MG - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
774500.9938Iron-modified biochar boosts anaerobic digestion of sulfamethoxazole pharmaceutical wastewater: Performance and microbial mechanism. The accumulation of volatile fatty acids (VFAs) caused by antibiotic inhibition significantly reduces the treatment efficiency of sulfamethoxazole (SMX) wastewater. Few studies have been conducted to study the VFAs gradient metabolism of extracellular respiratory bacteria (ERB) and hydrogenotrophic methanogen (HM) under high-concentration sulfonamide antibiotics (SAs). And the effects of iron-modified biochar on antibiotics are unknown. Here, the iron-modified biochar was added to an anaerobic baffled reactor (ABR) to intensify the anaerobic digestion of SMX pharmaceutical wastewater. The results demonstrated that ERB and HM were developed after adding iron-modified biochar, promoting the degradation of butyric, propionic and acetic acids. The content of VFAs reduced from 1166.0 mg L(-1) to 291.5 mg L(-1). Therefore, chemical oxygen demand (COD) and SMX removal efficiency were improved by 22.76% and 36.51%, and methane production was enhanced by 6.19 times. Furthermore, the antibiotic resistance genes (ARGs) such as sul1, sul2, intl1 in effluent were decreased by 39.31%, 43.33%, 44.11%. AUTHM297 (18.07%), Methanobacterium (16.05%), Geobacter (6.05%) were enriched after enhancement. The net energy after enhancement was 0.7122 kWh m(-3). These results confirmed that ERB and HM were enriched via iron-modified biochar to achieve high efficiency of SMX wastewater treatment.202337030222
787610.9935Sulfamethoxazole impact on pollutant removal and microbial community of aerobic granular sludge with filamentous bacteria. In this study, sulfamethoxazole (SMX) was employed to investigate its impact on the process of aerobic granule sludge with filamentous bacteria (FAGS). FAGS has shown great tolerance ability. FAGS in a continuous flow reactor (CFR) could keep stable with 2 μg/L of SMX addition during long-term operation. The NH(4)(+), chemical oxygen demand (COD), and SMX removal efficiencies kept higher than 80%, 85%, and 80%, respectively. Both adsorption and biodegradation play important roles in SMX removal for FAGS. The extracellular polymeric substances (EPS) might play important role in SMX removal and FAGS tolerance to SMX. The EPS content increased from 157.84 mg/g VSS to 328.22 mg/g VSS with SMX addition. SMX has slightly affected on microorganism community. A high abundance of Rhodobacter, Gemmobacter, and Sphaerotilus of FAGS may positively correlate to SMX. The SMX addition has led to the increase in the abundance of the four sulfonamide resistance genes in FAGS.202336871701
805420.9933Effects of nanoscale zero-valent iron on the performance and the fate of antibiotic resistance genes during thermophilic and mesophilic anaerobic digestion of food waste. The effects of nanoscale zero-valent iron (nZVI) on the performance of food waste anaerobic digestion and the fate of antibiotic resistance genes (ARGs) were investigated in thermophilic (TR) and mesophilic (MR) reactors. Results showed that nZVI enhanced biogas production and facilitated ARGs reduction. The maximum CH(4) production was 212.00 ± 4.77 ml/gVS with 5 g/L of nZVI in MR. The highest ARGs removal ratio was 86.64 ± 0.72% obtained in TR at nZVI of 2 g/L. nZVI corrosion products and their contribution on AD performance were analyzed. The abundance of tetracycline genes reduced significantly in nZVI amended digesters. Firmicutes, Chloroflexi, Proteobacteria and Spirochaetes showed significant positive correlations with various ARGs (p < 0.05) in MR and TR. Redundancy analysis indicated that microbial community was the main factor that influenced the fate of ARGs. nZVI changed microbial communities, with decreasing the abundance bacteria belonging to Firmicutes and resulting in the reduction of ARGs.201931505392
786130.9933The removal of antibiotic resistant bacteria and genes and inhibition of the horizontal gene transfer by contrastive research on sulfidated nanoscale zerovalent iron activating peroxymonosulfate or peroxydisulfate. Antibiotic resistant bacteria (ARB) and the antibiotic resistance genes (ARGs) dissemination via plasmid-mediated conjugation have attracted considerable attentions. In this research, sulfidated nanoscale zerovalent iron (S-nZVI)/peroxymonosulfate (PMS) and S-nZVI/peroxydisulfate (PDS) process were investigated to inactivate ARB (Escherichia coli DH5α with RP4 plasmid, Pseudomonas. HLS-6 contains sul1 and intI1 on genome DNA sequence). S-nZVI/PMS system showed higher efficiency than S-nZVI/PDS on ARB inactivation. Thus, the optimal condition 28 mg/L S-nZVI coupled with 153.7 mg/L (0.5 mM) PMS was applied to remove both intracellular ARGs (iARGs) and ARB. The oxidative damage of ARB cell was systemically studied by cell viability, intracellular Mg(2+) levels, the changes of extracellular and internal structure, integrity of cell walls and membranes and enzymatic activities. S-nZVI/PMS effectively inactivated ARB (~7.32 log) within 15 min. These effects were greatly higher than those achieved individually. Moreover, removal efficiencies of iARGs sul1, intI1 and tetA were 1.52, 1.79 and 1.56 log, respectively. These results revealed that S-nZVI and PMS have a synergistic effect against ARB and iARGs. The regrowth assays illustrated that the ARB were effectively inactivated. By verifying the inhibitory impacts of S-nZVI/PMS treatment on conjugation transfer, this work highlights a promising alternative technique for inhibiting the horizontal gene transfer.202234482079
805540.9931Effects of nano-zerovalent iron on antibiotic resistance genes during the anaerobic digestion of cattle manure. This study investigated the effects of adding nano-zerovalent iron (nZVI) at three concentrations (0, 80, and 160 mg/L) on the methane yield and the fate of antibiotic resistance genes (ARGs) during the anaerobic digestion (AD) of cattle manure. The addition of nZVI effectively enhanced the methane yield, where it significantly increased by 6.56% with 80 mg/L nZVI and by 6.43% with 160 mg/L nZVI. The reductions in the abundances of ARGs and Tn916/1545 were accelerated by adding 160 mg/L nZVI after AD. Microbial community analysis showed that nZVI mainly increased the abundances of bacteria with roles in hydrolysis and acidogenesis, whereas it reduced the abundance of Acinetobacter. Redundancy analysis indicated that the changes in mobile genetic elements made the greatest contribution to the fate of ARGs. The results suggest that 160 mg/L nZVI is a suitable additive for reducing the risks due to ARGs in AD.201931247529
775050.9931Efficient removal of enrofloxacin in swine wastewater using eukaryotic-bacterial symbiotic membraneless bioelectrochemical system. A eukaryotic-bacterial symbiotic membraneless bioelectrochemical system (EBES) reactor with eukaryotic-bacteria symbiotic cathode was developed to treat swine wastewater containing enrofloxacin (ENR), which had high performance at ENR tolerance and operational stability. With ENR concentrations shifting from 2 to 50 mg/L, the removal efficiencies of ENR, chemical oxygen demand (COD) and NH(4)(+)-N always were higher than 95 %, and the maximum power output (≥343 mW/m(3)) could be achieved. At 20 mg/L ENR, the removal efficiencies of ENR, COD and NH(4)(+)-N respectively reached to 99.4 ± 0.1 %, 98.5 % ± 0.1 %, and 96.3 % ± 0.5 %, corresponding to the open circuit voltage and maximum power density (P(max)) of EBES were 851 mV and 455 mW/m(3). The community analyses showed that bacteria (Comamonas, Rhodobacter, Rhodococcus, and Vermiphilaceae et al.), algae (Chlorella) and fungi (Rozellomycota, Trebouxiophyceae, Exophiala, and Aspergillus et al.) at genus level were the dominate populations in the EBES, and their abundance increased with ENR concentration, suggesting they played key roles to remove ENR and another nutrient element. The low relative abundances (1.9 ×10(-7) to 1.1 ×10(-5) copies/g) of aac (6')-ib-cr, qnrA, qnrD, qnrS, and gyrA in effluent revealed that the present EBES reactor had superior capabilities in controlling antibiotic-resistance genes and antibiotic-resistant bacteria. Our trial experiments provided a novel way for antibiotic livestock wastewater treatment.202539938376
786660.9929Inactivation of sulfonamide antibiotic resistant bacteria and control of intracellular antibiotic resistance transmission risk by sulfide-modified nanoscale zero-valent iron. The inactivation of a gram-negative sulfonamide antibiotic resistant bacteria (ARB) HLS.6 and removal of intracellular antibiotic resistance gene (ARG, sul1) and class I integrase gene (intI1) by nanoscale zero-valent iron (nZVI) and sulfide-modified nZVI (S-nZVI) with different S/Fe molar ratios were investigated in this study. The S-nZVI with high sulfur content (S/Fe = 0.05, 0.1, 0.2) was superior to nZVI and the treatment effect was best when S/Fe was 0.1. The ARB (2 × 10(7) CFU/mL) could be completely inactivated by 1.12 g/L of S-nZVI (S/Fe = 0.1) within 15 min, and the removal rates of intracellular sul1 and intI1 reached up to 4.39 log and 4.67 log at 60 min, respectively. Quenching experiments and flow cytometry proved that reactive oxygen species and adsorption were involved in the ARB inactivation and target genes removal. Bacterial death and live staining experiments and transmission electron microscopy showed that the ARB cell structure and intracellular DNA were severely damaged after S-nZVI treatment. This study provided a potential alternative method for controlling the antibiotic resistance in aquatic environment.202032585519
805070.9929Effects of antibiotics on corncob supported solid-phase denitrification: Denitrification and antibiotics removal performance, mechanism, and antibiotic resistance genes. Solid-phase denitrification (SPD) has been used in wastewater treatment plant effluent to enhance nitrate removal, and antibiotics co-existing in the effluent is a common environmental problem. In this study, it was systematically investigated the effect of single trace sulfamethoxazole (SMX)/trimethoprim (TMP) and their mixture on microbial denitrification performance, the antibiotics removal, and antibiotics resistance genes (ARGs) in corncob supported SPD system. The average denitrification rate was improved by 46.90% or 61.09% with single 50 µg/L SMX or TMP, while there was no significant inhibition with mixed SMX and TMP. The abundance of dominant denitrifiers (Comamonadaceae family and Azospia) and fermentation bacteria (Ancalomicrobium) were consistent with the denitrification performance of different antibiotics groups. Single SMX and TMP achieved relatively higher denitrification gene and enzyme abundance. Mixed SMX and TMP improved the denitrification gene copies, but they reduced the key denitrification enzymes except for EC 1.7.7.2. Additionally, the removal efficiency of TMP (56.70% ± 3.18%) was higher than that of SMX (25.44% ± 2.62%) in single antibiotic group, and the existence of other antibiotics (i.e. SMX or TMP) had no significant impact on the TMP or SMX removal performance. Biodegradation was the main removal mechanism of SMX and TMP, while sludge and corncob adsorption contributed a little to their removal. SMX had the risk of sulfanilamide resistance genes (SRGs) dissemination. Furthermore, network analysis indicated that Niveibacterium and Bradyrhizobium were the potential hosts of SRGs, which promoted the horizontal transmission of ARGs.202337032040
788680.9928Resistance of anammox granular sludge to copper nanoparticles and oxytetracycline and restoration of performance. Nanoparticles and antibiotics, the two most frequently detected emerging pollutants from different wastewater sources, are eventually discharged into wastewater treatment plants. In this study, the widely used materials CuNPs and oxytetracycline (OTC) were selected as target pollutants to investigate their joint effects on anaerobic ammonium oxidation (anammox). The results indicated that the environmental concentration slightly inhibited the performance of the reactors, while the performance rapidly deteriorated within a week under high-level combined shocks (5.0 mg L(-1) CuNPs and 2.0 mg L(-1) OTC). After the second shock (2.5 mg L(-1) CuNPs and 2.0 mg L(-1) OTC), the resistance of anammox bacteria was enhanced, with an elevated relative abundance of Candidatus Kuenenia and absolute abundance of hzsA, nirS, and hdh. Moreover, the extracellular polymeric substance (EPS) content and specific anammox activity (SAA) showed corresponding changes. Improved sludge resistance was observed with increasing CuNP and OTC doses, which accelerated the recovery of performance.202032244076
804690.9928Responses of aerobic granular sludge to fluoroquinolones: Microbial community variations, and antibiotic resistance genes. In this study, aerobic granular sludge (AGS) was operated under high levels of ammonium for removing three fluoroquinolones (FQs), i.e., ciprofloxacin (CFX), ofloxacin (OFX), and norfloxacin (NFX) at 3, 300, and 900 µg/L, respectively. Two key objectives were to investigate the differential distribution of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in sludge fractions and to evaluate correlations between ARGs and MGEs to nitrifying and denitrifying bacteria. AGS showed excellent stability under the exposure of FQs, with nitrite-oxidizing bacteria (NOB) more sensitive to FQs than ammonium-oxidizing bacteria (AOB). Specific oxygen utilization rates (SOUR) showed a reduction of 26.9% for NOB but only 4.0% of the reduced activity of AOB by 3 μg/L FQs. AGS performed better removal efficiencies for CFX and NFX than OFX, and the efficiencies increased with their elevated concentrations, except at 900 μg/L FQs. The elevated FQ concentrations led to a significant enrichment of intI1 and genus Thauera, while qnrD and qnrS showed no accumulation. Compared to nitrifiers, FQs relevant ARGs and the intI1 gene preferred to exist in denitrifiers, and the abundance of denitrifiers behaved a decreasing trend with the sludge size. Two quinoline-degrading bacteria were found in the AGS system, i.e., Alicycliphilus and Brevundimonas, possibly carrying qnrS and qnrD, respectively. Their relative abundance increased with the sludge size, which was 2.18% in sludge <0.5 mm and increased to 3.70% in sludge >2.0 mm, suggesting that the AGS may be a good choice in treating FQs-containing wastewater.202133676249
7860100.9928Enhanced removal of antibiotic-resistant bacteria and resistance genes by three-dimensional electrochemical process using MgFe(2)O(4)-loaded biochar as both particle electrode and catalyst for peroxymonosulfate activation. In this study, MgFe(2)O(4)-loaded biochar (MFBC) was used as a three-dimensional particle electrode to active peroxymonosulfate (EC/MFBC/PMS) for the removal of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). The results demonstrated that, under the conditions of 1.0 mM PMS concentration, 0.4 g/L material dosage, 5 V voltage intensity, and MFBC preparation temperature of 600 °C, the EC/MFBC600/PMS system achieved complete inactivation of E. coli DH5α within 5 min and the intracellular sul1 was reduced by 81.5 % after 30 min of the treatment. Compared to EC and PMS alone treatments, the conjugation transfer frequency of sul1 rapidly declined by 92.9 % within 2 min. The cell membrane, proteins, lipids, as well as intracellular and extracellular ARGs in E. coli DH5α were severely damaged by free radicals in solution and intracellular reactive oxygen species (ROS). Furthermore, up-regulation was observed in genes associated with oxidative stress, SOS response and cell membrane permeability in E. coli DH5α, however, no significant changes were observed in functional genes related to gene conjugation and transfer mechanisms. This study would contribute to the underlying of PMS activation by three-dimensional particle electrode, and provide novel insights into the mechanism of ARB inactivation and ARGs degradation under PMS advanced oxidation treatment.202439197284
7867110.9927The removal of antibiotic resistant bacteria and antibiotic resistance genes by sulfidated nanoscale zero-valent iron activating periodate: Efficacy and mechanism. Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have drawn much more attention due to their high risk on human health and ecosystem. In this study, the performance of sulfidated nanoscale zero-valent iron (S-nZVI)/periodate (PI) system toward ARB inactivation and ARGs removal was systematically investigated. The S-nZVI/PI system could realize the complete inactivation of 1 × 10(8) CFU/mL kanamycin, ampicillin, and tetracycline-resistant E. coli HB101 within 40 min, meanwhile, possessed the ability to remove the intracellular ARGs (iARGs) (including aphA, tetA, and tnpA) carried by E. coli HB101. Specifically, the removal of aphA, tetA, and tnpA by S-nZVI/PI system after 40 min reaction was 0.31, 0.47, and 0.39 log(10)copies/mL, respectively. The reactive species attributed to the E. coli HB101 inactivation were HO(•) and O(2)(•-), which could cause the destruction of E. coli HB101 morphology and enzyme system (such as superoxide dismutase and catalase), the loss of intracellular substances, and the damage of iARGs. Moreover, the influence of the dosage of PI and S-nZVI, the initial concentration of E. coli HB101, as well as the co-existing substance (such as HCO(3)(-), NO(3)(-), and humic acid (HA)) on the inactivation of E. coli HB101 and its corresponding iARGs removal was also conducted. It was found that the high dosage of PI and S-nZVI and the low concentration of E. coli HB101 could enhance the disinfection performance of S-nZVI/PI system. The presence of HCO(3)(-), NO(3)(-), and HA in S-nZVI/PI system showed inhibiting role on the inactivation of E. coli HB101 and its corresponding iARGs removal. Overall, this study demonstrates the superiority of S-nZVI/PI system toward ARB inactivation and ARGs removal.202337544470
7747120.9927Hydrothermal pre-treatment followed by anaerobic digestion for the removal of tylosin and antibiotic resistance agents from poultry litter. Hydrothermal pretreatment (HPT) followed by anaerobic digestion (AD) is an alternative for harvesting energy and removing organic contaminants from sewage sludge and animal manure. This study investigated the use, in an energetically sustainable way, of HPT and AD, alone or combined, to produce methane and remove tylosin and antimicrobial resistance genes (ARG) from poultry litter (PL). The results showed that HPT at 80 °C (HPT80), followed by single-stage AD (AD-1S), led to the production of 517.9 ± 4.7 NL CH(4) kg VS(-1), resulting in 0.11 kWh kg PL(-1) of electrical energy and 0.75 MJ kg PL(-1) of thermal energy, thus supplying 33.6% of the energy spent on burning firewood at a typical farm. In this best-case scenario, the use of HPT alone reduced tylosin concentration from PL by 23.6%, while the process involving HPT followed by AD-1S led to the removal of 91.6% of such antibiotic. The combined process (HPT80 + AD-1S), in addition to contributing to reduce the absolute and relative abundances of ARG ermB (2.13 logs), intI1 (0.39 logs), sul1 (0.63 logs), and tetA (0.74 logs), led to a significant removal in the relative abundance of tylosin-resistant bacteria present in the poultry litter.202336648713
7877130.9927External circuit loading mode regulates anode biofilm electrochemistry and pollutants removal in microbial fuel cells. This study investigated the effects of different external circuit loading mode on pollutants removal and power generation in microbial fuel cells (MFC). The results indicated that MFC exhibited distinct characteristics of higher maximum power density (P(max)) (named MFC-HP) and lower P(max) (named MFC-LP). And the capacitive properties of bioanodes may affect anodic electrochemistry. Reducing external load to align with the internal resistance increased P(max) of MFC-LP by 54.47 %, without no obvious effect on MFC-HP. However, intermittent external resistance loading (IER) mitigated the biotoxic effects of sulfamethoxazole (SMX) (a persistent organic pollutant) on chemical oxygen demand (COD) and NH(4)(+)-N removal and maintained high P(max) (424.33 mW/m(2)) in MFC-HP. Meanwhile, IER mode enriched electrochemically active bacteria (EAB) and environmental adaptive bacteria Advenella, which may reduce antibiotic resistance genes (ARGs) accumulation. This study suggested that the external circuit control can be effective means to regulate electrochemical characteristics and pollutants removal performance of MFC.202439153696
8057140.9927SiO(2) nanoparticles can enhance nitrogen retention and reduce copper resistance genes during aerobic composting of swine manure. SiO(2) nanoparticles (SiO(2) NPs) are low-cost, environmentally friendly materials with significant potential to remove pollutants from complex environments. In this study, SiO(2) NPs were used for the first time as an additive in aerobic composting to enhance nitrogen retention and reduce the expression of copper resistance genes. The addition of 0.5 g kg(-1) SiO(2) NPs effectively reduced nitrogen loss by 72.33 % by decreasing denitrification genes (nosZ, nirK, and napA) and increasing nitrogen fixation gene (nifH). The dominant factors affecting nitrification and denitrification genes were Firmicutes and C/N ratio. Additionally, SiO(2) NPs decreased copper resistance genes by 28.96 % - 37.52 % in compost products. Copper resistance genes decreased most in the treatment with 0.5 g kg(-1) SiO(2) NPs. In summary, 0.5 g kg(-1) SiO(2) NPs have the potential to reduce copper resistance genes and enhance nitrogen retention during aerobic composting, which may be used to improve compost quality.202439374833
7825150.9926Comparison of different disinfection processes in the effective removal of antibiotic-resistant bacteria and genes. This study compared three different disinfection processes (chlorination, E-beam, and ozone) and the efficacy of three oxidants (H2O2, S2O(-)8, and peroxymonosulfate (MPS)) in removing antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in a synthetic wastewater. More than 30 mg/L of chlorine was needed to remove over 90% of ARB and ARG. For the E-beam method, only 1 dose (kGy) was needed to remove ARB and ARG, and ozone could reduce ARB and ARG by more than 90% even at 3 mg/L ozone concentration. In the ozone process, CT values (concentration × time) were compared for ozone alone and combined with different catalysts based on the 2-log removal of ARB and ARG. Ozone treatment yielded a value of 31 and 33 (mg·min)/L for ARB and ARGs respectively. On the other hand, ozone with persulfate yielded 15.9 and 18.5 (mg·min)/L while ozone with monopersulfate yielded a value of 12 and 14.5 (mg·min)/L. This implies that the addition of these catalysts significantly reduces the contact time to achieve a 2-log removal, thus enhancing the process in terms of its kinetics.201425079831
7859160.9926Abatement of antibiotics and resistance genes during catalytic ozonation enhanced sludge dewatering process: Synchronized in volume and hazardousness reduction. Based on the efficiency of the catalytic ozonation techniques (HDWS+O(3) and MnFe(2)O(4) @SBC+O(3)) in enhancing the sludge dewaterability, the effectiveness in synchronized abatement antibiotics and antibiotic resistance genes (ARGs) was conducted to determine. The results revealed that catalytic ozonation conditioning altered the distribution of target antibiotics (tetracycline (TC), oxytetracycline (OTC), norfloxacin (NOR), ofloxacin (OFL)) in the dewatered filtrate, the dewatered sludge cake and the extra-microcolony/cellular polymers (EMPS/ECPS) layers, achieving the redistribution from solid-phase adsorption to liquid-phase dissolution. The total degradation rate was over 90% for TC and OTC, 72-78% for NOR and OFL; the abatement efficiency of eleven ARGs reached 1.47-3.01 log and 1.64-3.59 log, respectively, and more than four eARGs were eliminated. The effective abatement of the absolute abundance of Mobile genetic elements (MGEs) (0.91-1.89 log) demonstrated that catalytic ozonation conditioning could also significantly inhibit horizontal gene transfer (HGT). The abundance of resistant bacteria was greatly reduced and the signal transduction of the typical ARGs host bacteria was inhibited. The highly reactive oxidation species (ROS) generated were responsible for the abatement of antibiotics and ARGs. These findings provided new insights into the sludge conditioning for ideal and synchronized reduction in volume and hazardousness by catalytic ozonation processes in sludge treatment.202437944236
8053170.9926Increasing the removal efficiency of antibiotic resistance through anaerobic digestion with free nitrous acid pretreatment. Swine manure is a significant reservoir for antibiotic resistance. Anaerobic digestion (AD) is a common biological process used to treat swine manure but still faces low efficiencies in biogas production and antibiotic resistance removal. It is here shown that AD with free nitrous acid pretreatment (FNA) was effective in reducing antibiotic resistance genes (ARGs) in swine manure. FNA pretreatment (nitrite =250 mg N/L, pH=5.0, temperature=20 ± 1 °C) simultaneously reduced antibiotics (Tetracyclines, Quinones and Sulfonamides), inactivated antibiotics resistance bacteria (ARB) by 0.5-3 logs, and decreased ARGs tet, sul and qnr by 1-2, 1-3 and 0.5 logs, respectively. In the following AD step, the total residual ARGs was reduced to ~3.49 × 10(7) gene copies/g dry total solids (TS), ~1 log lower than that in the AD without pretreatment (3.55 ×10(8) gene copies/g dry TS). Microbial community and network analyses revealed that the ARG removal was mainly driven by the direct FNA effect on reducing ARGs and antibiotics, not related to ARB. Besides, the FNA pretreatment doubled biochemical methane production potential from swine manure. Together these results demonstrate that AD with FNA pretreatment is a useful process greatly facilitating swine manure management.202235816802
7749180.9926Interaction of ciprofloxacin chlorination products with bacteria in drinking water distribution systems. The interaction of ciprofloxacin chlorination products (CIP-CPs) with bacteria in drinking water distribution systems (DWDSs) was investigated. The piperazine ring of CIP was destroyed by chlorination. Among of CIP-CPs, by the bacterial role, 7.63% of the derivative with two carboxylic groups went through decarboxylation to form desethylene ciprofloxacin, and then loss of C(2)H(5)N group generated aniline compound. Furthermore, 12.3% of the aniline compound, 7.60% of chlorinated aniline compound and 1.35% of defluorinated product were bio-mineralized. Therefore, the chlorine and bacteria played synergistic effects on transformation of CIP-CPs in DWDSs, contributing to the obvious decrease of genotoxicity in effluents. Correspondingly, the TEQ(4-NQO) decreased from 667μg/L to 9.41μg/L. However, compared with DWDSs without CIP-CPs, the relative abundance of mexA and qnrS increased 1-fold in effluents and the relative abundance of qnrA and qnrB increased 3-fold in biofilms in DWDSs with CIP-CPs. mexA and qnrS positively correlated with Hyphomicrobium, Sphingomonas and Novosphingobium (p<0.05), while qnrA and qnrB positively correlated with Shewanella and Helicobacter (p<0.05), indicating the increase of antibiotic resistance genes (ARGs) came from the growth of these bacterial genera by transformation of CIP-CPs in DWDSs. These results suggested that biotransformation of antibiotics might increase ARGs risk in DWDSs.201728648729
8045190.9926Correlation among extracellular polymeric substances, tetracycline resistant bacteria and tetracycline resistance genes under trace tetracycline. Antibiotic resistance occurrences and proliferation in activated sludge have attracted more and more attention nowadays. However, the role which extracellular polymeric substance (EPS) plays on the antibiotic resistance is not clear. The changes and correlation among EPS, tetracycline (TC) resistant bacteria (TRB) and TC resistance genes (TRGs) of sequencing batch reactors (SBRs) were investigated. Performance of SBR without TC was compared with two other SBRs to which different amounts of TC were added. Total average EPS contents were found to increase significantly from 66 mg g−1 VSS to 181 mg g−1 VSS as the TC concentrations increased from 0 to 100 μg L−1. As the EPS content increased, TRB in sludge of the three SBRs increased significantly from 105 to 106 colony forming unit mL−1 after being exposed to TC. In addition, the concentrations of three groups of TRGs (copies mL−1) were determined by real-time fluorescence quantitative polymerase chain reaction and followed the order: efflux pump genes > ribosome protected genes > degradation enzyme genes. The numbers of TRGs in the idle stage were larger than those in the aeration sludge. Correlation coefficients (R2) between EPS and TRB in sludge were 0.823 (p < 0.01) while the correlation between EPS and total TRGs was poor (R2 = 0.463, p > 0.05). But it showed the same tendency that EPS and TRGs in sludge increased with the increasing of TC.201425461932