxarsone (Rox(V)), trivalent antimonite (Sb(III)), and pentavalent antimonate (Sb(V)), indicating that folate biosynthesis is a target of arsenite toxicity and increased production of folate confers increased resistance to oxyanions. Genes encoding Acr3 and ArsH were shown to confer resistance to As(III), Rox(III), Sb(III), and Sb(V), and ArsH also conferred resistance to As(V). Acr3 did not confer resistance to As(V) and Rox(V), while ArsH did not confer resistance to Rox(V).202235628430
638660.9951Distribution of antibiotic and metal resistance genes in two glaciers of North Sikkim, India. Glacier studies as of late have ruffled many eyeballs, exploring this frigid ecology to understand the impact of climate change. Mapquesting the glaciers led to the discovery of concealed world of "psychrophiles" harboring in it. In the present study, the antibiotic resistance genes (ARGs) and heavy metal resistance genes (MRGs) were evaluated through both the culture-dependent and culture-independent methods. Samples were collected from two different glaciers, i.e., debris-covered glacier (Changme Khangpu) and debris-free glacier (Changme Khang). Functional metagenomics of both the glacier samples, provided evidence of presence of resistant genes against various antibiotic groups. Bacitracin resistant gene (bacA) was the predominant ARG in both the glaciers. MRGs in both the glacier samples were diversified as the genes detected were resistant against various heavy metals such as arsenic, tungsten, mercury, zinc, chromium, copper, cobalt, and iron. Unique MRGs identified from Changme Khangpu glacier were resistant to copper (cutA, cutE, cutC, cutF, cueR, copC, and copB) and chromium (yelf, ruvB, nfsA, chrR, and chrA) whereas, from Changme Khang glacier they showed resistance against cobalt (mgtA, dmef, corD, corC, corB, and cnrA), and iron (yefD, yefC, yefB, and yefA) heavy metals. ARGs aligned maximum identity with Gram-negative psychrotolerant bacteria. The cultured bacterial isolates showed tolerance to high concentrations of tested heavy metal solutions. Interestingly, some of the antibiotic resistant bacterial isolates also showed tolerance towards the higher concentrations of heavy metals. Thus, an introspection of the hypothesis of co-occurrence and/co-selection of ARGs and MRGs in such environments has been highlighted here.202032888596
19170.9950Mariprofundus ferrooxydans PV-1 the first genome of a marine Fe(II) oxidizing Zetaproteobacterium. Mariprofundus ferrooxydans PV-1 has provided the first genome of the recently discovered Zetaproteobacteria subdivision. Genome analysis reveals a complete TCA cycle, the ability to fix CO(2), carbon-storage proteins and a sugar phosphotransferase system (PTS). The latter could facilitate the transport of carbohydrates across the cell membrane and possibly aid in stalk formation, a matrix composed of exopolymers and/or exopolysaccharides, which is used to store oxidized iron minerals outside the cell. Two-component signal transduction system genes, including histidine kinases, GGDEF domain genes, and response regulators containing CheY-like receivers, are abundant and widely distributed across the genome. Most of these are located in close proximity to genes required for cell division, phosphate uptake and transport, exopolymer and heavy metal secretion, flagellar biosynthesis and pilus assembly suggesting that these functions are highly regulated. Similar to many other motile, microaerophilic bacteria, genes encoding aerotaxis as well as antioxidant functionality (e.g., superoxide dismutases and peroxidases) are predicted to sense and respond to oxygen gradients, as would be required to maintain cellular redox balance in the specialized habitat where M. ferrooxydans resides. Comparative genomics with other Fe(II) oxidizing bacteria residing in freshwater and marine environments revealed similar content, synteny, and amino acid similarity of coding sequences potentially involved in Fe(II) oxidation, signal transduction and response regulation, oxygen sensation and detoxification, and heavy metal resistance. This study has provided novel insights into the molecular nature of Zetaproteobacteria.201121966516
513680.9950New mobile genetic elements in Cupriavidus metallidurans CH34, their possible roles and occurrence in other bacteria. Cupriavidus metallidurans strain CH34 is a beta-Proteobacterium that thrives in low concentrations of heavy metals. The genetic determinants of resistance to heavy metals are located on its two chromosomes, and are particularly abundant in the two megaplasmids, pMOL28 and pMOL30. We explored the involvement of mobile genetic elements in acquiring these and others traits that might be advantageous in this strain using genome comparison of Cupriavidus/Ralstonia strains and related beta-Proteobacteria. At least eleven genomic islands were identified on the main replicon, three on pMOL28 and two on pMOL30. Multiple islands contained genes for heavy metal resistance or other genetic determinants putatively responding to harsh environmental conditions. However, cryptic elements also were noted. New mobile genetic elements (or variations of known ones) were identified through synteny analysis, allowing the detection of mobile genetic elements outside the bias of a selectable marker. Tn4371-like conjugative transposons involved in chemolithotrophy and degradation of aromatic compounds were identified in strain CH34, while similar elements involved in heavy metal resistance were found in Delftia acidovorans SPH-1 and Bordetella petrii DSM12804. We defined new transposons, viz., Tn6048 putatively involved in the response to heavy metals and Tn6050 carrying accessory genes not classically associated with transposons. Syntenic analysis also revealed new transposons carrying metal response genes in Burkholderia xenovorans LB400, and other bacteria. Finally, other putative mobile elements, which were previously unnoticed but apparently common in several bacteria, were also revealed. This was the case for triads of tyrosine-based site-specific recombinases and for an int gene paired with a putative repressor and associated with chromate resistance.200919390985
513790.9950Genomic Islands Confer Heavy Metal Resistance in Mucilaginibacter kameinonensis and Mucilaginibacter rubeus Isolated from a Gold/Copper Mine. Heavy metals (HMs) are compounds that can be hazardous and impair growth of living organisms. Bacteria have evolved the capability not only to cope with heavy metals but also to detoxify polluted environments. Three heavy metal-resistant strains of Mucilaginibacer rubeus and one of Mucilaginibacter kameinonensis were isolated from the gold/copper Zijin mining site, Longyan, Fujian, China. These strains were shown to exhibit high resistance to heavy metals with minimal inhibitory concentration reaching up to 3.5 mM Cu((II)), 21 mM Zn((II)), 1.2 mM Cd((II)), and 10.0 mM As((III)). Genomes of the four strains were sequenced by Illumina. Sequence analyses revealed the presence of a high abundance of heavy metal resistance (HMR) determinants. One of the strain, M. rubeus P2, carried genes encoding 6 putative P(IB-1)-ATPase, 5 putative P(IB-3)-ATPase, 4 putative Zn((II))/Cd((II)) P(IB-4) type ATPase, and 16 putative resistance-nodulation-division (RND)-type metal transporter systems. Moreover, the four genomes contained a high abundance of genes coding for putative metal binding chaperones. Analysis of the close vicinity of these HMR determinants uncovered the presence of clusters of genes potentially associated with mobile genetic elements. These loci included genes coding for tyrosine recombinases (integrases) and subunits of mating pore (type 4 secretion system), respectively allowing integration/excision and conjugative transfer of numerous genomic islands. Further in silico analyses revealed that their genetic organization and gene products resemble the Bacteroides integrative and conjugative element CTnDOT. These results highlight the pivotal role of genomic islands in the acquisition and dissemination of adaptive traits, allowing for rapid adaption of bacteria and colonization of hostile environments.201830477188
8707100.9950Bacillus megaterium HgT21: a Promising Metal Multiresistant Plant Growth-Promoting Bacteria for Soil Biorestoration. The environmental deterioration produced by heavy metals derived from anthropogenic activities has gradually increased. The worldwide dissemination of toxic metals in crop soils represents a threat for sustainability and biosafety in agriculture and requires strategies for the recovery of metal-polluted crop soils. The biorestoration of metal-polluted soils using technologies that combine plants and microorganisms has gained attention in recent decades due to the beneficial and synergistic effects produced by its biotic interactions. In this context, native and heavy metal-resistant plant growth-promoting bacteria (PGPB) play a crucial role in the development of strategies for sustainable biorestoration of metal-contaminated soils. In this study, we present a genomic analysis and characterization of the rhizospheric bacterium Bacillus megaterium HgT21 isolated from metal-polluted soil from Zacatecas, Mexico. The results reveal that this autochthonous bacterium contains an important set of genes related to a variety of operons associated with mercury, arsenic, copper, cobalt, cadmium, zinc and aluminum resistance. Additionally, halotolerance-, beta-lactam resistance-, phosphate solubilization-, and plant growth-promotion-related genes were identified. The analysis of resistance to metal ions revealed resistance to mercury (Hg(II+)), arsenate [AsO(4)]³(-), cobalt (Co(2+)), zinc (Zn(2+)), and copper (Cu(2+)). Moreover, the ability of the HgT21 strain to produce indole acetic acid (a phytohormone) and promote the growth of Arabidopsis thaliana seedlings in vitro was also demonstrated. The genotype and phenotype of Bacillus megaterium HgT21 reveal its potential to be used as a model of both plant growth-promoting and metal multiresistant bacteria. IMPORTANCE Metal-polluted environments are natural sources of a wide variety of PGPB adapted to cope with toxic metal concentrations. In this work, the bacterial strain Bacillus megaterium HgT21 was isolated from metal-contaminated soil and is proposed as a model for the study of metal multiresistance in spore-forming Gram-positive bacteria due to the presence of a variety of metal resistance-associated genes similar to those encountered in the metal multiresistant Gram-negative Cupriavidus metallidurans CH34. The ability of B. megaterium HgT21 to promote the growth of plants also makes it suitable for the study of plant-bacteria interactions in metal-polluted environments, which is key for the development of techniques for the biorestoration of metal-contaminated soils used for agriculture.202235980185
150110.9950Identification of Resistance Genes and Response to Arsenic in Rhodococcus aetherivorans BCP1. Arsenic (As) ranks among the priority metal(loid)s that are of public health concern. In the environment, arsenic is present in different forms, organic or inorganic, featured by various toxicity levels. Bacteria have developed different strategies to deal with this toxicity involving different resistance genetic determinants. Bacterial strains of Rhodococcus genus, and more in general Actinobacteria phylum, have the ability to cope with high concentrations of toxic metalloids, although little is known on the molecular and genetic bases of these metabolic features. Here we show that Rhodococcus aetherivorans BCP1, an extremophilic actinobacterial strain able to tolerate high concentrations of organic solvents and toxic metalloids, can grow in the presence of high concentrations of As(V) (up to 240 mM) under aerobic growth conditions using glucose as sole carbon and energy source. Notably, BCP1 cells improved their growth performance as well as their capacity of reducing As(V) into As(III) when the concentration of As(V) is within 30-100 mM As(V). Genomic analysis of BCP1 compared to other actinobacterial strains revealed the presence of three gene clusters responsible for organic and inorganic arsenic resistance. In particular, two adjacent and divergently oriented ars gene clusters include three arsenate reductase genes (arsC1/2/3) involved in resistance mechanisms against As(V). A sequence similarity network (SSN) and phylogenetic analysis of these arsenate reductase genes indicated that two of them (ArsC2/3) are functionally related to thioredoxin (Trx)/thioredoxin reductase (TrxR)-dependent class and one of them (ArsC1) to the mycothiol (MSH)/mycoredoxin (Mrx)-dependent class. A targeted transcriptomic analysis performed by RT-qPCR indicated that the arsenate reductase genes as well as other genes included in the ars gene cluster (possible regulator gene, arsR, and arsenite extrusion genes, arsA, acr3, and arsD) are transcriptionally induced when BCP1 cells were exposed to As(V) supplied at two different sub-lethal concentrations. This work provides for the first time insights into the arsenic resistance mechanisms of a Rhodococcus strain, revealing some of the unique metabolic requirements for the environmental persistence of this bacterial genus and its possible use in bioremediation procedures of toxic metal contaminated sites.201931133997
6090120.9949Draft genome sequence of Mesorhizobium alhagi CCNWXJ12-2T, a novel salt-resistant species isolated from the desert of northwestern China. Mesorhizobium alhagi strain CCNWXJ12-2(T) is a novel species of soil-dwelling, nitrogen-fixing bacteria that can form symbiotic root nodules with Alhagi sparsifolia. Moreover, the strain has high resistance to salt and alkali. Here we report the draft genome sequence of Mesorhizobium alhagi strain CCNWXJ12-2(T). A large number of osmotic regulation-related genes have been identified.201222328758
8683130.9949Responses to copper stress in the metal-resistant bacterium Cupriavidus gilardii CR3: a whole-transcriptome analysis. Microbial metal-resistance mechanisms are the basis for the application of microorganisms in metal bioremediation. Despite the available studies of bacterial molecular mechanisms to resistance metals ions (particularly copper), the understanding of bacterial metal resistance is very limited from the transcriptome perspective. Here, responses of the transcriptome (RNA-Seq) was investigated in Cupriavidus gilardii CR3 exposed to 0.5 mM copper, because strain CR3 had a bioremoval capacity of 38.5% for 0.5 mM copper. More than 24 million clean reads were obtained from six libraries and were aligned against the C. gilardii CR3 genome. A total of 310 genes in strain CR3 were significantly differentially expressed under copper stress. Apart from the routine copper resistance operons cus and cop known in previous studies, Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses of differentially expressed genes indicated that the adenosine triphosphate-binding cassette transporter, amino acid metabolism, and negative chemotaxis collectively contribute to the copper-resistant process. More interestingly, we found that the genes associated with the type III secretion system were induced under copper stress. No such results were reordered in bacteria to date. Overall, this comprehensive network of copper responses is useful for further studies of the molecular mechanisms underlying responses to copper stress in bacteria.201930900763
5135140.9949Arsenotrophic Achromobacter aegrifaciens strains isolated from arsenic contaminated tubewell water and soil sources shared similar genomic potentials. BACKGROUND: Arsenic (As), found in diverse ecosystems, poses major public health risks in various parts of the world. Arsenotrophic bacteria in contaminated environments help reduce toxicity by converting arsenite (AsIII) to less harmful arsenate (AsV). We assumed that Achromobacter aegrifaciens strains from As-contaminated tubewell water and soil would share similar genomic characteristics associated with arsenic detoxification and bioremediation. To investigate this, we employed both culture-dependent and culture-independent viz. whole genome sequencing (WGS) methods to thoroughly elucidate the phenotypic and genotypic features of two A. aegrifaciens strains isolated from As-contaminated tubewell water (BAW48) and soil (BAS32) samples collected in the Bogura district of Bangladesh. RESULTS: Both BAW48 and BAS32 isolates demonstrated As(III) oxidation in the KMNO4 test, which was corroborated by molecular analysis confirming the presence of aioA and arsB genes in both strains. These strains were found to be phylogenetically related to many strains of Achromobacter spp., isolated from biological inorganic reactors, environmental soils, sediments and human clinical samples across diverse geographical regions. Moreover, both strains possessed distinct heavy metal resistance genes conferring resistance to Co, Zn, Cu, Cd, Hg, As, and Cr. Three As gene clusters such as As(III) oxidizing aioBA, As(III) reducing arsRCDAB and the MMA(III) oxidizing ars resistance gene (arsHCsO) cluster were predicted in both genomes of A. aegrifaciens. Further genomic analyses revealed similar profiles in both strains, with mobile genetic elements, antimicrobials and heavy metal resistance genes, virulence genes, and metabolic features. Pangenome and synteny analysis showed that the two genomes are evolutionary distinct from other strains, but closely related to one another. CONCLUSION: The genomic data confirmed that A. aegrifaciens strains can oxidize As(III) and detoxify heavy metals like As, suggesting their potential for As detoxification and bioremediation. These findings align with our assumption and provide a basis for developing sustainable solutions for bioremediation efforts in As-contaminated environments.202439627700
148150.9949As(III) Exposure Induces a Zinc Scarcity Response and Restricts Iron Uptake in High-Level Arsenic-Resistant Paenibacillus taichungensis Strain NC1. The Gram-positive bacterium Paenibacillus taichungensis NC1 was isolated from the Zijin gold-copper mine and shown to display high resistance to arsenic (MICs of 10 mM for arsenite in minimal medium). Genome sequencing indicated the presence of a number of potential arsenic resistance determinants in NC1. Global transcriptomic analysis under arsenic stress showed that NC1 not only directly upregulated genes in an arsenic resistance operon but also responded to arsenic toxicity by increasing the expression of genes encoding antioxidant functions, such as cat, perR, and gpx. In addition, two highly expressed genes, marR and arsV, encoding a putative flavin-dependent monooxygenase and located adjacent to the ars resistance operon, were highly induced by As(III) exposure and conferred resistance to arsenic and antimony compounds. Interestingly, the zinc scarcity response was induced under exposure to high concentrations of arsenite, and genes responsible for iron uptake were downregulated, possibly to cope with oxidative stress associated with As toxicity. IMPORTANCE Microbes have the ability to adapt and respond to a variety of conditions. To better understand these processes, we isolated the arsenic-resistant Gram-positive bacterium Paenibacillus taichungensis NC1 from a gold-copper mine. The transcriptome responding to arsenite exposure showed induction of not only genes encoding arsenic resistance determinants but also genes involved in the zinc scarcity response. In addition, many genes encoding functions involved in iron uptake were downregulated. These results help to understand how bacteria integrate specific responses to arsenite exposure with broader physiological responses.202235435714
8708160.9948Genome-Driven Discovery of Enzymes with Industrial Implications from the Genus Aneurinibacillus. Bacteria belonging to the genus Aneurinibacillus within the family Paenibacillaceae are Gram-positive, endospore-forming, and rod-shaped bacteria inhabiting diverse environments. Currently, there are eight validly described species of Aneurinibacillus; however, several unclassified species have also been reported. Aneurinibacillus spp. have shown the potential for producing secondary metabolites (SMs) and demonstrated diverse types of enzyme activities. These features make them promising candidates with industrial implications. At present, genomes of 9 unique species from the genus Aneurinibacillus are available, which can be utilized to decipher invaluable information on their biosynthetic potential as well as enzyme activities. In this work, we performed the comparative genome analyses of nine Aneurinibacillus species representing the first such comprehensive study of this genus at the genome level. We focused on discovering the biosynthetic, biodegradation, and heavy metal resistance potential of this under-investigated genus. The results indicate that the genomes of Aneurinibacillus contain SM-producing regions with diverse bioactivities, including antimicrobial and antiviral activities. Several carbohydrate-active enzymes (CAZymes) and genes involved in heavy metal resistance were also identified. Additionally, a broad range of enzyme classes were also identified in the Aneurinibacillus pan-genomes, making this group of bacteria potential candidates for future investigations with industrial applications.202133652876
183170.9948Response of the biomining Acidithiobacillus ferrooxidans to high cadmium concentrations. Cadmium is a heavy metal present in contaminated soils. It has no biological role but when entering cells generates DNA damage, overexpression of stress response proteins and misfolded proteins, amongst other deleterious effects. Acidithiobacillus ferrooxidans is an acidophilic bacterium resisting high concentrations of heavy metals such as cadmium. This is important for industrial bioleaching processes where Cd(+2) concentrations can be 5-100 mM. Cadmium resistance mechanisms in these microorganisms have not been fully characterized. A. ferrooxidans ATCC 53993 contains genes coding for possible metal resistance determinants such as efflux systems: P-type ATPases, RND transporters and cation diffusion facilitators. In addition, it has extra copies of these genes in its exclusive genomic island (GI). Several of these putative genes were characterized in the present report by determining their transcriptional expression profiles and functionality. Moreover, an iTRAQ proteomic analysis was carried out to explore new cadmium resistance determinants in this bacterium. Changes in iron oxidation components, upregulation of transport proteins and variations in ribosomal protein levels were seen. Finally, increased concentrations of exclusive putative cadmium ATPases present in strain ATCC 53993 GI and other non-identified proteins such as Lferr_0210, forming part of a possible operon, could explain its extreme cadmium resistance. SIGNIFICANCE: Cadmium is a very toxic heavy metal present in mining operations and contaminated environments, it can affect all living organisms, including humans. Therefore, it is important to know the resistance mechanisms of bacteria highly resistant to this metal. These microorganisms in turn, can be used to bioremediate more efficiently environments highly polluted with metals. The results obtained suggest A. ferrooxidans strain ATCC 53993 can be an efficient bacterium to remove cadmium, copper and other metals from contaminated sites.201930553947
130180.9947Genetics of metal resistance in acidophilic prokaryotes of acidic mine environments. Acidophilic bacteria inhabiting acidic mine regions cause natural leaching of sulphidic ores. They are now exploited in industrial operations for leaching of metals and beneficiation of low-grade and recalcitrant ores. Recent trends emphasize application of thermoacidophiles and genetic engineering of ore-leaching bacteria for greater success in this area. This requires an in-depth understanding on the molecular genetics of these bacteria and construction of cloning vectors for them. Metal resistance is considered as the most suitable phenotypic trait for cloning vectors of bio-mining chemolithoautotrophic (viz. Acidithiobacillus ferrooxidans) and heterotrophic (Acidiphilium and Acidocella species) bacteria of mine environments. These bacteria take part in ore-leaching either directly or indirectly, exhibit low to high level of resistance/tolerance to various metals under different conditions. Majority of these bacteria contain one or more plasmids--the genetic elements that usually carry metal resistant genes. But none of the At. ferrooxidans plasmids has been definitely proved to harbour metal-resistant genes which have mostly been found in the chromosome of this bacterium. Plasmids of acidophilic heterotrophs of the genera Acidiphilium and Acidocella, on the other hand, carry metal resistant genes. While genes bestowing arsenic resistance in Acidiphilium multivorum are similar to those analyzed from other sources, the metal (Cd and Zn)-resistance conferring cloned plasmid DNA fragments from Acidiphilium symbioticum KM2 and Acidocella GS19h strains were found to have no sequence similarity with the reported Cd- and Zn-resistant genes. Such observations indicate some novel aspects of metal resistance in acidophilic bacteria.200415274476
5141190.9947Flavobacterium flabelliforme sp. nov. and Flavobacterium geliluteum sp. nov., Two Multidrug-Resistant Psychrotrophic Species Isolated From Antarctica. Despite unfavorable Antarctic conditions, such as cold temperatures, freeze-thaw cycles, high ultraviolet radiation, dryness and lack of nutrients, microorganisms were able to adapt and surprisingly thrive in this environment. In this study, eight cold-adapted Flavobacterium strains isolated from a remote Antarctic island, James Ross Island, were studied using a polyphasic taxonomic approach to determine their taxonomic position. Phylogenetic analyses based on the 16S rRNA gene and 92 core genes clearly showed that these strains formed two distinct phylogenetic clusters comprising three and five strains, with average nucleotide identities significantly below 90% between both proposed species as well as between their closest phylogenetic relatives. Phenotyping revealed a unique pattern of biochemical and physiological characteristics enabling differentiation from the closest phylogenetically related Flavobacterium spp. Chemotaxonomic analyses showed that type strains P4023(T) and P7388(T) were characterized by the major polyamine sym-homospermidine and a quinone system containing predominantly menaquinone MK-6. In the polar lipid profile phosphatidylethanolamine, an ornithine lipid and two unidentified lipids lacking a functional group were detected as major lipids. These characteristics along with fatty acid profiles confirmed that these species belong to the genus Flavobacterium. Thorough genomic analysis revealed the presence of numerous cold-inducible or cold-adaptation associated genes, such as cold-shock proteins, proteorhodopsin, carotenoid biosynthetic genes or oxidative-stress response genes. Genomes of type strains surprisingly harbored multiple prophages, with many of them predicted to be active. Genome-mining identified biosynthetic gene clusters in type strain genomes with a majority not matching any known clusters which supports further exploratory research possibilities involving these psychrotrophic bacteria. Antibiotic susceptibility testing revealed a pattern of multidrug-resistant phenotypes that were correlated with in silico antibiotic resistance prediction. Interestingly, while typical resistance finder tools failed to detect genes responsible for antibiotic resistance, genomic prediction confirmed a multidrug-resistant profile and suggested even broader resistance than tested. Results of this study confirmed and thoroughly characterized two novel psychrotrophic Flavobacterium species, for which the names Flavobacterium flabelliforme sp. nov. and Flavobacterium geliluteum sp. nov. are proposed.202134745033