MINERALIZED - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
52300.9055Sulfide-carbonate-mineralized functional bacterial consortium for cadmium removal in flue gas. Sulfide-carbonate-mineralized functional bacterial consortium was constructed for flue gas cadmium biomineralization. A membrane biofilm reactor (MBfR) using the bacterial consortium containing sulfate reducing bacteria (SRB) and denitrifying bacteria (DNB) was investigated for flue gas cadmium (Cd) removal. Cadmium removal efficiency achieved 90%. The bacterial consortium containing Citrobacter, Desulfocurvus and Stappia were dominated for cadmium resistance-nitrate-sulfate reduction. Under flue gas cadmium stress, ten cadmium resistance genes (czcA, czcB, czcC, czcD, cadA, cadB, cadC, cueR, copZ, zntA), and seven genes related to sulfate reduction, increased in abundance; whereas others, nine genes related to denitrification, decreased, indicating that cadmium stress was advantageous to sulfate reduction in the competition with denitrification. A bacterial consortium could capable of simultaneously cadmium resistance, sulfate reduction and denitrification. Microbial induced carbonate precipitation (MICP) and biological adsorption process would gradually yield to sulfide-mineralized process. Flue gas cadmium could transform to Cd-EPS, cadmium carbonate (CdCO(3)) and cadmium sulfide (CdS) bioprecipitate. The functional bacterial consortium was an efficient and eco-friendly bifunctional bacterial consortium for sulfide-carbonate-mineralized of cadmium. This provides a green and low-carbon advanced treatment technology using sulfide-carbonate-mineralized functional bacterial consortium for the removal of cadmium or other hazardous heavy metal contaminants in flue gas.202439019186
774910.8884Interaction of ciprofloxacin chlorination products with bacteria in drinking water distribution systems. The interaction of ciprofloxacin chlorination products (CIP-CPs) with bacteria in drinking water distribution systems (DWDSs) was investigated. The piperazine ring of CIP was destroyed by chlorination. Among of CIP-CPs, by the bacterial role, 7.63% of the derivative with two carboxylic groups went through decarboxylation to form desethylene ciprofloxacin, and then loss of C(2)H(5)N group generated aniline compound. Furthermore, 12.3% of the aniline compound, 7.60% of chlorinated aniline compound and 1.35% of defluorinated product were bio-mineralized. Therefore, the chlorine and bacteria played synergistic effects on transformation of CIP-CPs in DWDSs, contributing to the obvious decrease of genotoxicity in effluents. Correspondingly, the TEQ(4-NQO) decreased from 667μg/L to 9.41μg/L. However, compared with DWDSs without CIP-CPs, the relative abundance of mexA and qnrS increased 1-fold in effluents and the relative abundance of qnrA and qnrB increased 3-fold in biofilms in DWDSs with CIP-CPs. mexA and qnrS positively correlated with Hyphomicrobium, Sphingomonas and Novosphingobium (p<0.05), while qnrA and qnrB positively correlated with Shewanella and Helicobacter (p<0.05), indicating the increase of antibiotic resistance genes (ARGs) came from the growth of these bacterial genera by transformation of CIP-CPs in DWDSs. These results suggested that biotransformation of antibiotics might increase ARGs risk in DWDSs.201728648729
787620.8875Sulfamethoxazole impact on pollutant removal and microbial community of aerobic granular sludge with filamentous bacteria. In this study, sulfamethoxazole (SMX) was employed to investigate its impact on the process of aerobic granule sludge with filamentous bacteria (FAGS). FAGS has shown great tolerance ability. FAGS in a continuous flow reactor (CFR) could keep stable with 2 μg/L of SMX addition during long-term operation. The NH(4)(+), chemical oxygen demand (COD), and SMX removal efficiencies kept higher than 80%, 85%, and 80%, respectively. Both adsorption and biodegradation play important roles in SMX removal for FAGS. The extracellular polymeric substances (EPS) might play important role in SMX removal and FAGS tolerance to SMX. The EPS content increased from 157.84 mg/g VSS to 328.22 mg/g VSS with SMX addition. SMX has slightly affected on microorganism community. A high abundance of Rhodobacter, Gemmobacter, and Sphaerotilus of FAGS may positively correlate to SMX. The SMX addition has led to the increase in the abundance of the four sulfonamide resistance genes in FAGS.202336871701
811230.8866Fate of antibiotic resistance bacteria and genes during enhanced anaerobic digestion of sewage sludge by microwave pretreatment. The fate of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) were investigated during the sludge anaerobic digestion (AD) with microwave-acid (MW-H), microwave (MW) and microwave-H2O2-alkaline (MW-H2O2) pretreatments. Results showed that combined MW pretreatment especially for the MW-H pretreatment could efficiently reduce the ARB concentration, and most ARG concentrations tended to attenuate during the pretreatment. The subsequent AD showed evident removal of the ARB, but most ARGs were enriched after AD. Only the concentration of tetX kept continuous declination during the whole sludge treatment. The total ARGs concentration showed significant correlation with 16S rRNA during the pretreatment and AD. Compared with unpretreated sludge, the AD of MW and MW-H2O2 pretreated sludge presented slightly better ARB and ARGs reduction efficiency.201626970692
774540.8865Iron-modified biochar boosts anaerobic digestion of sulfamethoxazole pharmaceutical wastewater: Performance and microbial mechanism. The accumulation of volatile fatty acids (VFAs) caused by antibiotic inhibition significantly reduces the treatment efficiency of sulfamethoxazole (SMX) wastewater. Few studies have been conducted to study the VFAs gradient metabolism of extracellular respiratory bacteria (ERB) and hydrogenotrophic methanogen (HM) under high-concentration sulfonamide antibiotics (SAs). And the effects of iron-modified biochar on antibiotics are unknown. Here, the iron-modified biochar was added to an anaerobic baffled reactor (ABR) to intensify the anaerobic digestion of SMX pharmaceutical wastewater. The results demonstrated that ERB and HM were developed after adding iron-modified biochar, promoting the degradation of butyric, propionic and acetic acids. The content of VFAs reduced from 1166.0 mg L(-1) to 291.5 mg L(-1). Therefore, chemical oxygen demand (COD) and SMX removal efficiency were improved by 22.76% and 36.51%, and methane production was enhanced by 6.19 times. Furthermore, the antibiotic resistance genes (ARGs) such as sul1, sul2, intl1 in effluent were decreased by 39.31%, 43.33%, 44.11%. AUTHM297 (18.07%), Methanobacterium (16.05%), Geobacter (6.05%) were enriched after enhancement. The net energy after enhancement was 0.7122 kWh m(-3). These results confirmed that ERB and HM were enriched via iron-modified biochar to achieve high efficiency of SMX wastewater treatment.202337030222
52450.8859Sulfamethoxazole degradation by Pseudomonas silesiensis F6a isolated from bioelectrochemical technology-integrated constructed wetlands. The antibiotic-degrading ability and mechanism of the bacteria in the novel and ecological bioelectrochemical technology-integrated constructed wetlands (BICW) remain unknown. In this study, the sulfamethoxazole (SMX) degrading strain Pseudomonas silesiensis F6a (F6a), which had high degradation efficiency, was firstly isolated from a substrate sample in BICW. The SMX degradation process of F6a follows pseudo first order kinetics. Four metabolic pathways and twelve degradation products were identified. Based on genomics and proteomics analysis, six key SMX-degrading genes, Gene4641 deoC, Gene0552 narI, Gene0546 luxS, Gene1753 nuoH, Gene0655 and Gene4650, were identified, which were mainly participated in C-S cleavage, S-N hydrolysis and isoxazole ring cleavage. Interestingly, we found the corresponding sulfonamides resistance genes were not detected in F6a, which may provide an evidence for low abundance of the sulfonamides resistance genes in BICW system. These findings would contribute to a better understanding of biotransformation of antibiotic in the BICW.202235636241
789760.8857Enhanced removal of antibiotic and antibiotic resistance genes by coupling biofilm electrode reactor and manganese ore substrate up-flow microbial fuel cell constructed wetland system. Manganese ore substrate up-flow microbial fuel cell constructed wetland (UCW-MFC(Mn)) as an innovative wastewater treatment technology for purifying antibiotics and electricity generation with few antibiotic resistance genes (ARGs) generation has attracted attention. However, antibiotic purifying effects should be further enhanced. In this study, a biofilm electrode reactor (BER) that needs direct current driving was powered by a Mn ore anode (UCW-MFC(Mn)) to form a coupled system without requiring direct-current source. Removal efficiencies of sulfadiazine (SDZ), ciprofloxacin (CIP) and the corresponding ARGs in the coupled system were compared with composite (BER was powered by direct-current source) and anaerobic systems (both of BER and UCW-MFC were in open circuit mode). The result showed that higher antibiotic removal efficiency (94% for SDZ and 99.1% for CIP) in the coupled system was achieved than the anaerobic system (88.5% for SDZ and 98.2% for CIP). Moreover, electrical stimulation reduced antibiotic selective pressure and horizontal gene transfer potential in BER, and UCW-MFC further reduced ARG abundances by strengthening the electro-adsorption of ARG hosts determined by Network analysis. Bacterial community diversity continuously decreased in BER while it increased in UCW-MFC, indicating that BER mitigated the toxicity of antibiotic. Degree of modularity, some functional bacteria (antibiotic degrading bacteria, fermentative bacteria and EAB), and P450 enzyme related to antibiotic and xenobiotics biodegradation genes were enriched in electric field existing UCW-MFC, accounting for the higher degradation efficiency. In conclusion, this study provided an effective strategy for removing antibiotics and ARGs in wastewater by operating a BER-UCW-MFC coupled system.202337437616
787770.8857External circuit loading mode regulates anode biofilm electrochemistry and pollutants removal in microbial fuel cells. This study investigated the effects of different external circuit loading mode on pollutants removal and power generation in microbial fuel cells (MFC). The results indicated that MFC exhibited distinct characteristics of higher maximum power density (P(max)) (named MFC-HP) and lower P(max) (named MFC-LP). And the capacitive properties of bioanodes may affect anodic electrochemistry. Reducing external load to align with the internal resistance increased P(max) of MFC-LP by 54.47 %, without no obvious effect on MFC-HP. However, intermittent external resistance loading (IER) mitigated the biotoxic effects of sulfamethoxazole (SMX) (a persistent organic pollutant) on chemical oxygen demand (COD) and NH(4)(+)-N removal and maintained high P(max) (424.33 mW/m(2)) in MFC-HP. Meanwhile, IER mode enriched electrochemically active bacteria (EAB) and environmental adaptive bacteria Advenella, which may reduce antibiotic resistance genes (ARGs) accumulation. This study suggested that the external circuit control can be effective means to regulate electrochemical characteristics and pollutants removal performance of MFC.202439153696
789880.8850Effects of graphite and Mn ore media on electro-active bacteria enrichment and fate of antibiotic and corresponding resistance gene in up flow microbial fuel cell constructed wetland. This study assessed the influence of substrate type on pollutants removal, antibiotic resistance gene (ARG) fate and bacterial community evolution in up-flow microbial fuel cell constructed wetlands (UCW-MFC) with graphite and Mn ore electrode substrates. Better COD removal and higher bacterial community diversity and electricity generation performance were achieved in Mn ore constructed UCW-MFC (Mn). However, the lower concentration of sulfadiazine (SDZ) and the total abundances of ARGs were obtained in the effluent in the graphite constructed UCW-MFC (s), which may be related to higher graphite adsorption and filter capacity. Notably, both reactors can remove more than 97.8% of ciprofloxacin. In addition, significant negative correlations were observed between SDZ, COD concentration, ARG abundances and bacterial a-diversity indices. The LEfse analysis revealed significantly different bacterial communities due to the substrate differences in the two reactors, and Geobacter, a typical model electro-active bacteria (EAB), was greatly enriched on the anode of UCW-MFC (Mn). In contrast, the relative abundance of methanogens (Methanosaeta) was inhibited. PICRUSt analysis results further demonstrated that the abundance of extracellular electron transfer related functional genes was increased, but the methanogen function genes and multiple antibiotic resistance genes in UCW-MFC (Mn) anode were reduced. Redundancy analyses indicated that substrate type, antibiotic accumulation and bacterial community were the main factors affecting ARGs. Moreover, the potential ARG hosts and the co-occurrence of ARGs and intI1 were revealed by network analysis.201931442759
811090.8848Removal of chlortetracycline and antibiotic resistance genes in soil by earthworms (epigeic Eisenia fetida and endogeic Metaphire guillelmi). The impacts of two ecological earthworms on the removal of chlortetracycline (CTC, 0.5 and 15 mg kg(-1)) and antibiotic resistance genes (ARGs) in soil were explored through the soil column experiments. The findings showed that earthworm could significantly accelerate the degradation of CTC and its metabolites (ECTC) in soil (P < 0.05), with epigeic Eisenia fetida promoting degradation rapidly and endogeic Metaphire guillelmi exhibiting a slightly better elimination effect. Earthworms alleviated the abundances of tetR, tetD, tetPB, tetG, tetA, sul1, TnpA, ttgB and intI1 in soil, with the total relative abundances of ARGs decreasing by 35.0-44.2% in earthworm treatments at the 28th day of cultivation. High throughput sequencing results displayed that the structure of soil bacteria community was modified apparently with earthworm added, and some possible CTC degraders, Aeromonas, Flavobacterium and Luteolibacter, were promoted by two kinds of earthworms. Redundancy analysis demonstrated that the reduction of CTC residues, Actinobacteria, Acidobacteria and Gemmatimonadetes owing to earthworm stimulation was responsible for the removal of ARGs and intI1 in soil. Additionally, intI1 declined obviously in earthworm treatments, which could weaken the risk of horizontal transmission of ARGs. Therefore, earthworm could restore the CTC-contaminated soil via enhancing the removal of CTC, its metabolites and ARGs.202133798888
7875100.8845Phenacetin enhanced the inorganic nitrogen removal performance of anammox bacteria naturally in-situ enriched system. Among the earliest synthetic antipyretic drugs, phenacetin (PNCT) could be used as the novel partial nitrification (PN) inhibitor to effectively inhibit nitrite-oxidizing bacteria (NOB). In practical application, the rapidly starting of PN could provide stable source of nitrite for anaerobic ammonium oxidation (anammox) process. However, impact of PNCT on anaerobic ammonia oxidizing bacteria (AnAOB) and its underlying mechanisms were not clear. In this research, totally 14 times of PNCT aerobic soaking treatment were performed in the AnAOB naturally enrichment system to improve total inorganic nitrogen removal efficiency (TINRE). After once of PNCT treatment, TINRE rose from 61.89 % to 79.93 %. After 14 times of PNCT treatment, NOB Nitrospira relative abundance decreased from 9.82 % to 0.71 %, though Candidatus Brocadia relative abundance also declined, it might gradually adjust to PNCT by converting the leading oligotype species. The activity and relative abundances of NOB were reduced by PNCT via decreasing the abundances of genes amoA and nxrB, enzymes NxrA and NxrB. Moreover, Candidatus Jettenia and Ca. Brocadia might be the potential host of qacH-01 and they played the crucial role in the shaping profile of antibiotic resistance genes (ARGs). The explosive propagation or transmission of ARGs might not take place after PNCT treatment.202439566627
7888110.8842Microecology of aerobic denitrification system construction driven by cyclic stress of sulfamethoxazole. The construction of aerobic denitrification (AD) systems in an antibiotic-stressed environment is a serious challenge. This study investigated strategy of cyclic stress with concentration gradient (5-30 mg/L) of sulfamethoxazole (SMX) in a sequencing batch reactor (SBR), to achieve operation of AD. Total nitrogen removal efficiency of system increased from about 10 % to 95 %. Original response of abundant-rare genera to antibiotics was changed by SMX stress, particularly conditionally rare or abundant taxa (CRAT). AD process depends on synergistic effect of heterotrophic nitrifying aerobic denitrification bacteria (Paracoccus, Thauera, Hypomicrobium, etc). AmoABC, napA, and nirK were functionally co-expressed with multiple antibiotic resistance genes (ARGs) (acrR, ereAB, and mdtO), facilitating AD process. ARGs and TCA cycling synergistically enhance the antioxidant and electron transport capacities of AD process. Antibiotic efflux pump mechanism played an important role in operation of AD. The study provides strong support for regulating activated sludge to achieve in situ AD function.202438710419
8113120.8838Fate of antibiotic resistance genes in mesophilic and thermophilic anaerobic digestion of chemically enhanced primary treatment (CEPT) sludge. Anaerobic digestion (AD) of chemically enhanced primary treatment (CEPT) sludge and non-CEPT (conventional sedimentation) sludge were comparatively operated under mesophilic and thermophilic conditions. The highest methane yield (692.46±0.46mL CH(4)/g VS(removed) in CEPT sludge) was observed in mesophilic AD of CEPT sludge. Meanwhile, thermophilic conditions were more favorable for the removal of total antibiotic resistance genes (ARGs). In this study, no measurable difference in the fates and removal of ARGs and class 1 integrin-integrase gene (intI1) was observed between treated non-CEPT and CEPT sludge. However, redundancy analysis indicated that shifts in bacterial community were primarily accountable for the variations in ARGs and intI1. Network analysis further revealed potential host bacteria for ARGs and intI1.201728797965
7874130.8836Phenacetin promoted the rapid start-up and stable maintenance of partial nitrification: Responses of nitrifiers and antibiotic resistance genes. Phenacetin (PNCT) belongs to one of the earliest synthetic antipyretics. However, impact of PNCT on nitrifying microorganisms in wastewater treatment plants and its potential microbial mechanism was still unclear. In this study, PN could be initiated within six days by PNCT anaerobic soaking treatment (8 mg/L). In order to improve the stable performance of PN, 21 times of PNCT aerobic soaking treatment every three days was conducted and PN was stabilized for 191 days. After PN was damaged, ten times of PNCT aerobic soaking treatment every three days was conducted and PN was recovered after once soaking, maintained over 88 days. Ammonia oxidizing bacteria might change the dominant oligotype to gradually adjust to PNCT, and the increase of abundance and activity of Nitrosomonas promoted the initiation of PN. For nitrite-oxidizing bacteria (NOB), the increase of Candidatus Nitrotoga and Nitrospira destroyed PN, but PN could be recovered after once aerobic soaking illustrating NOB was not resistant to PNCT. KEGG and COG analysis suggested PNCT might disrupt rTCA cycle of Nitrospira, resulting in the decrease of relative abundance of Nitrospira. Moreover, PNCT did not lead to the sharp increase of absolute abundances of antibiotic resistance genes (ARGs), and the risk of ARGs transmission was negligible.202438744392
522140.8830Detoxification of ars genotypes by arsenite-oxidizing bacteria through arsenic biotransformation. The detoxification process of transforming arsenite (As(III)) to arsenate (As(V)) through bacterial oxidation presents a potent approach for bioremediation of arsenic-polluted soils in abandoned mines. In this study, twelve indigenous arsenic-oxidizing bacteria (AOB) were isolated from arsenic-contaminated soils. Among these, Paenibacillus xylanexedens EBC-SK As2 (MF928871) and Ochrobactrum anthropi EBC-SK As11 (MF928880) were identified as the most effective arsenic-oxidizing isolates. Evaluations for bacterial arsenic resistance demonstrated that P. xylanexedens EBC-SK As2 (MF928871) could resist As(III) up to 40 mM, while O. anthropi EBC-SK As11 (MF928880) could resist As(III) up to 25 mM. From these bacterial strains, genotypes of arsenic resistance system (ars) were detected, encompassing ars leader genes (arsR and arsD), membrane genes (arsB and arsJ), and aox genes known to be crucial for arsenic detoxification. These ars genotypes in the isolated AOBs might play an instrumental role in arsenic-contaminated soils with potential to reduce arsenic contamination.202439382695
7828150.8829Simultaneous elimination of antibiotic-resistant bacteria and antibiotic resistance genes by different Fe-N co-doped biochars activating peroxymonosulfate: The key role of pyridine-N and Fe-N sites. The coexistence of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in the environment poses a potential threat to public health. In our study, we have developed a novel advanced oxidation process for simultaneously removing ARGs and ARB by two types of iron and nitrogen-doped biochar derived from rice straw (FeN-RBC) and sludge (FeN-SBC). All viable ARB (approximately 10(8) CFU mL(-1)) was inactivated in the FeN-RBC/ peroxymonosulfate (PMS) system within 40 min and did not regrow after 48 h even in real water samples. Flow cytometry identified 96.7 % of dead cells in the FeN-RBC/PMS system, which verified the complete inactivation of ARB. Thorough disinfection of ARB was associated with the disruption of cell membranes and intracellular enzymes related to the antioxidant system. Whereas live bacteria (approximately 200 CFU mL(-1)) remained after FeN-SBC/PMS treatment. Intracellular and extracellular ARGs (tetA and tetB) were efficiently degraded in the FeN-RBC/PMS system. The production of active species, primarily •OH, SO(4)(•-) and Fe (IV), as well as electron transfer, were essential to the effective disinfection of FeN-RBC/PMS. In comparison with FeN-SBC, the better catalytic performance of FeN-RBC was mainly ascribed to its higher amount of pyridine-N and Fe(0), and more reactive active sites (such as CO group and Fe-N sites). Density functional theory calculations indicated the greater adsorption energy and Bader charge, more stable Fe-O bond, more easily broken OO bond in FeN-RBC/PMS, which demonstrated the stronger electron transfer capacity between FeN-RBC and PMS. To encapsulate, our study provided an efficient and dependable method for the simultaneous elimination of ARGs and ARB in water.202438669989
7880160.8825The synergistic mechanism of β-lactam antibiotic removal between ammonia-oxidizing microorganisms and heterotrophs. Nitrifying system is an effective strategy to remove numerous antibiotics, however, the contribution of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and heterotrophs for antibiotic removal are still unclear. In this study, the mechanism of β-lactam antibiotic (cefalexin, CFX) removal was studied in a nitrifying sludge system. Results showed that CFX was synergistically removed by AOB (Nitrosomonas, played a major role) and AOA (Candidatus_Nitrososphaera) through ammonia monooxygenase-mediated co-metabolism, and by heterotrophs (Pseudofulvimonas, Hydrogenophaga, RB41, Thauera, UTCFX1, Plasticicumulans, Phaeodactylibacter) through antibiotic resistance genes (ARGs)-encoded β-lactamases-mediated hydrolysis. Regardless of increased archaeal and heterotrophic CFX removal with the upregulation of amoA in AOA and ARGs, the system exhibited poorer CFX removal performance at 10 mg/L, mainly due to the inhibition of AOB. This study provides new reference for the important roles of heterotrophs and ARGs, opening the possibilities for the application of ARGs in antibiotic biodegradation.202336174754
8054170.8825Effects of nanoscale zero-valent iron on the performance and the fate of antibiotic resistance genes during thermophilic and mesophilic anaerobic digestion of food waste. The effects of nanoscale zero-valent iron (nZVI) on the performance of food waste anaerobic digestion and the fate of antibiotic resistance genes (ARGs) were investigated in thermophilic (TR) and mesophilic (MR) reactors. Results showed that nZVI enhanced biogas production and facilitated ARGs reduction. The maximum CH(4) production was 212.00 ± 4.77 ml/gVS with 5 g/L of nZVI in MR. The highest ARGs removal ratio was 86.64 ± 0.72% obtained in TR at nZVI of 2 g/L. nZVI corrosion products and their contribution on AD performance were analyzed. The abundance of tetracycline genes reduced significantly in nZVI amended digesters. Firmicutes, Chloroflexi, Proteobacteria and Spirochaetes showed significant positive correlations with various ARGs (p < 0.05) in MR and TR. Redundancy analysis indicated that microbial community was the main factor that influenced the fate of ARGs. nZVI changed microbial communities, with decreasing the abundance bacteria belonging to Firmicutes and resulting in the reduction of ARGs.201931505392
7919180.8823Bioaugmentation using HN-AD consortia for high salinity wastewater treatment: Synergistic effects of halotolerant bacteria and nitrogen removal bacteria. Bioaugmentation shows promise in enhancing nitrogen removal efficiency of high-salt wastewater, yet the impact of microbial associations on ecosystem function and community stability remains unclear. This study innovatively introduced a novel heterotrophic nitrification-aerobic denitrification bacterial consortium to improve the performance of SBR reactor for removing nitrogen from saline wastewater. The results revealed that the bioaugmented reactor (R2) exhibited superior removal performance, achieving maximum removal efficiencies of 87.8 % for COD and 97.8 % for NH(4)(+)-N. Moreover, proper salinity (2 % and 4 %) promoted the secretion of EPS and ectoine, further enhancing the resistance and stability of bacterial consortia. 16S rRNA gene sequencing and metagenomics analysis revealed the key denitrifying bacteria Pseudomonas and salt-tolerant bacteria Halomonas were successfully coexistence and the relative abundances of crucial genes (napB, nirS, norB, norC and nosZ) were increased obviously, which were benefit for the excellent nitrogen removal performance in R2. These findings elucidate microbial interactions in response to salinity in bioaugmentation, providing a valuable reference for the efficient treatment of high-saline wastewater.202540233618
7859190.8821Abatement of antibiotics and resistance genes during catalytic ozonation enhanced sludge dewatering process: Synchronized in volume and hazardousness reduction. Based on the efficiency of the catalytic ozonation techniques (HDWS+O(3) and MnFe(2)O(4) @SBC+O(3)) in enhancing the sludge dewaterability, the effectiveness in synchronized abatement antibiotics and antibiotic resistance genes (ARGs) was conducted to determine. The results revealed that catalytic ozonation conditioning altered the distribution of target antibiotics (tetracycline (TC), oxytetracycline (OTC), norfloxacin (NOR), ofloxacin (OFL)) in the dewatered filtrate, the dewatered sludge cake and the extra-microcolony/cellular polymers (EMPS/ECPS) layers, achieving the redistribution from solid-phase adsorption to liquid-phase dissolution. The total degradation rate was over 90% for TC and OTC, 72-78% for NOR and OFL; the abatement efficiency of eleven ARGs reached 1.47-3.01 log and 1.64-3.59 log, respectively, and more than four eARGs were eliminated. The effective abatement of the absolute abundance of Mobile genetic elements (MGEs) (0.91-1.89 log) demonstrated that catalytic ozonation conditioning could also significantly inhibit horizontal gene transfer (HGT). The abundance of resistant bacteria was greatly reduced and the signal transduction of the typical ARGs host bacteria was inhibited. The highly reactive oxidation species (ROS) generated were responsible for the abatement of antibiotics and ARGs. These findings provided new insights into the sludge conditioning for ideal and synchronized reduction in volume and hazardousness by catalytic ozonation processes in sludge treatment.202437944236