MICROBIOLOGICAL - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
127600.9964Should we leave the paper currency? A microbiological examination. OBJECTIVE: Pathogens can be transmitted to banknotes due to the personal unhygienic habits. The aim of study was to find the possible pathogens on the banknotes circulating in the market and also to present their antibacterial resistance and their various virulence factors using genotypic and phenotypic methods. METHODS: A total of 150 samples of bank-notes were randomly collected between August 2017 and March 2018. VITEK systems were used for identification and antimicrobial susceptibility testing respectively. Antimicrobial resistance genes (mecA, van, extended-spectrum β-lactamase [ESBL] and carbapenemases) and staphyloccoccal virulence genes (staphyloccoccal enterotoxins [SEs], pvl, and tsst-1) were determined using with real-time PCR. RESULTS: Staphylococcus aureus, coagulase-negative staphylococci (CoNS), Enterococcus spp., Gram-negative enteric bacteria, non-fermentative Gram-negative bacteria and Candida spp. were detected 48%, 54.7%, 56%, 21.3%, 18.7%, and 4%, respectively. Methicillin-resistant S. aureus, vancomycin-resistant enterococci and ESBL producing Gram-negative were found 46.8%, 1.3%, and 28.7%, respectively. Pvl, tsst-1, and SEs genes were found in a 2.8/4.9%, 1.4/1.2%, and 100/ 87.8% of the S. aureus/CoNS strains, respectively. The sea gene was found the most common enterotoxigenic gene. blaTEM, blaSHV, blaCTX-M-2, blaCTX-M-1, blaKPC, and blaOXA-48 were found 55.8%, 46.5%, 41.2%, 18.6%, 18.6%, and 18.6%, respectively in Gram-negative strains. CONCLUSIONS: These results is very important to highlight hygienic status of paper currencies. This can be considered as an indication that banknotes may contribute to the spread of pathogens and antimicrobial resistance. Therefore, we may need to start using alternative products instead of banknotes.202032066229
94710.9964Environmental bovine subclinical mastitis gram-negative pathogens: Prevalence, antimicrobial resistance with special reference to extended-spectrum β-lactamases and carbapenemase production. This study investigates mastitis in the dairy industry, with a focus on the issue of antibiotic resistance. This study was designed to evaluate mastitis prevalence and investigate the bacteriological profiles of subclinical mastitis (SCM) milk, mastitis-free milk, and market milk. Out of 374 quarter milk samples, 26.2 % were from animals with SCM. Bacteriological examination identified 87 Gram-negative bacterial strains from subclinical mastitis milk (SCMM) (42.9 %), subclinical mastitis-free milk (SCMFM) (17.97 %), and market milk (MM) (58 %). MALDI-TOF MS identified species including E. coli, K. pneumoniae, Enterobacter cloacae, Citrobacter freundii, Serratia marcescens, and Acinetobacter baumannii, with E. coli being the most frequent. Multi-drug resistant (MDR) phenotype was found in 43.7 % of isolates, with 57.1 % from SCMM, 43.8 % from SCMFM, and 24.1 % from MM. Biofilm production was observed in 44.8 % of isolates, with a significant correlation between MDR and biofilm formation. Eight strains (9.2 %) were extended-spectrum β-lactamases (ESBLs) producers, with bla(CTX-M), bla(TEM), and bla(SHV) genes detected. A. baumannii harbored multiple resistance genes, including bla(TEM), bla(CTX-M), bla(OXA51), bla(OXA23), and bla(NDM), showing both phenotypic and genotypic ESBLs and carbapenemase activity. The presence of MDR, ESBLs, and carbapenemase producing Gram-negative bacteria in SCMM, SCMFM, and MM indicates a concerning exchange of bacteria and antimicrobial resistance genes between human and animal hosts, posing risks of milk contamination and environmental hazards. A one-health approach is essential for controlling antimicrobial-resistant bacteria, emphasizing prudent antimicrobial use in human and animal healthcare, and improving farm hygiene practices.202540424737
217020.9963Drug resistance in bacteria isolated from patients presenting with wounds at a non-profit Surgical Center in Phnom Penh, Cambodia from 2011-2013. BACKGROUND: Emerging antibiotic resistance amongst clinically significant bacteria is a public health issue of increasing significance worldwide, but it is relatively uncharacterized in Cambodia. In this study we performed standard bacterial cultures on samples from wounds at a Non-Governmental-Organization (NGO) Hospital in Phnom Penh, Cambodia. Testing was performed to elucidate pathogenic bacteria causing wound infections and the antibiotic resistance profiles of bacterial isolates. All testing was performed at the Naval Medical Research Unit, No.2 (NAMRU-2) main laboratory in Phnom Penh, Cambodia. METHODS: Between 2011-2013, a total of 251 specimens were collected from patients at the NGO hospital and analyzed for bacterial infection by standard bacterial cultures techniques. Specimens were all from wounds and anonymous. No specific clinical information accompanied the submitted specimens. Antibiotic susceptibility testing, and phenotypic testing for extended-spectrum beta-lactamase (ESBL) were performed and reported based on CLSI guidelines. Further genetic testing for CTX-M, TEM and SHV ESBLs was accomplished using PCR. RESULTS: One-hundred and seventy-six specimens were positive following bacterial culture (70 %). Staphlycoccus aureus was the most frequently isolated bacteria. Antibiotic drug resistance testing revealed that 52.5 % of Staphlycoccus aureus isolates were oxacillin resistant. For Escherichia coli isolates, 63.9 % were ciprofloxacin and levofloxacin resistant and 96 % were ESBL producers. Resistance to meropenem and imipenem was observed in one of three Acinetobacter spp isolates. CONCLUSIONS: This study is the first of its kind detailing the antibiotic resistance profiles of pathogenic bacteria causing wound infections at a single surgical hospital in Cambodia. The reported findings of this study demonstrate significant antibiotic resistance in bacteria from injured patients and should serve to guide treatment modalities in Cambodia.201528883936
141530.9963Antibiogram and Molecular Characterization of AmpC and ESBL-Producing Gram-Negative Bacteria from Poultry and Abattoir Samples. BACKGROUND AND OBJECTIVE: The global antibiotic resistance threat posed by ESBL and AmpC-producing Gram-Negative Bacteria (GNB) is a public health menace that rolls back the gains of 'One Health'. This study investigated the antibiogram and prevalence of AmpC and ESBL genes in Escherichia coli, Klebsiella spp. and Pseudomonas spp. from poultry and abattoir milieus in Enugu and Ebonyi States, Nigeria. MATERIALS AND METHODS: Isolation, identification and characterization of GNB from samples (150 abattoirs and 300 poultry) were done using standard microbiological techniques. Antimicrobial Susceptibility Testing (AST), as well as phenotypic screening for ESBL and AmpC enzymes, was performed using the Kirby-Bauer disc diffusion technique. PCR technique was used to screen isolated GNB for AmpC and ESBL genes. RESULTS: Exactly 42 E. coli and 8 Klebsiella spp. isolate from poultry samples and another 5 P. aeruginosa isolates from abattoir samples were phenotypically confirmed to be ESBL-producers. AmpC enzymes were phenotypically detected in 8 E. coli and 13 P. aeruginosa isolates from poultry samples. All ESBL and AmpC-positive bacteria exhibited high resistance frequencies to tested antibiotics, especially to the carbapenems and cephalosporins. ESBL genes (CTX-M, SHV-1, TEM) and AmpC genes (ACC-M, MOX-M, DHA-M) were harbored by the isolated GNB in this study. Overall, the DHA-M and CTX-M genes, mediating AmpC and ESBL production respectively were the most prevalent genes harbored by the tested GNB. CONCLUSION: This study reported that AmpC and ESBL genes are harbored by Gram-negative bacteria (E. coli, Klebsiella species and P. aeruginosa) that emanated from poultry and abattoir milieus.202133683048
213640.9963Antibiotic profiling of multidrug resistant pathogens in one-day-old chicks imported from Belgium to benin. BACKGROUND: Little data exist on the presence of resistant pathogens in day-old chicks imported into Benin. The occurrence of pathogenic bacteria was assessed in 180 one-day-old chicks imported from Belgium and received at the Cardinal Bernardin Gantin International Airport in Cotonou (Benin). The samples included swabbing the blisters of 180 chicks, followed by 18 pools of 10 swabs for bacterial isolation. Classic bacteriological methods based on Gram staining, culture on specific media and biochemical characterization were used. Antibacterial susceptibility screening to antibiotics was conducted using the Kirby-Bauer disc diffusion method, and the results were interpreted according to guidelines from the European Committee on Antimicrobial Susceptibility Testing (EUCAST). DNA extraction was performed by the heat treatment method. Resistance genes were screened by real-time PCR. RESULTS: We isolated 32 bacteria, including Escherichia coli (50%), Enterococcus spp. (28%), and coagulase-negative staphylococci (10%). The isolates were investigated for antibiotic resistance against antibiotics using the disk diffusion method and showed that in the Escherichia coli strains isolated, the highest rate of resistance was obtained against ciprofloxacin (81%), followed by trimethoprim + sulfamethoxazole (62%). Enterobacter cloacae was sensitive to all the antibiotics tested. Pseudomonas spp. resistant to amoxicillin and trimethoprim + sulfamethoxazole was noted. The SulII gene was found in all cloacal samples, while the SulI and bla(TEM) genes were present at 44.44% and 16.67%, respectively. CONCLUSION: This study confirms that imported day-old chicks can be a potential source of dissemination of resistant bacteria in poultry production. A system for immediate detection of resistant bacteria in chicks upon arrival in the country is thus needed.202336670436
105250.9963Extended-spectrum beta-lactamase-producing Pseudomonas aeruginosa in camel in Egypt: potential human hazard. BACKGROUND: The rapid increase of extended-spectrum beta-lactamase (ESBL) producing bacteria are a potential health hazard. Development of antimicrobial resistance in animal pathogens has serious implications for human health, especially when such strains could be transmitted to human. In this study, the antimicrobial resistance due to ESBL producing Pseudomonas aeruginosa in the camel meat was investigated. METHODS: In this study meat samples from 200 healthy camels at two major abattoirs in Egypt (Cairo and Giza) were collected. Following culture on cetrimide agar, suspected P. aeruginosa colonies were confirmed with a Vitek 2 system (bioMe´rieux). P. aeruginosa isolates were phenotypically identified as ESBL by double disk synergy test. Additionally antimicrobial susceptibility testing of ESBL producing P. aeruginosa isolates were done against 11 antimicrobial drugs and carried out by disk diffusion method. The ESBL genotypes were determined by polymerase chain reaction according to the presence of the bla (PER-1), bla (CTX-M), bla (SHV), and bla (TEM). RESULTS: Pseudomonas aeruginosa was isolated from 45 camel meat sample (22.5%). The total percentage of ESBL producing P. aeruginosa was 45% (21/45) from camel meat isolates. Antibiogram results revealed the highest resistance was for c, ceftriaxone and rifampicin followed by cefepime and aztreonam. The prevalence rates of β-lactamase genes were recorded (bla (PER-1) 28.5%, bla (CTX-M) 38%, bla (SHV) 33.3% and bla (TEM) 23.8%). CONCLUSIONS: This study illustrates the presence of high rates of ESBL-P. aeruginosa in camels that represents an increasing alarming for the risk of transmission to human and opens the door for current and future antibiotics therapy failure. Livestock associated ESBL-P. aeruginosa is a growing disaster, therefore, attention has to be fully given to livestock associated ESBL-bacteria which try to find its way to human beings.201728359312
94860.9963Multidrug-Resistant Bacteria in Aquaculture Systems in Accra, Ghana. BACKGROUND: Antibiotic resistance (ABR) poses a critical global health challenge, necessitating its surveillance across both human and animal health sectors. This study evaluated ABR in bacteria harboured in reared inland fishes sold in Accra and the pond water from which they originated. METHOD: The study was cross-sectional, involving fishes and water sampled from 80 ponds. The gastrointestinal organs of the fishes were homogenised and cultured for bacteria, as were the water samples. The bacteria were identified using matrix-assisted laser desorption/ionisation time of flight mass spectrometry (MALDI-TOF-MS). Antimicrobial susceptibility test was done using the Kirby-Bauer method. Multidrug-resistant (MDR) bacteria were selected for further testing. The double disc diffusion method was used to detect extended-spectrum beta-lactamase (ESBL) production in isolates that were resistant to third-generation cephalosporins. Whole genome sequencing was performed on the ESBL-positive isolates using the Illumina Miseq platform. RESULTS: In total, 39 different bacterial species, with their individual numbers totalling 391, were isolated. The bacteria were predominantly Escherichia coli (17%), Aeromonas veronii (11%), Citrobacter freundii (8%), Bacillus cereus (5%), and Klebsiella pneumoniae (5%). The overall ABR rates were cefotaxime (32%), gentamicin (1%), ciprofloxacin (4%), chloramphenicol (19%), tetracycline (37%), meropenem (0%), and ertapenem (0%). Overall MDR and ESBL bacteria prevalence were 13.6% and 1.3%, respectively. The sequence types of the ESBL isolates were ST4684 (80%, n = 4) and ST2005 (20%, n = 1), and the serotypes were H34:09 (80%, n = 4) and H7 (20%, n = 1); the ABR genes were blaCTX-M-15, fosA7, and qnrS1. CONCLUSION: The fishes and the pond water were contaminated with a diverse range of bacteria, mainly Escherichia coli and Aeromonas veronii. The ABR, MDR, and ESBL rates were low to moderate. Moreover, the main sequence type and serotype of the ESBL isolates were ST4684 and H34:09, respectively, and the ABR genes were blaCTX-M-15, fosA7, and qnrS1.202439600552
95170.9962Analyses of Extended-Spectrum-β-Lactamase, Metallo-β-Lactamase, and AmpC-β-Lactamase Producing Enterobacteriaceae from the Dairy Value Chain in India. The consumption of milk contaminated with antibiotic-resistant bacteria poses a significant health threat to humans. This study aimed to investigate the prevalence of Enterobacteriaceae producing β-lactamases (ESBL, MBL, and AmpC) in cow and buffalo milk samples from two Indian states, Haryana and Assam. A total of 401 milk samples were collected from dairy farmers and vendors in the specified districts. Microbiological assays, antibiotic susceptibility testing, and PCR-based genotyping were employed to analyze 421 Gram-negative bacterial isolates. The overall prevalence of β-lactamase genes was 10% (confidence interval (CI) (7-13)), with higher rates in Haryana (13%, CI (9-19)) compared to Assam (7%, CI (4-11)). The identified β-lactamase genes in isolates were bla(CMY), bla(MOX), bla(FOX), bla(EBC), and bla(DHA), associated with AmpC production. Additionally, bla(CTX-M1), bla(SHV), and bla(TEM) were detected as ESBL producers, while bla(VIM), bla(IMP), bla(SPM), bla(SIM), and bla(GIM) were identified as MBL producers. Notably, Shigella spp. were the dominant β-lactamase producers among identified Enterobacteriaceae. This study highlights the presence of various prevalent β-lactamase genes in milk isolates, indicating the potential risk of antimicrobial-resistant bacteria in dairy products. The presence of β-lactam resistance raises concern as this could restrict antibiotic options for treatment. The discordance between genotypic and phenotypic methods emphasizes the necessity for comprehensive approaches that integrate both techniques to accurately assess antibiotic resistance. Urgent collaborative action incorporating rational and regulated use of antibiotics across the dairy value chain is required to address the global challenge of β-lactam resistance.202337760745
128880.9962Assessment of virulence factors and antimicrobial resistance among the Pseudomonas aeruginosa strains isolated from animal meat and carcass samples. BACKGROUND: Pseudomonas aeruginosa bacteria are emerging causes of food spoilage and foodborne diseases. Raw meat of animal species may consider a reservoir of P. aeruginosa strains. OBJECTIVES: The present survey was done to assess the prevalence, antibiotic resistance properties and distribution of virulence factors among the P. aeruginosa strains isolated from raw meat and carcass surface swab samples of animal species. METHODS: Five hundred and fifty raw meat and carcass surface swab samples were collected from cattle and sheep species referred to as slaughterhouses. P. aeruginosa bacteria were identified using culture and biochemical tests. The pattern of antibiotic resistance was determined by disk diffusion. The distribution of virulence and antibiotic resistance genes was determined using polymerase chain reaction. RESULTS: Forty-seven of 550 (8.54%) examined samples were contaminated with P. aeruginosa. The prevalence of P. aeruginosa in raw meat and carcass surface swab samples were 6.57 and 12%, respectively. P. aeruginosa isolates showed the maximum resistance rate toward penicillin (87.23%), ampicillin (85.10%), tetracycline (85.10%), gentamicin (65.95%) and trimethoprim (57.44%). The most commonly detected antibiotic resistance genes were BlaCTX-M (53.19%), blaDHA (42.55%) and blaTEM (27.65%). The most commonly detected virulence factors was ExoS (42.55%), algD (31.91%), lasA (31.91%), plcH (31.91%) and exoU (25.53%). CONCLUSIONS: Meat and carcass surface swab samples may be sources of resistant and virulent P. aeruginosa, which pose a hygienic threat in their consumption. However, further investigations are required to identify additional epidemiological features of P. aeruginosa in meat and carcass surface samples.202336418165
218390.9961Prevalence and multidrug resistance of Enterococcus species isolated from chickens at slaughterhouses in Nakhon Ratchasima Province, Thailand. BACKGROUND AND AIM: Enterococcus is a commensal bacteria found in humans and animals, which can cause human nosocomial infections. One of the most contaminated enterococcal sources is poultry meat. Therefore, this study estimated the prevalence and antimicrobial resistance (AMR) profile of Enterococcus from chickens and their meat products at local slaughterhouses in Nakhon Ratchasima Province, Thailand. MATERIALS AND METHODS: From January 2021 to March 2022, 558 samples from 279 cloacal swabs and breast meat were collected from 31 local slaughterhouses in the area. Then, the samples were screened for Enterococcus using modified de Man, Rogosa, and Sharpe agar. Next, selected Gram-positive, catalase-negative, and cocci-shaped colonies were investigated for enterococcal confirmation using Enterococcosel Agar (EA). We also cultivated the samples directly on EA. However, the disk diffusion method was used to investigate positive Enterococcus resistance profiles to 16 antimicrobial agents. Finally, selected phenotypic multidrug-resistant (MDR) Enterococcus isolates were further assessed to identify AMR genes by polymerase chain reaction. RESULTS: Investigations showed that the prevalence of Enterococcus isolates from the chicken cloacal swabs and meat samples were 29.75% (83/279) and 28.32% (78/279), respectively. Most Enterococcus positive isolates were resistant to colistin, followed by cefoxitin, cephalexin, and streptomycin. These isolates also showed a prevalence of MDR species (65.22%; 105/161) and 66 patterns. Furthermore, selected MDR Enterococcus (MDRE) from cloacal swabs and breast meat were positive for the resistant extended-spectrum beta-lactamase TEM genes at 71.43% (20/28) and 78.26% (18/23), respectively, whereas other AMR genes detected in the selected MDR enterococci from the cloacal swabs and breast meat were beta-lactamase TEM (bla (TEM) [0%, 1.96%]), Class 1 integrase (intI1 [14.28%, 0%]), colistin (mrc-1 [3.57%, 0%]), and vancomycin (vanA [14.28%, 0%]). CONCLUSION: This study indicated that phenotypic MDRE correlated with extended-spectrum beta-lactamase TEM gene presence, leading to an AMR reservoir that can be transferred to other bacteria.202236590124
1434100.9961Molecular characterization of carbapenemases production among environmental Gram-negative isolates at Addis Ababa, Ethiopia: first detection of NDM Producers in hospital environments. INTRODUCTION: The Gram-Negative bacteria, particularly carbapenem-resistant strains (CR-GNB), pose a global health threat due to high morbidity and mortality. Detecting carbapenemase-encoding genes is essential for understanding their spread in hospital environments. This study investigated environmental colonization by CR-GNB in Ethiopian hospitals, including genetic characterization of resistance genes. METHODOLOGY: A cross-sectional study analyzed 103 environmental GNB isolates collected from inanimate surfaces at Tikur Anbessa Specialized Hospital (TASH) and ALERT Hospital (June-September 2021). Conventional microbiological methods identified the isolates, and antimicrobial susceptibility was tested using the Kirby-Bauer disk diffusion method. Carbapenemase production was screened using the Modified Hodge test (MHT) and combined disk test (CDT). Resistance genes (blaKPC, blaNDM, blaOXA-48) were detected via PCR in isolates with reduced meropenem susceptibility. RESULTS: The predominant GNB were Acinetobacter baumannii (47%), Pseudomonas aeruginosa (33%), and E. coli (12%). Among 103 isolates, 62% showed reduced meropenem susceptibility. The most common CR-GNB was Acinetobacter baumannii (37.5%), followed by E. coli (18.8%) and Klebsiella pneumoniae (12.5%). Carbapenemase production was detected in 41.7% of isolates via PCR, with blaNDM being the most common (43 isolates). Linens (26.4%) and beds (21.4%) had the highest contamination rates. Most carbapenemase-producing isolates were multidrug-resistant (MDR). CONCLUSIONS: The presence of blaNDM and blaKPC genes highlights hospital surfaces as reservoirs for resistance genes, contributing to healthcare-associated infections. Routine surveillance and early detection of carbapenemase producers are crucial for infection control and antimicrobial resistance management.202540305531
2129110.9961Screening of antibiotic resistance genes in pathogenic bacteria isolated from tiny freshwater shrimp (Macrobrachium lanchesteri) and "Kung Ten", the uncooked Thai food. OBJECTIVE: This study aimed to isolate and identify of pathogenic bacteria in tiny freshwater shrimp (Macrobrachium lanchesteri) and in Kung Ten, which is an unusual Thai cuisine that eaten alive shrimp directly. Antimicrobial susceptibility test and identification of antibiotic resistance genes for isolated bacteria were conducted. MATERIALS AND METHODS: Eighty of fresh shrimp samples and forty of Kung Ten salads were collected from four fresh markets, which were located in Bangkok and Nonthaburi province (N = 120). The isolation, identification, and antimicrobial susceptibility test of pathogenic bacteria were done following the Clinical and Laboratory Standards Institute guidelines. Antibiotic-resistant bacteria were screened for β-lactamase relating genes, such as AmpC (MOX and ACC genes), bla (CTX-M), and Int1 genes. RESULTS: The number of bacterial isolates in tiny freshwater shrimp and Kung Ten salad was 136 and 65, respectively. Aeromonas caviae, A. hydrophilla, Proteus penneri, Proteus vulgaris, and Klebsiella pneumoniae were commonly found. Ampicillin, amoxicillin/clavulanic, cefuroxime, tetracycline, and trimethoprim/sulfamethoxazole resistance were observed, and common antibiotic-resistant bacteria were A. caviae, P. vulgaris, Enterobacter Aerogenes, and K. pneumoniae. A. caviae, P. penneri, K. Pneumoniae, and A. hydrophilla were positive for MOX gene; bla (CTX-M), and Int1 genes; ACC and Int1 genes; and ACC gene, respectively. CONCLUSION: Raw or uncooked shrimps in Kung Ten salad may a risk in foodborne diseases due to positive for pathogenic bacterial isolates. However, hygienic control on food preparation is difficult to apply because of the difficulty of changing in local Thai food behavior.202032219114
2182120.9961Antibiotic resistance and virulence profiles of Proteus mirabilis isolated from broiler chickens at abattoir in South Africa. BACKGROUND: Proteus mirabilis has been identified as an important zoonotic pathogen, causing several illnesses such as diarrhoea, keratitis and urinary tract infections. OBJECTIVE: This study assessed the prevalence of P. mirabilis in broiler chickens, its antibiotic resistance (AR) patterns, ESBL-producing P. mirabilis and the presence of virulence genes. METHODS: A total of 26 isolates were confirmed as P. mirabilis from 480 pooled broiler chicken faecal samples by polymerase chain reaction (PCR). The disk diffusion method was used to evaluate the antibacterial susceptibility test, while nine virulence genes and 26 AR genes were also screened by PCR. RESULTS: All 26 P. mirabilis isolates harboured the ireA (siderophore receptors), ptA, and zapA (proteases), ucaA, pmfA, atfA, and mrpA (fimbriae), hlyA and hpmA (haemolysins) virulence genes. The P. mirabilis isolates were resistant to ciprofloxacin (62%) and levofloxacin (54%), while 8 (30.7%) of the isolates were classified as multidrug resistant (MDR). PCR analysis identified the bla(CTX-M) gene (62%), bla(TEM) (58%) and bla(CTX-M-2) (38%). Further screening for AMR genes identified mcr-1, cat1, cat2, qnrA, qnrD and mecA, 12%, 19%, 12%, 54%, 27% and 8%, respectively for P. mirabilis isolates. The prevalence of the integron integrase intI1 and intI2 genes was 43% and 4%, respectively. CONCLUSIONS: The rise of ciprofloxacin and levofloxacin resistance, as well as MDR strains, is a public health threat that points to a challenge in the treatment of infections caused by these zoonotic bacteria. Furthermore, because ESBL-producing P. mirabilis has the potential to spread to humans, the presence of bla(CTX) (-M) -producing P. mirabilis in broilers should be kept under control. This is the first study undertaken to isolate P. mirabilis from chicken faecal samples and investigate its antibiotic resistance status as well as virulence profiles in South Africa.202438357843
2185130.9961Isolation of multidrug-resistant Escherichia coli, Staphylococcus spp., and Streptococcus spp. from dogs in Chattogram Metropolitan Area, Bangladesh. OBJECTIVES: Antibacterial resistance is a great concern in human and food animal medicine, and it poses a significant concern in pet animals like dogs. This cross-sectional study was conducted to evaluate the antimicrobial resistance pattern of Escherichia coli, Staphylococcus spp., and Streptococcus spp. along with the carryover of some resistance genes in E. coli from dogs in the Chattogram metropolitan area, Bangladesh. MATERIALS AND METHODS: Rectal swab (n = 50), nasal swab (n = 50), and skin swab (n = 50) samples were collected from dogs having respiratory infections, skin infections, and/or enteritis, respectively. Three types of bacteria were identified and isolated by conventional bacteriological techniques and biochemical tests. Antimicrobial susceptibility testing was carried out against 12 antimicrobials by disk diffusion methods. Six resistance genes, namely bla (TEM), bla (CTX-M), tetA, tetB, Sul-I, and Sul-II, were screened for phenotypically resistant E. coli isolates by the polymerase chain reaction. RESULTS: A total of 39 (78%) E. coli, 25 (50%) Staphylococcus spp., and 24 (48%) Streptococcus spp. isolates were isolated from the rectal swab, nasal swab, and skin swab samples, respectively. In the cultural sensitivity test, the E. coli isolates showed resistance to ceftriaxone (79%) and sulfamethoxazole/trimethoprim (64%). Doxycycline (80%) demonstrated the highest resistance among Staphylococcus isolates, followed by sulfamethoxazole/trimethoprim (60%). Streptococcus isolates showed the highest resistance to penicillin (63%), followed by ceftriaxone (54%), while no isolate showed resistance to gentamycin. The prevalence of bla (TEM), bla (CTX-M), tetA, tetB, Sul-I, and Sul-II genes in phenotypically resistant E. coli isolates were 100%, 61.29%, 100%, 8.33%, 56%, and 72%, respectively. CONCLUSIONS: Spillover of such multidrug-resistant bacteria and resistance genes from pet dogs pose a serious public health risk.202033409311
2655140.9961Prevalence, virulence factors, and antibiotic resistance of Staphylococcus aureus in seafood products. INTRODUCTION: Seafood contamination by bacteria is a pervasive issue, contributing to foodborne illnesses. This study investigates the prevalence, virulence factors, and antibiotic resistance in Staphylococcus aureus (S. aureus) isolated from various seafood products. METHODS: A total of 460 samples, including fresh, smoked, salted, and dried fish, as well as oysters, crab, lobster, and shrimp, were collected in Shahrekord, Iran. S. aureus isolation followed ISO standards, with confirmation via PCR for 16S rRNA and nuc genes. Antibiotic susceptibility was determined via Kirby-Bauer disc diffusion, while PCR detected enterotoxin and antibiotic resistance genes. FINDINGS: S. aureus was prevalent in all seafood types, with 27.83% positivity. Methicillin-resistant S. aureus (MRSA) was found in most samples, except oysters and crabs. Virulence genes were common, with Sea, Seb, Sed, Sec, and See being the most prevalent. High resistance to penicillin G and ampicillin (70%- 100%) was observed. Resistance varied for other antibiotics, with linezolid showing 100% susceptibility. The mecA gene was present in over 50% of isolates, with blaZ being the most detected resistance gene. CONCLUSION: The study underscores the need for Good Hygiene Practices (GHP) in seafood processing to mitigate S. aureus transmission. While specific comparisons between sample types were limited, the findings emphasize the prevalence of virulence factors and antibiotic resistance in seafood-associated S. aureus, highlighting the importance of vigilant food safety measures.202540247155
1469150.9960Investigation of Bacterial Infections and Antibiotic Resistance Patterns Among Clinical Isolates in the Center of Iran. Introduction: Bacterial infection is a considerable problem in hospitals. Thus, this study was executed to appraise the rampancy of bacterial infections, antimicrobial susceptibility patterns, and molecular characterization of isolates among patients in Bafgh Hospital in Yazd, Iran, in 2020. Methods: In the current study, we surveyed 103 isolates of 400 clinical specimens from early March 2020 to September 2020 in Bafgh Hospital. We assessed phenotypic traits and antibiotic resistance with standard microbiological methods. Phenotypic methods were also performed to identify extended-spectrum beta-lactamases (ESBLs) in Gram-negative bacilli, inducible clindamycin resistance, and methicillin resistance in Staphylococcus according to CLSI guidelines. Molecular identification of isolates was done by conventional PCR 16S rRNA gene sequencing. Furthermore, we investigated the prevalence of resistant genes including bla (TEM), bla (PER-2), bla (CTX-M), bla (SHV), and bla (VEB-1) in Gram-negative bacteria and the mecA gene in staphylococcal species. Results: From 400 different clinical specimens, 103 isolates of Gram-positive and Gram-negative bacteria were isolated. Based on phenotypic and molecular methods, most common isolates were Escherichia coli (53 isolates), followed by Klebsiella spp. (18 isolates), and Staphylococcus aureus (16 isolates). The highest resistance was found in Gram-positive bacteria to erythromycin (66.67%) and penicillin (55.56%), while considering Gram-negative bacteria, the most resistant was cefixime (49.41%) and trimethoprim-sulfamethoxazole (47.05%). In addition, out of 16 S. aureus isolates, 62.5% and 17.65% were resistant to methicillin and clindamycin, respectively. Among 83 Gram-negative isolates, 22.89% were ESBL-positive. The prevalence of bla (SHV), bla (PER2), bla (TEM), bla (CTX-M), and bla (VEB-1) genes was 78.31%, 59.03%, 40.96%, 30.12%, and 0%, respectively. Conclusions: The outbreak of bacterial infections is relatively high in hospitals. Recognizing risk agents for bacterial infections and restricting the administration of multidrug-resistant antibiotics is a substantial measure that must be taken to prevent patient mortality.202540822981
2184160.9960Antibiotic-Resistant Bacteria, Antimicrobial Resistance Genes, and Antibiotic Residue in Food from Animal Sources: One Health Food Safety Concern. Antibiotic-resistant bacteria causing foodborne serious illnesses can be found in contaminated food. Therefore, this study aimed to identify the pathogens, genes, and antimicrobial residues present in raw milk and meat. We collected 40 raw milk and 40 beef samples using the aseptic method from various parts of the Faisalabad metropolis, Pakistan. The samples were cultured on blood, MacConkey, and UTI chrome agar. The VITEK 2 compact system was used for microbial identification and determination of minimum inhibitory concentrations. Antimicrobial resistance genes for extended-spectrum β-lactamases, methicillin resistance in Staphylococcus aureus, and carbapenem resistance were identified using molecular techniques. ELISA was used to determine the tetracycline residue level in each sample. The beef samples showed polymicrobial contamination with 64 bacterial isolates, with Escherichia coli (29; 45.3%) and Klebsiella pneumoniae (11; 17.1%) predominating. The milk samples showed polymicrobial contamination with 73 bacterial isolates, with E. coli (22; 30%), K. pneumoniae (12; 16.4%), and S. aureus (10; 13.6%) forming the majority. Twenty-eight (43.7%) isolates from beef harbored tet genes, nineteen (29.6%) bla(CTX-M), and fourteen (21.8%) bla(NDM-1), and twenty-six (35.6%) isolates from milk harbored tet genes, nineteen (26%) bla(TEM) and bla(CTX-M), and three (4%) bla(NDM-1). Twenty-two (55%) each of the beef and milk samples exceeded the maximum residue limit for tetracycline. Polymicrobial contamination by bacteria possessing bla(CTX-M), bla(TEM), bla(NDM-1), bla(OXA), mecA, and tet genes was identified in food samples. The high tetracycline residue levels pose a serious health risk to consumers.202336677453
944170.9960Fecal shedding of extended-spectrum beta-lactamase-producing Enterobacterales in cats admitted to an animal shelter. OBJECTIVES: The objective of this study was to evaluate shedding of extended-spectrum beta-lactamase (ESBL)-producing bacteria in cats admitted to an animal shelter. METHODS: Fecal samples were collected from cats admitted to an animal shelter between 12 June and 23 August 2018. Selective enrichment culture for ESBL-producing bacteria was performed and isolates were speciated and tested for selected ESBL genes using PCR. RESULTS: ESBL-producing Enterobacterales were identified in fecal samples from 2/87 (2.3%; 95% confidence interval 0.6-8.0) cats. One isolate was an Escherichia coli that possessed bla(CTX-M-1), bla(CMY-2) and bla(TEM) genes. The other was Enterobacter cloacae possessing bla(CTX-M-1) and bla(CMY-2). CONCLUSIONS AND RELEVANCE: While the study sample size and prevalence rate for ESBL-producing bacteria were low, these data document that cats admitted to similar shelters could harbor these agents. The risk posed by ESBL-producing bacterium shedding in cats, both to cats and other species, is currently unclear. However, these findings support the need for more investigation of interspecies transmission of ESBL-producing bacteria and ESBL genes, as well as the importance of antimicrobial stewardship and routine infection control measures.202235133182
2196180.9960Antibiotic resistance profiles in Gram-negative bacteria causing bloodstream and urinary tract infections in paediatric and adult patients in Ndola District, Zambia, 2020-2021. BACKGROUND: Bloodstream infections (BSIs) and urinary tract infections (UTIs) caused by antibiotic resistant bacteria (ARB) have unfavourable treatment outcomes and negative economic impacts. OBJECTIVES: The main objective of this study was to determine antibiotic resistance profiles in Gram-negative bacteria (GNB) causing BSIs and UTIs. METHOD: A prospective study from October 2020 to January 2021 at Ndola Teaching Hospital and Arthur Davison Children's Hospital in the Ndola district, Zambia. Blood and urine samples collected from inpatients and outpatients presenting with fever and/or urinary tract infection symptoms were submitted for microbiological analysis. Pathogen identification and antibiotic susceptibility was determined by the automated VITEK 2 Compact machine. Resistance genes to commonly used antibiotics were determined using polymerase chain reaction. Data were analysed using SPSS version 28.0. RESULTS: One hundred and ten GNB were isolated, E. coli (45.5%) was predominant, with varying resistance profiles to different antibiotic classes. Resistance to third-generation cephalosporin was highest in Enterobacter cloacae (75%) and Klebsiella pneumoniae (71%), respectively. Emergence of carbapenem resistance was noted with the highest being 17% in Acinetobacter baumannii. Notably, the prevalence of multi-drug resistance was 63% and extensively drug-resistance was 32%. Resistance gene determinants identified included bla (CTX-M,) qnrA and bla (NDM). CONCLUSION: High level antibiotic resistance was observed in GNB known to be prevalent causative agents of BSIs and UTIs locally in Zambia. Improving microbiology diagnostic capacity, strengthening antimicrobial stewardship programs and enforcing infection prevention and control measures are of utmost importance in promoting rational use of antibiotics and preventing the spread and emergence of resistant pathogens.202540585877
1407190.9960World Health Organization priority antimicrobial resistance in Enterobacterales, Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus faecium healthcare-associated bloodstream infections in Brazil (ASCENSION): a prospective, multicentre, observational study. BACKGROUND: Carbapenem-resistant Enterobacterales (CRE), Acinetobacter baumannii (CRAB), Pseudomonas aeruginosa (CRPA), methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE) are listed by World Health Organization (WHO) as priority antimicrobial-resistant bacteria. Data on WHO Priority Antimicrobial resistance Phenotype (WPAP) bacteria from low- and middle-income countries are scarce. In this study, we investigated the occurrence of WPAP in healthcare-associated bloodstream infections (BSI) in Brazil, an upper-middle-income country in South America. METHODS: ASCENSION was a prospective, multicentre, observational study conducted in 14 hospitals from four of five Brazilian regions. Enterobacterales, A. baumannii, P. aeruginosa, S. aureus and E. faecium BSIs in hospitalised patients were analysed. The primary outcome was the frequency of WPAP among all bacteria of interest. Secondary outcomes were incidence-density of bacteria isolates in hospitalised patients, WPAP proportions within bacterial species, and 28-day mortality. PCR for carbapenemase genes was performed in carbapenem-resistant Gram-negative bacteria. FINDINGS: Between August 15, 2022, and August 14, 2023, 1350 isolates (1220 BSI episodes) were included. WPAP accounted for 38.8% (n = 524; 95% Confidence Interval 32.0-46.1) of all isolates, with CRE (19.3%) as the most frequent, followed by CRAB (9.6%), MRSA (4.9%), VRE (2.7%), and CRPA (2.4%). Incidence-density of all and WPAP isolates were 1.91 and 0.77/1000 patients-day, respectively. Carbapenem-resistant Klebsiella pneumoniae (CRKP) was the most common CRE, corresponding to 14.2% of all BSIs. A. baumannii isolates presented the highest proportion of WPAP (87.8%). Mortality rates were higher in patients with BSIs by WPAP than non-WPAP isolates. KPC (64.4%) was the predominant carbapenemase in CRE, followed by NDM (28.4%) and KPC + NDM co-production (7.1%). OXA-23 was the most frequent in CRAB. INTERPRETATION: A high frequency of WPAP bacteria, particularly CRKP and CRAB, were found in healthcare-associated BSIs in Brazil, posing them as a major public health problem in this country. FUNDING: National Council for Scientific and Technological Development, Brazil.202539957800