# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3762 | 0 | 0.9952 | The epidemiology of antimicrobial resistance and transmission of cutaneous bacterial pathogens in domestic animals. As the primary agents of skin and soft tissue infections in animals, Staphylococcus spp and Pseudomonas aeruginosa are among the most formidable bacterial pathogens encountered by veterinarians. Staphylococci are commensal inhabitants of the surfaces of healthy skin and mucous membranes, which may gain access to deeper cutaneous tissues by circumventing the stratum corneum's barrier function. Compromised barrier function occurs in highly prevalent conditions such as atopic dermatitis, endocrinopathies, and skin trauma. P aeruginosa is an environmental saprophyte that constitutively expresses virulence and antimicrobial resistance genes that promote its success as an animal pathogen. For both organisms, infections of the urinary tract, respiratory tract, joints, central nervous system, and body cavities may occur through ascension along epithelial tracts, penetrating injuries, or hematogenous spread. When treating infections caused by these pathogens, veterinarians now face greater therapeutic challenges and more guarded outcomes for our animal patients because of high rates of predisposing factors for infection and the broad dissemination of antimicrobial resistance genes within these bacterial species. This review considers the history of the rise and expansion of multidrug resistance in staphylococci and P aeruginosa and the current state of knowledge regarding the epidemiologic factors that underly the dissemination of these pathogens across companion animal populations. Given the potential for cross-species and zoonotic transmission of pathogenic strains of these bacteria, and the clear role played by environmental reservoirs and fomites, a one-health perspective is emphasized. | 2023 | 36917615 |
| 3753 | 1 | 0.9951 | Flavophospholipol use in animals: positive implications for antimicrobial resistance based on its microbiologic properties. Bambermycin (flavophospholipol) is a phosphoglycolipid antimicrobial produced by various strains of Streptomyces. It is active primarily against Gram-positive bacteria because of inhibition of transglycosylase and thus of cell wall synthesis. Bambermycin is used as a feed additive growth promoter in cattle, pigs, chickens, and turkeys, but has no therapeutic use in humans or animals. Flavophospholipol is known to suppress certain microorganisms (e.g., Staphylococcus spp. and Enterococcus faecalis) and thus contributes to an improved equilibrium of the gut microflora providing a barrier to colonization with pathogenic bacteria and resultant improved weight gain and feed conversion. Flavophospholipol has also been shown to decrease the frequency of transferable drug resistance among Gram-negative enteropathogens and to reduce the shedding of pathogenic bacteria such as Salmonella in pigs, calves, and chickens. Plasmid-mediated resistance to bambermycin has not been described. Likewise, cross-resistance among bacteria between bambermycin and penicillin, tetracycline, streptomycin, erythromycin, or oleandromycin has not been observed. This brief review summarizes the antimicrobial properties of bambermycin, in particular, its potentially favorable role in decreasing antimicrobial resistance. | 2006 | 16698216 |
| 4219 | 2 | 0.9947 | Antibiotic resistance and virulence factors in lactobacilli: something to carefully consider. Lactobacilli are a ubiquitous bacteria, that includes many species commonly found as part of the human microbiota, take part in the natural food fermentation processes, are used as probiotics, and in the food sector as starter cultures or bio-protectors. Their wide use is dictated by a long history of safe employ, which has allowed them to be classified as GRAS (General Recognized As Safe) microorganisms by the US Food and Drug Administration (FDA) and QPS (Qualified Presumption of Safety) by the European Food Safety Authority (EFSA, 2007; EFSA, 2021). Despite their classification as safe microorganisms, several studies show that some members of Lactobacillus genus can cause, especially in individuals with previous pathological conditions, problems such as bacteremia, endocarditis, and peritonitis. In other cases, the presence of virulence genes and antibiotic resistance, and its potential transfer to pathogenic microorganisms constitute a risk to be considered. Consequently, their safety status was sometimes questioned, and it is, therefore, essential to carry out appropriate assessments before their use for any purposes. The following review focuses on the state of the art of studies on genes that confer virulence factors, including antibiotic resistance, reported in the literature within the lactobacilli, defining their genetic basis and related functions. | 2022 | 35082060 |
| 3919 | 3 | 0.9946 | Detection of antibiotic resistance in probiotics of dietary supplements. BACKGROUND: Probiotics are live microorganisms that confer nutrition- and health-promoting benefits if consumed in adequate amounts. Concomitant with the demand for natural approaches to maintaining health is an increase in inclusion of probiotics in food and health products. Since probiotic bacteria act as reservoir for antibiotic resistant determinants, the transfer of these genes to pathogens sharing the same intestinal habitat is thus conceivable considering the fact that dietary supplements contain high amounts of often heterogeneous populations of probiotics. Such events can confer pathogens protection against commonly-used drugs. Despite numerous reports of antibiotic resistant probiotics in food and biological sources, the antibiogram of probiotics from dietary supplements remained elusive. FINDINGS: Here, we screened five commercially available dietary supplements for resistance towards antibiotics of different classes. Probiotics of all batches of products were resistant towards vancomycin while batch-dependent resistance towards streptomycin, aztreonam, gentamycin and/or ciprofloxacin antibiotics was detected for probiotics of brands Bi and Bn, Bg, and L. Isolates of brand Cn was also resistant towards gentamycin, streptomycin and ciprofloxacin antibiotics. Additionally, we also report a discrepancy between the enumerated viable bacteria amounts and the claims of the manufacturers. CONCLUSIONS: This short report has highlighted the present of antibiotic resistance in probiotic bacteria from dietary supplements and therefore serves as a platform for further screenings and for in-depth characterization of the resistant determinants and the molecular machinery that confers the resistance. | 2015 | 26370532 |
| 4229 | 4 | 0.9946 | Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Over the last 50 years, human life expectancy and quality of life have increased dramatically due to improvements in nutrition and the use of antibiotics in the fight against infectious diseases. However, the heyday of antibiotic treatment is on the wane due to the appearance and spread of resistance among harmful microorganisms. At present, there is great concern that commensal bacterial populations from food and the gastrointestinal tract (GIT) of humans and animals, such as lactic acid bacteria (LAB) and bifidobacteria, could act as a reservoir for antibiotic resistance genes. Resistances could ultimately be transferred to human pathogenic and opportunistic bacteria hampering the treatment of infections. LAB species have traditionally been used as starter cultures in the production of fermented feed and foodstuffs. Further, LAB and bifidobacteria are normal inhabitants of the GIT where they are known to exert health-promoting effects, and selected strains are currently been used as probiotics. Antibiotic resistance genes carried by LAB and bifidobacteria can be transferred to human pathogenic bacteria either during food manufacture or during passage through the GIT. The aim of this review is to address well-stated and recent knowledge on antibiotic resistance in typical LAB and bifidobacteria species. Therefore, the commonest antibiotic resistance profiles, the distinction between intrinsic and atypical resistances, and some of the genetic determinants already discovered will all be discussed. | 2007 | 17418306 |
| 3754 | 5 | 0.9945 | Cancer departments as a source of resistant bacteria and fungi? Antimicrobial resistance increases worldwide. Among many factors, such as clonal spread of genes of resistance among and intra species, local epidemiology, nosocomial transmission, also consumption of antimicrobials may be responsible. Cancer departments, mainly in centers treating hematologic malignancies and organizing bone marrow transplantation (BMT) are known to have extensive consumption of either prophylactically or therapeutically administered antibiotics and antifungals. It is worthy to remember, that first strains of quinolone resistant E. coli, vancomycin resistant enterococci and staphylococci and fluconazol-resistant Candida albicans appeared in the patients treated for cancer with antineoplastic chemotherapy, resulting in profound granulocytopenia. Therefore, assessment of risks of antibiotic prophylaxis with quinolones and azoles and extensive use of empiric therapy with glycopeptides and polyenes needs to be considered. Intensive prophylactic strategies should be limited to group of high risk, leukemic patients or BMT recipients. | 1999 | 10355526 |
| 4224 | 6 | 0.9945 | The Genus Enterococcus: Between Probiotic Potential and Safety Concerns-An Update. A considerable number of strains belonging to different species of Enterococcus are highly competitive due to their resistance to wide range of pH and temperature. Their competitiveness is also owed to their ability to produce bacteriocins recognized for their wide-range effectiveness on pathogenic and spoilage bacteria. Enterococcal bacteriocins have attracted great research interest as natural antimicrobial agents in the food industry, and as a potential drug candidate for replacing antibiotics in order to treat multiple drugs resistance pathogens. However, the prevalence of virulence factors and antibiotic-resistance genes and the ability to cause disease could compromise their application in food, human and animal health. From the current regulatory point of view, the genus Enterococcus is neither recommended for the QPS list nor have GRAS status. Although recent advances in molecular biology and the recommended methods for the safety evaluation of Enterococcus strains allowed the distinction between commensal and clinical clades, development of highly adapted methods and legislations are still required. In the present review, we evaluate some aspects of Enterococcus spp. related to their probiotic properties and safety concerns as well as the current and potential application in food systems and treatment of infections. The regulatory status of commensal Enterococcus candidates for food, feed, probiotic use, and recommended methods to assess and ensure their safety are also discussed. | 2018 | 30123208 |
| 4775 | 7 | 0.9945 | Safety assessment of dairy microorganisms: the Lactobacillus genus. Lactobacilli are Gram positive rods belonging to the Lactic Acid Bacteria (LAB) group. Their phenotypic traits, such as each species' obligate/facultative, homo/heterofermentation abilities play a crucial role in souring raw milk and in the production of fermented dairy products such as cheese, yoghurt and fermented milk (including probiotics). An up to date safety analysis of these lactobacilli is needed to ensure consumer safety. Lactobacillus genus is a heterogeneous microbial group containing some 135 species and 27 subspecies, whose classification is constantly being reshuffled. With the recent use of advanced molecular methods it has been suggested that the extreme diversity of the Lactobacillus genomes would justify recognition of new subgeneric divisions. A combination of genotypic and phenotypic tests, for example DNA-based techniques and conventional carbohydrate tests, is required to determine species. Pulsed-Field gel Electrophoresis (PFGE) has been successfully applied to strains of dairy origin and is the most discriminatory and reproducible method for differentiating Lactobacillus strains. The bibliographical data support the hypothesis that the ingestion of Lactobacillus is not at all hazardous since lactobacillemia induced by food, particularly fermented dairy products, is extremely rare and only occurs in predisposed patients. Some metabolic features such as the possible production of biogenic amines in fermented products could generate undesirable adverse effects. A minority of starter and adjunct cultures and probiotic Lactobacillus strains may exceptionally show transferable antibiotic resistance. However, this may be underestimated as transferability studies are not systematic. We consider that transferable antibiotic resistance is the only relevant cause for caution and justifies performing antibiotic-susceptibility assays as these strains have the potential to serve as hosts of antibiotic-resistance genes, with the risk of transferring these genes to other bacteria. However, as a general rule, lactobacilli have a high natural resistance to many antibiotics, especially vancomycin, that is not transferable. Safety assessment requirements for Lactobacillus strains of technological interest should be limited to an antibiotic profile and a study to determine whether any antibiotic resistance(s) of medical interest detected is (or are) transferable. This agrees with the recent EFSA proposal suggesting attribution of a QPS status for 32 selected species of lactobacilli. | 2008 | 17889388 |
| 4308 | 8 | 0.9945 | Interplay between ESKAPE Pathogens and Immunity in Skin Infections: An Overview of the Major Determinants of Virulence and Antibiotic Resistance. The skin is the largest organ in the human body, acting as a physical and immunological barrier against pathogenic microorganisms. The cutaneous lesions constitute a gateway for microbial contamination that can lead to chronic wounds and other invasive infections. Chronic wounds are considered as serious public health problems due the related social, psychological and economic consequences. The group of bacteria known as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter sp.) are among the most prevalent bacteria in cutaneous infections. These pathogens have a high level of incidence in hospital environments and several strains present phenotypes of multidrug resistance. In this review, we discuss some important aspects of skin immunology and the involvement of ESKAPE in wound infections. First, we introduce some fundamental aspects of skin physiology and immunology related to cutaneous infections. Following this, the major virulence factors involved in colonization and tissue damage are highlighted, as well as the most frequently detected antimicrobial resistance genes. ESKAPE pathogens express several virulence determinants that overcome the skin's physical and immunological barriers, enabling them to cause severe wound infections. The high ability these bacteria to acquire resistance is alarming, particularly in the hospital settings where immunocompromised individuals are exposed to these pathogens. Knowledge about the virulence and resistance markers of these species is important in order to develop new strategies to detect and treat their associated infections. | 2021 | 33540588 |
| 3945 | 9 | 0.9945 | Vancomycin-resistant enterococci: why are they here, and where do they come from? Vancomcyin-resistant enterococci (VRE) have emerged as nosocomial pathogens in the past 10 years, causing epidemiological controversy. In the USA, colonisation with VRE is endemic in many hospitals and increasingly causes infection, but colonisation is absent in healthy people. In Europe, outbreaks still happen sporadically, usually with few serious infections, but colonisation seems to be endemic in healthy people and farm animals. Vancomycin use has been much higher in the USA, where emergence of ampicillin-resistant enterococci preceded emergence of VRE, making them very susceptible to the selective effects of antibiotics. In Europe, avoparcin, a vancomycin-like glycopeptide, has been widely used in the agricultural industry, explaining the community reservoir in European animals. Avoparcin has not been used in the USA, which is consistent with the absence of colonisation in healthy people. From the European animal reservoir, VRE and resistance genes have spread to healthy human beings and hospitalised patients. However, certain genogroups of enterococci in both continents seem to be more capable of causing hospital outbreaks, perhaps because of the presence of a specific virulence factor, the variant esp gene. By contrast with the evidence of a direct link between European animal and human reservoirs, the origin of American resistance genes remains to be established. Considering the spread of antibiotic-resistant bacteria and resistance genes, the emergence of VRE has emphasised the non-existence of boundaries between hospitals, between people and animals, between countries, and probably between continents. | 2001 | 11871804 |
| 6709 | 10 | 0.9945 | Molluscs-A ticking microbial bomb. Bivalve shellfish consumption (ark shells, clams, cockles, and oysters) has increased over the last decades. Following this trend, infectious disease outbreaks associated with their consumption have been reported more frequently. Molluscs are a diverse group of organisms found wild and farmed. They are common on our tables, but unfortunately, despite their great taste, they can also pose a threat as a potential vector for numerous species of pathogenic microorganisms. Clams, in particular, might be filled with pathogens because of their filter-feeding diet. This specific way of feeding favors the accumulation of excessive amounts of pathogenic microorganisms like Vibrio spp., including Vibrio cholerae and V. parahaemolyticus, Pseudomonas aeruginosa, Escherichia coli, Arcobacter spp., and fecal coliforms, and intestinal enterococci. The problems of pathogen dissemination and disease outbreaks caused by exogenous bacteria in many geographical regions quickly became an unwanted effect of globalized food supply chains, global climate change, and natural pathogen transmission dynamics. Moreover, some pathogens like Shewanella spp., with high zoonotic potential, are spreading worldwide along with food transport. These bacteria, contained in food, are also responsible for the potential transmission of antibiotic-resistance genes to species belonging to the human microbiota. Finally, they end up in wastewater, thus colonizing new areas, which enables them to introduce new antibiotic-resistance genes (ARG) into the environment and extend the existing spectrum of ARGs already present in local biomes. Foodborne pathogens require modern methods of detection. Similarly, detecting ARGs is necessary to prevent resistance dissemination in new environments, thus preventing future outbreaks, which could threaten associated consumers and workers in the food processing industry. | 2022 | 36699600 |
| 3660 | 11 | 0.9945 | Graduate Student Literature Review: Enterotoxigenic potential and antimicrobial resistance of staphylococci from Brazilian artisanal raw milk cheeses. More than 30 types of artisanal cheeses are known in Brazil; however, microorganisms, such as Staphylococcus spp., can contaminate raw milk cheeses through different sources, from milking to processing. Staphylococcal food poisoning results from the consumption of food in which coagulase-positive staphylococci, mostly Staphylococcus aureus, have developed and produced enterotoxins. In addition, an emerging public health concern is the increasing antimicrobial resistance of some Staphylococcus strains. Furthermore, the ability of Staphylococcus spp. in sharing antibiotic resistance-related genes with other bacteria increases this problem. In light of these observations, this review aims to discuss the presence of, enterotoxins of, and antibiotic-resistant of Staphylococcus spp. in Brazilian artisanal cheese produced with raw milk. | 2022 | 35636996 |
| 4217 | 12 | 0.9945 | Antimicrobial use and resistance in animals. Food animals in the United States are often exposed to antimicrobials to treat and prevent infectious disease or to promote growth. Many of these antimicrobials are identical to or closely resemble drugs used in humans. Precise figures for the quantity of antimicrobials used in animals are not publicly available in the United States, and estimates vary widely. Antimicrobial resistance has emerged in zoonotic enteropathogens (e.g., Salmonella spp., Campylobacter spp.), commensal bacteria (e.g., Escherichia coli, enterococci), and bacterial pathogens of animals (e.g., Pasteurella, Actinobacillus spp.), but the prevalence of resistance varies. Antimicrobial resistance emerges from the use of antimicrobials in animals and the subsequent transfer of resistance genes and bacteria among animals and animal products and the environment. To slow the development of resistance, some countries have restricted antimicrobial use in feed, and some groups advocate similar measures in the United States. Alternatives to growth-promoting and prophylactic uses of antimicrobials in agriculture include improved management practices, wider use of vaccines, and introduction of probiotics. Monitoring programs, prudent use guidelines, and educational campaigns provide approaches to minimize the further development of antimicrobial resistance. | 2002 | 11988879 |
| 4227 | 13 | 0.9945 | Antibiotic resistance determinants in the interplay between food and gut microbiota. A complex and heterogeneous microflora performs sugar and lactic acid fermentations in food products. Depending on the fermentable food matrix (dairy, meat, vegetable etc.) as well as on the species composition of the microbiota, specific combinations of molecules are produced that confer unique flavor, texture, and taste to each product. Bacterial populations within such "fermented food microbiota" are often of environmental origin, they persist alive in foods ready for consumption, eventually reaching the gastro-intestinal tract where they can interact with the resident gut microbiota of the host. Although this interaction is mostly of transient nature, it can greatly contribute to human health, as several species within the food microbiota also display probiotic properties. Such an interplay between food and gut microbiota underlines the importance of the microbiological quality of fermented foods, as the crowded environment of the gut is also an ideal site for genetic exchanges among bacteria. Selection and spreading of antibiotic resistance genes in foodborne bacteria has gained increasing interest in the past decade, especially in light of the potential transferability of antibiotic resistance determinants to opportunistic pathogens, natural inhabitants of the human gut but capable of acquiring virulence in immunocompromised individuals. This review aims at describing major findings and future prospects in the field, especially after the use of antibiotics as growth promoters was totally banned in Europe, with special emphasis on the application of genomic technologies to improve quality and safety of fermented foods. | 2011 | 21526400 |
| 4116 | 14 | 0.9944 | Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. The use of antibiotics in food animals selects for bacteria resistant to antibiotics used in humans, and these might spread via the food to humans and cause human infection, hence the banning of growth-promoters. The actual danger seems small, and there might be disadvantages to human and to animal health. The low dosages used for growth promotion are an unquantified hazard. Although some antibiotics are used both in animals and humans, most of the resistance problem in humans has arisen from human use. Resistance can be selected in food animals, and resistant bacteria can contaminate animal-derived food, but adequate cooking destroys them. How often they colonize the human gut, and transfer resistance genes is not known. In zoonotic salmonellosis, resistance may arise in animals or humans, but human cross-infection is common. The case of campylobacter infection is less clear. The normal human faecal flora can contain resistant enterococci, but indistinguishable strains in animals and man are uncommon, possibly because most animal enterococci do not establish themselves in the human intestine. There is no correlation between the carriage of resistant enterococci of possible animal origin and human infection with resistant strains. Commensal Escherichia coli also exhibits host-animal preferences. Anti-Gram-positive growth promoters would be expected to have little effect on most Gram-negative organisms. Even if resistant pathogens do reach man, the clinical consequences of resistance may be small. The application of the 'precautionary principle' is a non-scientific approach that assumes that risk assessments will be carried out. | 2004 | 14657094 |
| 3920 | 15 | 0.9944 | Antibiotic resistance in wild and commercial non-enterococcal Lactic Acid Bacteria and Bifidobacteria strains of dairy origin: An update. Antibiotic Resistance is a growing concern for public health and global economy. Lactic acid bacteria (LAB) involved in the production of dairy products and commonly present in the agro-zootechnical environment can act as reservoirs of antibiotic resistance genes, acquiring or transferring them to other microorganisms. The review focuses on LAB group of dairy origin (Lactobacillus, Lactococcus, Streptococcus, Leuconostoc, Pediococcus and Weissella) and Bifidobacterium genus, considering its large use in dairy industry. We have analyzed data in the last 25 years, highlighting atypical resistance, genetic traits correlated to antibiotic resistance and their ability to be transmitted to other microorganisms; comparative analysis of resistomes was also considered. Differences were observed among wild strains isolated from different regions because of authorized antibiotic use. Commercial strains belonging to Lactobacillus, Streptococcus and Bifidobacterium currently used for industrial dairy products are frequently resistant to gentamycin, kanamycin, chloramphenicol together with tetracycline. The presence of resistant wild LAB in raw milk products has been significantly reduced as a result of worldwide restrictions on the use of antibiotics in animal husbandry. Transmissible resistances are still present in industrial cultures, despite the great effort of starter industries in the process control and the safety screening of commercial cultures. | 2022 | 35287818 |
| 3917 | 16 | 0.9944 | Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages. Dry-fermented sausages are meat products highly valued by many consumers. Manufacturing process involves fermentation driven by natural microbiota or intentionally added starter cultures and further drying. The most relevant fermentative microbiota is lactic acid bacteria (LAB) such as Lactobacillus, Pediococcus and Enterococcus, producing mainly lactate and contributing to product preservation. The great diversity of LAB in dry-fermented sausages is linked to manufacturing practices. Indigenous starters development is considered to be a very promising field, because it allows for high sanitary and sensorial quality of sausage production. LAB have a long history of safe use in fermented food, however, since they are present in human gastrointestinal tract, and are also intentionally added to the diet, concerns have been raised about the antimicrobial resistance in these beneficial bacteria. In fact, the food chain has been recognized as one of the key routes of antimicrobial resistance transmission from animal to human bacterial populations. The World Health Organization 2014 report on global surveillance of antimicrobial resistance reveals that this issue is no longer a future prediction, since evidences establish a link between the antimicrobial drugs use in food-producing animals and the emergence of resistance among common pathogens. This poses a risk to the treatment of nosocomial and community-acquired infections. This review describes the possible sources and transmission routes of antibiotic resistant LAB of dry-fermented sausages, presenting LAB antibiotic resistance profile and related genetic determinants. Whenever LAB are used as starters in dry-fermented sausages processing, safety concerns regarding antimicrobial resistance should be addressed since antibiotic resistant genes could be mobilized and transferred to other bacteria. | 2015 | 26002560 |
| 3750 | 17 | 0.9944 | Non-faecium non-faecalis enterococci: a review of clinical manifestations, virulence factors, and antimicrobial resistance. SUMMARYEnterococci are a diverse group of Gram-positive bacteria that are typically found as commensals in humans, animals, and the environment. Occasionally, they may cause clinically relevant diseases such as endocarditis, septicemia, urinary tract infections, and wound infections. The majority of clinical infections in humans are caused by two species: Enterococcus faecium and Enterococcus faecalis. However, there is an increasing number of clinical infections caused by non-faecium non-faecalis (NFF) enterococci. Although NFF enterococcal species are often overlooked, studies have shown that they may harbor antimicrobial resistance (AMR) genes and virulence factors that are found in E. faecium and E. faecalis. In this review, we present an overview of the NFF enterococci with a particular focus on human clinical manifestations, epidemiology, virulence genes, and AMR genes. | 2024 | 38466110 |
| 4215 | 18 | 0.9944 | Antibiotic usage in animals: impact on bacterial resistance and public health. Antibiotic use whether for therapy or prevention of bacterial diseases, or as performance enhancers will result in antibiotic resistant micro-organisms, not only among pathogens but also among bacteria of the endogenous microflora of animals. The extent to which antibiotic use in animals will contribute to the antibiotic resistance in humans is still under much debate. In addition to the veterinary use of antibiotics, the use of these agents as antimicrobial growth promoters (AGP) greatly influences the prevalence of resistance in animal bacteria and a poses risk factor for the emergence of antibiotic resistance in human pathogens. Antibiotic resistant bacteria such as Escherichia coli, Salmonella spp., Campylobacter spp. and enterococci from animals can colonise or infect the human population via contact (occupational exposure) or via the food chain. Moreover, resistance genes can be transferred from bacteria of animals to human pathogens in the intestinal flora of humans. In humans, the control of resistance is based on hygienic measures: prevention of cross contamination and a decrease in the usage of antibiotics. In food animals housed closely together, hygienic measures, such as prevention of oral-faecal contact, are not feasible. Therefore, diminishing the need for antibiotics is the only possible way of controlling resistance in large groups of animals. This can be achieved by improvement of animal husbandry systems, feed composition and eradication of or vaccination against infectious diseases. Moreover, abolishing the use of antibiotics as feed additives for growth promotion in animals bred as a food source for humans would decrease the use of antibiotics in animals on a worldwide scale by nearly 50%. This would not only diminish the public health risk of dissemination of resistant bacteria or resistant genes from animals to humans, but would also be of major importance in maintaining the efficacy of antibiotics in veterinary medicine. | 1999 | 10551432 |
| 6643 | 19 | 0.9944 | Microbiological Food Safety of Seaweeds. The use of seaweeds in the human diet has a long history in Asia and has now been increasing also in the western world. Concurrent with this trend, there is a corresponding increase in cultivation and harvesting for commercial production. Edible seaweed is a heterogenous product category including species within the green, red, and brown macroalgae. Moreover, the species are utilized on their own or in combinatorial food products, eaten fresh or processed by a variety of technologies. The present review summarizes available literature with respect to microbiological food safety and quality of seaweed food products, including processing and other factors controlling these parameters, and emerging trends to improve on the safety, utilization, quality, and storability of seaweeds. The over- or misuse of antimicrobials and the concurrent development of antimicrobial resistance (AMR) in bacteria is a current worldwide health concern. The role of seaweeds in the development of AMR and the spread of antimicrobial resistance genes is an underexplored field of research and is discussed in that context. Legislation and guidelines relevant to edible seaweed are also discussed. | 2021 | 34829000 |