MICROSCOPE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
905100.9816Chlorogenic acid inhibits virulence and resistance gene transfer in outer membrane vesicles of carbapenem-resistant Klebsiella pneumoniae. INTRODUCTION: Carbapenem-resistant Klebsiella pneumoniae (CRKp) infection poses a significant global public health challenge, with the misuse of antibiotics further contributing to the development of resistance and triggering harmful inflammatory responses. Outer membrane vesicles (OMVs) released by CRKp under sub-lethal concentration of MEM pressure (KOMV-MEM) exhibit enhanced virulence and greater efficiency in transferring resistance genes. METHODS: We investigated the inhibitory effects of chlorogenic acid (CA) on KOMV-MEM characteristics and its protective role in KOMV-MEM infected mice. Based on LC-MS proteomic analysis of vesicles, we screened for potential targets of KOMV-MEM in promoting macrophage (MØ) pyroptosis pathways and inducing resistance gene transfer. Subsequently, computational predictions and experimental validation were performed to determine how CA regulates these mechanisms. RESULTS: This study confirmed that, under MEM pressure, the exacerbated infection levels in CRKp-inoculated mice are attributable to the high virulence of KOMV-MEM. Computational and experimental results demonstrated that CA inhibits pyroptosis by reducing MØ capture of KOMV-MEM through blocking the interaction between GroEL and LOX-1. Furthermore, CA prevents the spread of resistance genes by disrupting the conjugation and transfer processes between KOMV-MEM and recipient bacteria. Finally, in vitro and in vivo assays showed that CA inhibits KOMV-MEM resistance enzymes, thereby preventing the hydrolysis of MEM in the environment and depriving susceptible bacteria of protection. DISCUSSION: These findings provide the first confirmation that CA can inhibit both the virulence and the transmission of drug resistance in KOMV-MEM. This underscores the potential of CA treatment as a promising antimicrobial strategy against CRKp infection.202540230687
902210.9813Drug repositioning: doxazosin attenuates the virulence factors and biofilm formation in Gram-negative bacteria. The resistance development is an increasing global health risk that needs innovative solutions. Repurposing drugs to serve as anti-virulence agents is suggested as an advantageous strategy to diminish bacterial resistance development. Bacterial virulence is controlled by quorum sensing (QS) system that orchestrates the expression of biofilm formation, motility, and virulence factors production as enzymes and virulent pigments. Interfering with QS could lead to bacterial virulence mitigation without affecting bacterial growth that does not result in bacterial resistance development. This study investigated the probable anti-virulence and anti-QS activities of α-adrenoreceptor blocker doxazosin against Proteus mirabilis and Pseudomonas aeruginosa. Besides in silico study, in vitro and in vivo investigations were conducted to assess the doxazosin anti-virulence actions. Doxazosin significantly diminished the biofilm formation and release of QS-controlled Chromobacterium violaceum pigment and virulence factors in P. aeruginosa and P. mirabilis, and downregulated the QS encoding genes in P. aeruginosa. Virtually, doxazosin interfered with QS proteins, and in vivo protected mice against P. mirabilis and P. aeruginosa. The role of the membranal sensors as QseC and PmrA was recognized in enhancing the Gram-negative virulence. Doxazosin downregulated the membranal sensors PmR and QseC encoding genes and could in silico interfere with them. In conclusion, this study preliminary documents the probable anti-QS and anti-virulence activities of doxazosin, which indicate its possible application as an alternative or in addition to antibiotics. However, extended toxicological and pharmacological investigations are essential to approve the feasible clinical application of doxazosin as novel efficient anti-virulence agent. KEY POINTS: • Anti-hypertensive doxazosin acquires anti-quorum sensing activities • Doxazosin diminishes the virulence of Proteus mirabilis and Pseudomonas aeruginosa • Doxazosin could dimmish the bacterial espionage.202337079062
859520.9812Antimicrobial poly(ionic liquid)-induced bacterial nanotube formation and drug-resistance spread. Bacterial nanotubes are tubular membranous structures bulging from the cell surface that can connect neighboring bacteria for the exchange of intercellular substances. However, little is known about the formation and function of bacterial nanotubes under the stress of antimicrobial materials. Herein, an imidazolium-type cationic poly(ionic liquid) (PIL) and corresponding PIL membranes with antimicrobial properties were synthesized. The effects of these cationic polymers on the formation of bacterial nanotubes between Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) or Vibrio fischeri (V. fischeri), followed by intraspecies and interspecies exchange of antibiotic resistance genes (ARGs) were investigated. The results showed that bacteria tend to produce more nanotubes accompanied by drug-resistance trade, which can even make the ARGs of pathogens spread to the environmental microbes of V. fischeri. Given the unique antimicrobial sustainability toward bacteria after they acquire ARGs via bacterial nanotubes, antimicrobial PILs demonstrate bright prospects in the battle against resistant bacteria.202236155673
849630.9811Neglected resistance risks: Cooperative resistance of antibiotic resistant bacteria influenced by primary soil components. Various antibiotic resistant bacteria (ARB) can thrive in soil and resist such environmental pressures as antibiotics through cooperative resistance, thereby promoting ARB retention and antibiotic resistance genes transmission. However, there has been finite knowledge in regard to the mechanisms and potential ecological risks of cooperative resistance in soil microbiome. In this study, soil minerals and organic matters were designed to treat a mixture of two Escherichia coli strains with different antibiotic resistance (E. coli DH5α/pUC19 and E. coli XL2-Blue) to determine how soil components affected cooperative resistance, and Luria-Bertani plates containing two antibiotics were used to observe dual-drug resistant bacteria (DRB) developed via cooperative resistance. Results showed quartz, humic acid, and biochar promoted E. coli XL2-Blue with high fitness costs, whereas kaolin, montmorillonite, and soot inhibited both strains. Using fluorescence microscope and PCR, it was speculated DRB could resist the antibiotic pressure via E. coli XL2-Blue coating E. coli DH5α/pUC19. E. coli DH5α/pUC19 dominated cooperative resistance. Correlation analysis and scanning electron microscope images indicated soil components influenced cooperative resistance. Biochar promoted cooperative resistance by increasing intracellular reactive oxygen species, thereby reducing the dominant strain concentration required for DRB development. Kaolin inhibited cooperative resistance the most, followed by soot and montmorillonite.202235074748
909340.9810Antibacterial activity of positively charged carbon quantum dots without detectable resistance for wound healing with mixed bacteria infection. Widespread bacterial infection and the spread of antibiotic resistance exhibit increasing threat to the public and thus require new antibacterial strategies. Carbon quantum dots (CQDs) have been extensively investigated to play fluorescent, catalytic roles and even potential biomedical functions containing sterilization. However, synthetic understanding of the interaction of CQDs and bacteria, the exhibition of antibacterial ability, and the risk of resistance evolution remain lacking. Herein, a simple one-pot method was fabricated to prepare positively charged CQDs (PC-CQDs) as a broad-spectrum antibacterial agent. PC-CQDs possessed effective antibacterial activity against all tested Gram-positive, Gram-negative, and drug-resistant bacteria. Investigation of the antibacterial mechanism of PC-CQDs indicated that small-sized PC-CQDs functionalized with -NH(2) and -NH induced strong adherence behavior on the bacterial cell membrane. Moreover, the entry of PC-CQDs caused conformational changes in the genes and generation of reactive oxygen species in the bacteria. Safety evaluation illustrated that PC-CQDs did not trigger detectable drug resistance or hemolysis. Furthermore, PC-CQDs effectively promoted the antibacterial treatment of mixed Staphylococcus aureus and Escherichia coli infected wound in rats with low in vivo toxicity. These results suggested that PC-CQDs are a potential antibacterial candidate for real wound healing applications in complex bacterial infections and even resistant bacteria-caused infections.202133812599
901250.9808Identification of Genes Associated with Resistance to Persulcatusin, a Tick Defensin from Ixodes persulcatus. Antimicrobial peptides (AMPs) are present in a wide range of plants, animals, and microorganisms. Since AMPs are characterized by their effectiveness against emergent antibiotic-resistant bacteria, they are attracting attention as next-generation antimicrobial compounds that could solve the problem of drug-resistant bacteria. Persulcatusin (IP), an antibacterial peptide derived from the hard tick Ixodes persulcatus, shows high antibacterial activity against various Gram- positive bacteria as well as multidrug-resistant bacteria. However, reports on the antibacterial action and resistance mechanisms of IP are scarce. In this study, we spontaneously generated mutants showing increased a minimum inhibitory concentration (MIC) of IP and analyzed their cross-resistance to other AMPs and antibiotics. We also used fluorescent probes to investigate the target of IP activity by evaluating IP-induced damage to the bacterial cytoplasmic membrane. Our findings suggest that the antimicrobial activity of IP on bacterial cytoplasmic membranes occurs via a mechanism of action different from that of known AMPs. Furthermore, we screened for mutants with high susceptibility to IP using a transposon mutant library and identified 16 genes involved in IP resistance. Our results indicate that IP, like other AMPs, depolarizes the bacterial cytoplasmic membrane, but it may also alter membrane structure and inhibit cell-wall synthesis.202438399816
873460.9807Effects of Scutellaria baicalensis, Folium Artemisiae argyi, and Galla Chinensis on the protein expression and resistance genes of Exiguobacterium sp. in response to gentamicin. Currently, the issue of antibiotic resistance genes as emerging pollutants in the environment has attracted significant attention in the field of environmental pollution research. Moreover, plant-derived compounds has become a research hotspot due to its high efficiency and low toxicity in reversing microbial intracellular antibiotic resistance genes. However, there is little research on the impact of specific plant extracts on proteins and antibiotic resistance genes during the process of reversing antibiotic resistance genes. In this study, the phosphorus removal performance test, combined with protein Raman spectroscopy analysis and antibiotic resistance gene abundance detection methods, was employed to investigate the effects of Scutellaria baicalensis, Folium Artemisiae argyi, and Galla Chinensis on the phosphorus removal rate, intracellular protein binding sites, and antibiotic resistance gene abundance of Exiguobacterium sp. after exposure to gentamicin. The Raman spectroscopy test results revealed a shift in the protein peaks of Exiguobacterium sp., transitioning from the stable C = C = C = C, C = C, C = C = C structures found in drug-resistant Exiguobacterium sp. to unsaturated bonds of C, CH(2), olefinic unsaturation, and H bonds, similar to those of normal Exiguobacterium sp. Furthermore, the antibiotic resistance gene abundance test results indicated a significant reduction in the abundance of gentamicin resistance genes within the intracellular environment of Exiguobacterium sp. following treatment with these plant extracts. The potential roles of flavonoids in Scutellaria baicalensis and Folium Artemisiae argyi, and tannins in Galla Chinensis in reversing resistance were discussed.202540721471
901170.9807The role of osmoregulated periplasmic glucans in the biofilm antibiotic resistance of Yersinia enterocolitica. The formation of biofilms by bacteria is of great significance because it involves many physiological changes that serve to protect the cells from various stresses. One of the best-known biofilm-specific properties of bacteria is that bacteria that grow in biofilms are generally more resistant to antibiotics than their planktonic counterparts. In a previous study, osmoregulated periplasmic glucans (OPGs), catalyzed by the opgGH operon, were identified and found to function in Rcs signalling in Yersinia enterocolitica. In this study, the possible contribution of OPGs to antimicrobial resistance of Y. enterocolitica biofilms were investigated, and the results showed that OPGs, especially when overexpressed, conferred a high level of biofilm resistance to two different classes of antibiotics onto Y. enterocolitica. Subsequent analysis revealed that OPGs regulated the biofilm architecture in Y. enterocolitica by promoting the bacteria to form large cell aggregates. Moreover, the opgGH genes in biofilms showed higher expression than in planktonic cultures. OPGs were required to induce the expression of genes related to flagella, extracellular polysaccharide, and c-di-GMP biosynthesis in Y. enterocolitica biofilms and this effect was more significant when OPGs were overproduced. The current investigation showed an extension in the biological role of OPGs in Y. enterocolitica and provided a strong theoretical basis to further study this resistance mechanism at the molecular level to identify new drug targets or disinfectants for the treatment of infections caused by Y. enterocolitica within biofilms.202032492459
867980.9805Metal accumulation in cell wall: a possible mechanism of cadmium resistance by Pseudomonas stutzeri. A heavy metal resistant strain, Pseudomonas stutzeri (MTCC 101) has been investigated for its cadmium tolerance properties along with its antibiotic resistance. The organism could tolerate cadmium up to 1,200 μg/mL with LD50 value 700 μg/mL. The gene(s) involved in such high resistance appear(s) to be induced in the presence of the metal. Increasing concentrations of cadmium successively prolonged the lag phase of growth with delayed attainment of the stationary phase. Transmission electron microscope and scanning electron microscope-energy dispersive analysis of X-ray spectroscope analysis showed cadmium adsorption on the bacterial surface with morphological distortion. Atomic absorption spectrometric study corroborated this data, showing highest cadmium accumulation in the cell wall fraction of the bacteria. Additionally, the cell wall fraction showed synthesis of new proteins when grown under metal stress.201323275974
901490.9805Role of acid responsive genes in the susceptibility of Escherichia coli to ciclopirox. Antibiotic resistance poses a huge threat to the effective treatment of bacterial infections. To circumvent the limitations in developing new antibiotics, researchers are attempting to repurpose pre-developed drugs that are known to be safe. Ciclopirox, an off-patent antifungal agent, inhibits the growth of Gram-negative bacteria, and genes involved in galactose metabolism and lipopolysaccharide (LPS) biosynthesis are plausible antibacterial targets for ciclopirox, since their expression levels partially increase susceptibility at restrictive concentrations. In the present study, to identify new target genes involved in the susceptibility of Escherichia coli to ciclopirox, genome-wide mRNA profiling was performed following ciclopirox addition at sublethal concentrations, and glutamate-dependent acid resistance (GDAR) genes were differentially regulated. Additional susceptibility testing, growth analyses and viability assays of GDAR regulatory genes revealed that down-regulation of evgS or hns strongly enhanced susceptibility to ciclopirox. Further microscopy and phenotypic analyses revealed that down-regulation of these genes increased cell size and decreased motility. Our findings could help to maximise the efficacy of ciclopirox against hard-to-treat Gram-negative pathogens.201829654752
8833100.9804"One for All": Functional Transfer of OMV-Mediated Polymyxin B Resistance From Salmonella enterica sv. Typhi ΔtolR and ΔdegS to Susceptible Bacteria. The appearance of multi-resistant strains has contributed to reintroducing polymyxin as the last-line therapy. Although polymyxin resistance is based on bacterial envelope changes, other resistance mechanisms are being reported. Outer membrane vesicles (OMVs) are nanosized proteoliposomes secreted from the outer membrane of Gram-negative bacteria. In some bacteria, OMVs have shown to provide resistance to diverse antimicrobial agents either by sequestering and/or expelling the harmful agent from the bacterial envelope. Nevertheless, the participation of OMVs in polymyxin resistance has not yet been explored in S. Typhi, and neither OMVs derived from hypervesiculating mutants. In this work, we explored whether OMVs produced by the hypervesiculating strains Salmonella Typhi ΔrfaE (LPS synthesis), ΔtolR (bacterial envelope) and ΔdegS (misfolded proteins and σ (E) activation) exhibit protective properties against polymyxin B. We found that the OMVs extracted from S. Typhi ΔtolR and ΔdegS protect S. Typhi WT from polymyxin B in a concentration-depending manner. By contrast, the protective effect exerted by OMVs from S. Typhi WT and S. Typhi ΔrfaE is much lower. This effect is achieved by the sequestration of polymyxin B, as assessed by the more positive Zeta potential of OMVs with polymyxin B and the diminished antibiotic's availability when coincubated with OMVs. We also found that S. Typhi ΔtolR exhibited an increased MIC of polymyxin B. Finally, we determined that S. Typhi ΔtolR and S. Typhi ΔdegS, at a lesser level, can functionally and transiently transfer the OMV-mediated polymyxin B resistance to susceptible bacteria in cocultures. This work shows that mutants in genes related to OMVs biogenesis can release vesicles with improved abilities to protect bacteria against membrane-active agents. Since mutations affecting OMV biogenesis can involve the bacterial envelope, mutants with increased resistance to membrane-acting agents that, in turn, produce protective OMVs with a high vesiculation rate (e.g., S. Typhi ΔtolR) can arise. Such mutants can functionally transfer the resistance to surrounding bacteria via OMVs, diminishing the effective concentration of the antimicrobial agent and potentially favoring the selection of spontaneous resistant strains in the environment. This phenomenon might be considered the source for the emergence of polymyxin resistance in an entire bacterial community.202134025627
8863110.9804Resistance and tolerance to tropodithietic acid, an antimicrobial in aquaculture, is hard to select. The antibacterial compound tropodithietic acid (TDA) is produced by bacteria of the marine Roseobacter clade and is thought to explain the fish probiotic properties of some roseobacters. The aim of the present study was to determine the antibacterial spectrum of TDA and the likelihood of development of TDA resistance. A bacterial extract containing 95% TDA was effective against a range of human-pathogenic bacteria, including both Gram-negative and Gram-positive bacteria. TDA was bactericidal against Salmonella enterica serovar Typhimurium SL1344 and Staphylococcus aureus NCTC 12493 and killed both growing and nongrowing cells. Several experimental approaches were used to select mutants resistant to TDA or subpopulations of strains with enhanced tolerance to TDA. No approach (single exposures to TDA extract administered via different methods, screening of a transposon library for resistant mutants, or prolonged exposure to incremental concentrations of TDA) resulted in resistant or tolerant strains. After more than 300 generations exposed to sub-MIC and MIC concentrations of a TDA-containing extract, strains tolerant to 2× the MIC of TDA for wild-type strains were selected, but the tolerance disappeared after one passage in medium without TDA extract. S. Typhimurium mutants with nonfunctional efflux pump and porin genes had the same TDA susceptibility as wild-type strains, suggesting that efflux pumps and porins are not involved in innate tolerance to TDA. TDA is a promising broad-spectrum antimicrobial in part due to the fact that enhanced tolerance is difficult to gain and that the TDA-tolerant phenotype appears to confer only low-level resistance and is very unstable.201121263047
699120.9803DltX of Bacillus thuringiensis Is Essential for D-Alanylation of Teichoic Acids and Resistance to Antimicrobial Response in Insects. The dlt operon of Gram-positive bacteria is required for the incorporation of D-alanine esters into cell wall-associated teichoic acids (TAs). Addition of D-alanine to TAs reduces the negative charge of the cell envelope thereby preventing cationic antimicrobial peptides (CAMPs) from reaching their target of action on the bacterial surface. In most gram-positive bacteria, this operon consists of five genes dltXABCD but the involvement of the first ORF (dltX) encoding a small protein of unknown function, has never been investigated. The aim of this study was to establish whether this protein is involved in the D-alanylation process in Bacillus thuringiensis. We, therefore constructed an in frame deletion mutant of dltX, without affecting the expression of the other genes of the operon. The growth characteristics of the dltX mutant and those of the wild type strain were similar under standard in vitro conditions. However, disruption of dltX drastically impaired the resistance of B. thuringiensis to CAMPs and significantly attenuated its virulence in two insect species. Moreover, high-performance liquid chromatography studies showed that the dltX mutant was devoid of D-alanine, and electrophoretic mobility measurements indicated that the cells carried a higher negative surface charge. Scanning electron microscopy experiments showed morphological alterations of these mutant bacteria, suggesting that depletion of D-alanine from TAs affects cell wall structure. Our findings suggest that DltX is essential for the incorporation of D-alanyl esters into TAs. Therefore, DltX plays a direct role in the resistance to CAMPs, thus contributing to the survival of B. thuringiensis in insects. To our knowledge, this work is the first report examining the involvement of dltX in the D-alanylation of TAs.201728824570
804130.9803Cloning, mutagenesis, and characterization of the microalga Parietochloris incisa acetohydroxyacid synthase, and its possible use as an endogenous selection marker. Parietochloris incisa is an oleaginous fresh water green microalga that accumulates an unusually high content of the valuable long-chain polyunsaturated fatty acid (LC-PUFA) arachidonic acid within triacylglycerols in cytoplasmic lipid bodies. Here, we describe cloning and mutagenesis of the P. incisa acetohydroxyacid synthase (PiAHAS) gene for use as an herbicide resistance selection marker for transformation. Use of an endogenous gene circumvents the risks and regulatory difficulties of cultivating antibiotic-resistant organisms. AHAS is present in plants and microorganisms where it catalyzes the first essential step in the synthesis of branched-chain amino acids. It is the target enzyme of the herbicide sulfometuron methyl (SMM), which effectively inhibits growth of bacteria and plants. Several point mutations of AHAS are known to confer herbicide resistance. We cloned the cDNA that encodes PiAHAS and introduced a W605S point mutation (PimAHAS). Catalytic activity and herbicide resistance of the wild-type and mutant proteins were characterized in the AHAS-deficient E. coli, BUM1 strain. Cloned PiAHAS wild-type and mutant genes complemented AHAS-deficient bacterial growth. Furthermore, bacteria expressing the mutant PiAHAS exhibited high resistance to SMM. Purified PiAHAS wild-type and mutant proteins were assayed for enzymatic activity and herbicide resistance. The W605S mutation was shown to cause a twofold decrease in enzymatic activity and in affinity for the Pyruvate substrate. However, the mutant exhibited 7 orders of magnitude higher resistance to the SMM herbicide than that of the wild type.201222488216
6189140.9803Characterization of all RND-type multidrug efflux transporters in Vibrio parahaemolyticus. Resistance nodulation cell division (RND)-type efflux transporters play the main role in intrinsic resistance to various antimicrobial agents in many gram-negative bacteria. Here, we estimated 12 RND-type efflux transporter genes in Vibrio parahaemolyticus. Because VmeAB has already been characterized, we cloned the other 11 RND-type efflux transporter genes and characterized them in Escherichia coli KAM33 cells, a drug hypersusceptible strain. KAM33 expressing either VmeCD, VmeEF, or VmeYZ showed increased minimum inhibitory concentrations (MICs) for several antimicrobial agents. Additional four RND-type transporters were functional as efflux pumps only when co-expressed with VpoC, an outer membrane component in V. parahaemolyticus. Furthermore, VmeCD, VmeEF, and VmeYZ co-expressed with VpoC exhibited a broader substrate specificity and conferred higher resistance than that with TolC of E. coli. Deletion mutants of these transporter genes were constructed in V. parahaemolyticus. TM32 (ΔvmeAB and ΔvmeCD) had significantly decreased MICs for many antimicrobial agents and the number of viable cells after exposure to deoxycholate were markedly reduced. Strains in which 12 operons were all disrupted had very low MICs and much lower fluid accumulation in rabbit ileal loops. These results indicate that resistance nodulation cell division-type efflux transporters contribute not only to intrinsic resistance but also to exerting the virulence of V. parahaemolyticus.201323894076
4764150.9803Effect of lipopeptide extracted from Bacillus licheniformis on the expression of bap and luxI genes in multi-drug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Recently, opportunistic pathogens like Acinetobacter baumannii and Pseudomonas aeruginosa have caused concern due to their ability to cause antibiotic resistance in weakened immune systems. As a result, researchers are always seeking efficient antimicrobial agents to tackle this issue. The hypothesis of the recent study was that probiotic products derived from bacteria would be effective in reducing drug resistance in other bacteria. This research aimed to investigate the antimicrobial properties of probiotic products from various bacterial strains, including Lactobacillus rhamnosus, Pediococcus acidilactisi, Bacillus coagulans, Bacillus subtilis, and Bacillus licheniformis. These were tested against multi-drug-resistant (MDR) standard strains A. baumannii and P. aeruginosa. B. licheniformis was found to be the most effective probiotic strain, possessing the LanA and LanM lantibiotic genes. The lipopeptide nature of the probiotic product was confirmed through high-performance liquid chromatography (HPLC) and Fourier-transform infrared spectroscopy (FTIR) techniques. The anti-biofilm and antimicrobial properties of this probiotic were measured using an SEM electron microscope and minimum inhibitory concentration (MIC) test. Real-time PCR (qPCR) was used to compare the expression of bap and luxI genes, which are considered virulence factors of drug-resistant bacteria, before and after treatment with antimicrobial agents. The MIC results showed that the probiotic product prevented the growth of bacteria at lower concentrations compared to antibiotics. In addition, the ΔΔCqs indicated that gene expression was significantly down-regulated following treatment with the obtained probiotic product. It was found that B. licheniformis probiotic products could reduce drug resistance in other bacteria, making it a potential solution to antibiotic resistance.202337907777
6175160.9802Phenotype microarray analysis of the drug efflux systems in Salmonella enterica serovar Typhimurium. A large number of drug efflux transporters have been identified in Salmonella enterica serovar Typhimurium, and increased expression of these transporters confers drug resistance in this organism. Here we compared the respiration activities of the wild-type strain and a mutant with nine deleted transporters by phenotype microarray analysis. The mutant was susceptible to 66 structurally unrelated compounds including many antibiotics, dyes, detergents, antihistamine agents, plant alkaloids, antidepressants, antipsychotic drugs, and antiprotozoal drugs. To investigate the effect of each transporter on the susceptibilities to these drugs, we used the single transporter mutants, several multiple deletion mutants, and the transporter overexpressor strains to determine minimum inhibitory concentrations of ampicillin, erythromycin, minocycline, ciprofloxacin, orphenadrine, amitriptyline, thioridazine, and chlorpromazine. The data indicate that the increased susceptibilities of the mutant lacking nine transporter genes are mainly dependent on the absence of the acrAB efflux genes as well as the tolC gene. In addition to the AcrAB-TolC efflux system, the results from the overexpressor strains show that AcrEF confers resistance to these compounds as well as AcrAB of Escherichia coli, MexAB-OprM and MexXY-OprM of Pseudomonas aeruginosa. The results highlight the importance of the efflux systems not only for resistance to antibiotics but also for resistance to antihistamine agents, plant alkaloids, antidepressants, antipsychotic drugs, and antiprotozoal drugs.201627210311
212170.9802Spectrum of antibacterial activity and mode of action of a novel tris-stilbene bacteriostatic compound. The spectrum of activity and mode of action of a novel antibacterial agent, 135C, was investigated using a range of microbiological and genomic approaches. Compound 135C was active against Gram-positive bacteria with MICs for Staphylococcus aureus ranging from 0.12-0.5 μg/ml. It was largely inactive against Gram-negative bacteria. The compound showed bacteriostatic activity in time-kill studies and did not elicit bacterial cell leakage or cell lysis. Checkerboard assays showed no synergy or antagonism when 135C was combined with a range of other antibacterials. Multi-step serial passage of four S. aureus isolates with increasing concentrations of 135C showed that resistance developed rapidly and was stable after drug-free passages. Minor differences in the fitness of 135C-resistant strains and parent wildtypes were evident by growth curves, but 135C-resistant strains did not show cross-resistance to other antibacterial agents. Genomic comparison of resistant and wildtype parent strains showed changes in genes encoding cell wall teichoic acids. 135C shows promising activity against Gram-positive bacteria but is currently limited by the rapid resistance development. Further studies are required to investigate the effects on cell wall teichoic acids and to determine whether the issue of resistance development can be overcome.201829720673
8803180.9801Effects of chlorogenic acid-grafted-chitosan on biofilms, oxidative stress, quorum sensing and c-di-GMP in Pseudomonas fluorescens. This study determined the inhibitory mechanism as well as anti-biofilm activity of chlorogenic acid-grafted-chitosan (CS-g-CA) against Pseudomonas fluorescens (P. fluorescens) in terms of biofilm content, oxidative stress, quorum sensing and cyclic diguanosine monophosphate (c-di-GMP) concentration, and detected the changes in the expression levels of related genes by quantitative real-time PCR (qRT-PCR). Results indicated that treatment with sub-concentrations of CS-g-CA for P. fluorescens led to reduce the biofilm size of large colonies, decrease the content of biofilm and extracellular polymers, weaken the motility and adhesion of P. fluorescens. Moreover, CS-g-CA resulted in higher ROS levels, diminished catalase activity (CAT), and increased superoxide dismutase (SOD) in P. fluorescens. CS-g-CA reduced the production of quorum-sensing signaling molecules (AHLs) and the concentration of c-di-GMP in bacteria. Genes for flagellar synthesis (flgA), the resistance to stress (rpoS and hfq), and pde (phosphodiesterases that degrade c-di-GMP) were significantly down-regulated as determined by RT-PCR. Overall, CS-g-CA leads to the accumulation of ROS in bacteria via P. fluorescens environmental resistance genes and decreases the activity of enzymes in the bacterial antioxidant system, and interferes with the production and reception of quorum-sensing signaling molecules and the synthesis of c-di-GMP in P. fluorescens, which regulates the generation of biofilms.202438852716
8829190.9801VtaA8 and VtaA9 from Haemophilus parasuis delay phagocytosis by alveolar macrophages. Haemophilus parasuis, a member of the family Pasteurellaceae, is a common inhabitant of the upper respiratory tract of healthy pigs and the etiological agent of Glässer's disease. As other virulent Pasteurellaceae, H. parasuis can prevent phagocytosis, but the bacterial factors involved in this virulence mechanism are not known. In order to identify genes involved in phagocytosis resistance, we constructed a genomic library of the highly virulent reference strain Nagasaki and clones were selected by increased survival after incubation with porcine alveolar macrophages (PAM). Two clones containing two virulent-associated trimeric autotransporter (VtaA) genes, vtaA8 and vtaA9, respectively, were selected by this method. A reduction in the interaction of the two clones with the macrophages was detected by flow cytometry. Monoclonal antibodies were produced and used to demonstrate the presence of these proteins on the bacterial surface of the corresponding clone, and on the H. parasuis phagocytosis-resistant strain PC4-6P. The effect of VtaA8 and VtaA9 in the trafficking of the bacteria through the endocytic pathway was examined by fluorescence microscopy and a delay was detected in the localization of the vtaA8 and vtaA9 clones in acidic compartments. These results are compatible with a partial inhibition of the routing of the bacteria via the degradative phagosome. Finally, antibodies against a common epitope in VtaA8 and VtaA9 were opsonic and promoted phagocytosis of the phagocytosis-resistant strain PC4-6P by PAM. Taken together, these results indicate that VtaA8 and VtaA9 are surface proteins that play a role in phagocytosis resistance of H. parasuis.201222839779