METHYLATIONS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
11000.9092Resistance to the macrolide antibiotic tylosin is conferred by single methylations at 23S rRNA nucleotides G748 and A2058 acting in synergy. The macrolide antibiotic tylosin has been used extensively in veterinary medicine and exerts potent antimicrobial activity against Gram-positive bacteria. Tylosin-synthesizing strains of the Gram-positive bacterium Streptomyces fradiae protect themselves from their own product by differential expression of four resistance determinants, tlrA, tlrB, tlrC, and tlrD. The tlrB and tlrD genes encode methyltransferases that add single methyl groups at 23S rRNA nucleotides G748 and A2058, respectively. Here we show that methylation by neither TlrB nor TlrD is sufficient on its own to give tylosin resistance, and resistance is conferred by the G748 and A2058 methylations acting together in synergy. This synergistic mechanism of resistance is specific for the macrolides tylosin and mycinamycin that possess sugars extending from the 5- and 14-positions of the macrolactone ring and is not observed for macrolides, such as carbomycin, spiramycin, and erythromycin, that have different constellations of sugars. The manner in which the G748 and A2058 methylations coincide with the glycosylation patterns of tylosin and mycinamycin reflects unambiguously how these macrolides fit into their binding site within the bacterial 50S ribosomal subunit.200212417742
50210.9001A highly specialized flavin mononucleotide riboswitch responds differently to similar ligands and confers roseoflavin resistance to Streptomyces davawensis. Streptomyces davawensis is the only organism known to synthesize the antibiotic roseoflavin, a riboflavin (vitamin B2) analog. Roseoflavin is converted to roseoflavin mononucleotide (RoFMN) and roseoflavin adenine dinucleotide in the cytoplasm of target cells. (Ribo-)Flavin mononucleotide (FMN) riboswitches are genetic elements, which in many bacteria control genes responsible for the biosynthesis and transport of riboflavin. Streptomyces davawensis is roseoflavin resistant, and the closely related bacterium Streptomyces coelicolor is roseoflavin sensitive. The two bacteria served as models to investigate roseoflavin resistance of S. davawensis and to analyze the mode of action of roseoflavin in S. coelicolor. Our experiments demonstrate that the ribB FMN riboswitch of S. davawensis (in contrast to the corresponding riboswitch of S. coelicolor) is able to discriminate between the two very similar flavins FMN and RoFMN and shows opposite responses to the latter ligands.201222740651
10220.9000Paradoxical behaviour of pKM101; inhibition of uvr-independent crosslink repair in Escherichia coli by muc gene products. In strains of Escherichia coli deficient in excision repair (uvrA or uvrB), plasmid pKM101 muc+ but not pGW219 mucB::Tn5 enhanced resistance to angelicin monoadducts but reduced resistance to 8-methoxy-psoralen interstrand DNA crosslinks. Thermally induced recA-441 (= tif-1) bacteria showed an additional resistance to crosslinks that was blocked by pKM101. Plasmid-borne muc+ genes also conferred some additional sensitivity to gamma-radiation and it is suggested that a repair step susceptible to inhibition by muc+ gene products and possibly involving double-strand breaks may be involved after both ionizing radiation damage and psoralen crosslinks.19853883148
11130.8991The tylosin resistance gene tlrB of Streptomyces fradiae encodes a methyltransferase that targets G748 in 23S rRNA. tlrB is one of four resistance genes encoded in the operon for biosynthesis of the macrolide tylosin in antibiotic-producing strains of Streptomyces fradiae. Introduction of tlrB into Streptomyces lividans similarly confers tylosin resistance. Biochemical analysis of the rRNA from the two Streptomyces species indicates that in vivo TlrB modifies nucleotide G748 within helix 35 of 23S rRNA. Purified recombinant TlrB retains its activity and specificity in vitro and modifies G748 in 23S rRNA as well as in a 74 nucleotide RNA containing helix 35 and surrounding structures. Modification is dependent on the presence of the methyl group donor, S-adenosyl methionine. Analysis of the 74-mer RNA substrate by biochemical and mass spectrometric methods shows that TlrB adds a single methyl group to the base of G748. Homologues of TlrB in other bacteria have been revealed through database searches, indicating that TlrB is the first member to be described in a new subclass of rRNA methyltransferases that are implicated in macrolide drug resistance.200010972803
53440.8964Plasmid shuttle vector with two insertionally inactivable markers for coryneform bacteria. A new shuttle vector pCEM500 replicating in Escherichia coli and in Brevibacterium flavum was constructed. It carries two antibiotic resistance determinants (Kmr/Gmr from plasmid pSa of Gram-negative bacteria and Smr/Spr from plasmid pCG4 of Corynebacterium glutamicum) which are efficiently expressed in both hosts and can be inactivated by insertion of DNA fragments into the unique restriction endonuclease sites located within them. This vector was found to be stably maintained in B. flavum and can be used for transfer of the cloned genes into this amino-acid-producing coryneform bacterium.19902148164
50350.8955Interaction of the chromosomal Tn 551 with two thermosensitive derivatives, pS1 and p delta D, of the plasmid pI9789 in Staphylococcus aureus. The plasmid pI9789::Tn552 carries genes conferring resistance to penicillins and to cadmium, mercury and arsenate ions. The presence of Tn551 at one location in the chromosome of Staphylococcus aureus enhances the frequency of suppression of thermosensitivity of replication of the plasmids pS1 and p delta D which are derivatives of pI9789::Tn552. Bacteriophage propagated on the bacteria in which thermosensitivity of replication had been suppressed was used to transduce cadmium resistance to S. aureus PS80N. The cadmium-resistant transductants obtained carried plasmid pS1 or p delta D with a copy of Tn551 inserted into a specific site on pS1 but into several different sites on p delta D. The possible mechanisms of the suppression are discussed.19957758929
33360.8945Mutants of Escherichia coli altered in both genes coding for the elongation factor Tu. Genetic analysis of a mutant of Escherichia coli resistant to the antibiotic mocimycin is presented. This resistance is due to alterations in both tuf genes coding for the elongation factor Tu. Mocimycin resistance is recessive. Bacteria carryong only one tuf gene from the resistant mutant are still mocimycin sensitive. If the mutant gene is the tufA gene, the seisitive cells can be made resistant through inactivation of the tufB gene by insertion of the bacteriophage milliunits genome. Conditional mocimycin-resistant mutants ban also be isolated when the tufB gene is altered by an amber or a temperature-sensitive mutation. When only the tufB allele from the original mocimycin-resistant mutant is present, inactivation of the wild-type tufA gene fails to give viable mocimycin-resistant progeny. We conclude that the tufA mutant allele codes for a functional mocimycin-resistant EF-Tu, whereas the mutant tufB gene does not code for a functional product.1978360222
55870.8941Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine. Thiamine metabolism genes are regulated in numerous bacteria by a riboswitch class that binds the coenzyme thiamine pyrophosphate (TPP). We demonstrate that the antimicrobial action of the thiamine analog pyrithiamine (PT) is mediated by interaction with TPP riboswitches in bacteria and fungi. For example, pyrithiamine pyrophosphate (PTPP) binds the TPP riboswitch controlling the tenA operon in Bacillus subtilis. Expression of a TPP riboswitch-regulated reporter gene is reduced in transgenic B. subtilis or Escherichia coli when grown in the presence of thiamine or PT, while mutant riboswitches in these organisms are unresponsive to these ligands. Bacteria selected for PT resistance bear specific mutations that disrupt ligand binding to TPP riboswitches and derepress certain TPP metabolic genes. Our findings demonstrate that riboswitches can serve as antimicrobial drug targets and expand our understanding of thiamine metabolism in bacteria.200516356850
11280.8940Glycopeptide resistance determinants from the teicoplanin producer Actinoplanes teichomyceticus. In enterococci and other pathogenic bacteria, high-level resistance to vancomycin and other glycopeptide antibiotics requires the action of the van genes, which direct the synthesis of peptidoglycan terminating in the depsipeptide D-alanyl-D-lactate, in place of the usual D-Ala-D-Ala. The Actinoplanes teichomyceticus tcp cluster, devoted to the biosynthesis of the glycopeptide antibiotic teicoplanin, contains van genes associated to a murF-like sequence (murF2). We show that A. teichomyceticus contains also a house-keeping murF1 gene, capable of complementing a temperature sensitive Escherichia coli murF mutant. MurF1, expressed in Streptomyces lividans, can catalyze the addition of either D-Ala-D-Ala or D-Ala-D-Lac to the UDP-N-acetyl-muramyl-L-Ala-D-Glu-d-Lys. However, similarly expressed MurF2 shows a small enzymatic activity only with D-Ala-D-lactate. Introduction of a single copy of the entire set of van genes confers resistance to teicoplanin-type glycopeptides to S. coelicolor.200415500981
61790.8935Lytic action of cloned pneumococcal phage lysis genes in Streptococcus pneumoniae. The genes hbl3, cpl1 and cpl7 coding for the pneumococcal phage lytic enzymes HBL3, CPL1 and CPL7, respectively, have been cloned into shuttle plasmids that can replicate in Streptococcus pneumoniae and Escherichia coli. All these genes were expressed in E. coli under the control of either the lytP promoter of the lytA gene, which codes for the major pneumococcal autolysin, or the promoter of the tetracycline-resistance gene (tetP). In contrast, cpl1 and cpl7 genes that code for lysozymes were expressed in pneumococcus only under the control of tetP, whereas the hbl3 gene that codes for an amidase can be expressed using either promoter. The phage lysozymes or amidase expressed in S. pneumoniae M31, a mutant deleted in the lytA gene coding for short chains, were placed under physiological control since these transformed bacteria grew as normal 'diplo' cells during the exponential phase and underwent autolysis only after long incubation at 37 degrees C. The lysis genes appear to be expressed constitutively in the transformed pneumococci, since sharply defined lysis of these cultures could be induced prematurely during the exponential phase of growth by addition of sodium deoxycholate.19938472929
117100.8934Acyl depsipeptide (ADEP) resistance in Streptomyces. ADEP, a molecule of the acyl depsipeptide family, has an antibiotic activity with a unique mode of action. ADEP binding to the ubiquitous protease ClpP alters the structure of the enzyme. Access of protein to the ClpP proteolytic chamber is therefore facilitated and its cohort regulatory ATPases (ClpA, ClpC, ClpX) are not required. The consequent uncontrolled protein degradation in the cell appears to kill the ADEP-treated bacteria. ADEP is produced by Streptomyces hawaiiensis. Most sequenced genomes of Streptomyces have five clpP genes, organized as two distinct bicistronic operons, clpP1clpP2 and clpP3clpP4, and a single clpP5 gene. We investigated whether the different Clp proteases are all sensitive to ADEP. We report that ClpP1 is a target of ADEP whereas ClpP3 is largely insensitive. In wild-type Streptomyces lividans, clpP3clpP4 expression is constitutively repressed and the reason for the maintenance of this operon in Streptomyces has been elusive. ClpP activity is indispensable for survival of actinomycetes; we therefore tested whether the clpP3clpP4 operon, encoding an ADEP-insensitive Clp protease, contributes to a mechanism of ADEP resistance by target substitution. We report that in S. lividans, inactivation of ClpP1ClpP2 production or protease activity is indeed a mode of resistance to ADEP although it is neither the only nor the most frequent mode of resistance. The ABC transporter SclAB (orthologous to the Streptomyces coelicolor multidrug resistance pump SCO4959-SCO4960) is also able to confer ADEP resistance, and analysis of strains with sclAB deletions indicates that there are also other mechanisms of ADEP resistance.201121636652
616110.8932Identification of lipoteichoic acid as a ligand for draper in the phagocytosis of Staphylococcus aureus by Drosophila hemocytes. Phagocytosis is central to cellular immunity against bacterial infections. As in mammals, both opsonin-dependent and -independent mechanisms of phagocytosis seemingly exist in Drosophila. Although candidate Drosophila receptors for phagocytosis have been reported, how they recognize bacteria, either directly or indirectly, remains to be elucidated. We searched for the Staphylococcus aureus genes required for phagocytosis by Drosophila hemocytes in a screening of mutant strains with defects in the structure of the cell wall. The genes identified included ltaS, which encodes an enzyme responsible for the synthesis of lipoteichoic acid. ltaS-dependent phagocytosis of S. aureus required the receptor Draper but not Eater or Nimrod C1, and Draper-lacking flies showed reduced resistance to a septic infection of S. aureus without a change in a humoral immune response. Finally, lipoteichoic acid bound to the extracellular region of Draper. We propose that lipoteichoic acid serves as a ligand for Draper in the phagocytosis of S. aureus by Drosophila hemocytes and that the phagocytic elimination of invading bacteria is required for flies to survive the infection.200919890048
555120.8930Mutations in dsbA and dsbB, but not dsbC, lead to an enhanced sensitivity of Escherichia coli to Hg2+ and Cd2+. The Dsb proteins are involved in disulfide bond formation, reduction and isomerisation in a number of Gram-negative bacteria. Mutations in dsbA or dsbB, but not dsbC, increase the proportion of proteins with free thiols in the periplasm compared to wild-type. We investigated the effects of mutations in these genes on the bacterial resistance to mercuric and cadmium salts. Mutations in genes involved primarily in disulfide formation (dsbA and dsbB) generally enhanced the sensitivity to Hg2+ and Cd2+ while a mutation of the dsbC gene (primarily an isomerase of disulfide bonds) had no effect. Mutations of the dsb genes had no effect on the expression of the mercury-resistance determinants of the transposon Tn501.199910234837
530130.8926Location of the genes for anthranilate synthase in Streptomyces venezuelae ISP5230: genetic mapping after integration of the cloned genes. The anthranilate synthase (trpEG) genes in Streptomyces venezuelae ISP5230 were located by allowing a segregationally unstable plasmid carrying cloned S. venezuelae trpEG DNA and a thiostrepton resistance (tsr) marker to integrate into the chromosome. The integrated tsr was mapped by conjugation and transduction to a location close to tyr-2, between arg-6 and trpA13. A genomic DNA fragment containing trpC from S. venezuelae ISP5230 was cloned by complementation of a trpC mutation in Streptomyces lividans. Evidence from restriction enzyme analysis of the cloned DNA fragments, from Southern hybridization using the cloned trp DNA as probes, and from cotransduction frequencies, placed trpEG at a distance of 12-45 kb from the trpCBA cluster. The overall arrangement of tryptophan biosynthesis genes in the S. venezuelae chromosome differs from that in other bacteria examined so far.19938515229
113140.8920Characterization of O-acetylation of N-acetylglucosamine: a novel structural variation of bacterial peptidoglycan. Peptidoglycan (PG) N-acetyl muramic acid (MurNAc) O-acetylation is widely spread in gram-positive bacteria and is generally associated with resistance against lysozyme and endogenous autolysins. We report here the presence of O-acetylation on N-acetylglucosamine (GlcNAc) in Lactobacillus plantarum PG. This modification of glycan strands was never described in bacteria. Fine structural characterization of acetylated muropeptides released from L. plantarum PG demonstrated that both MurNAc and GlcNAc are O-acetylated in this species. These two PG post-modifications rely on two dedicated O-acetyltransferase encoding genes, named oatA and oatB, respectively. By analyzing the resistance to cell wall hydrolysis of mutant strains, we showed that GlcNAc O-acetylation inhibits N-acetylglucosaminidase Acm2, the major L. plantarum autolysin. In this bacterial species, inactivation of oatA, encoding MurNAc O-acetyltransferase, resulted in marked sensitivity to lysozyme. Moreover, MurNAc over-O-acetylation was shown to activate autolysis through the putative N-acetylmuramoyl-L-alanine amidase LytH enzyme. Our data indicate that in L. plantarum, two different O-acetyltransferases play original and antagonistic roles in the modulation of the activity of endogenous autolysins.201121586574
507150.8920Tellurite resistance and reduction by obligately aerobic photosynthetic bacteria. Seven species of obligately aerobic photosynthetic bacteria of the genera Erythromicrobium, Erythrobacter, and Roseococcus demonstrated high-level resistance to tellurite and accumulation of metallic tellurium crystals. High-level resistance without tellurite reduction was observed for Roseococcus thiosulfatophilus and Erythromicrobium ezovicum grown with certain organic carbon sources, implying that tellurite reduction is not essential to confer tellurite resistance.199616535446
407160.8919Molecular cloning and characterization of two lincomycin-resistance genes, lmrA and lmrB, from Streptomyces lincolnensis 78-11. Two different lincomycin-resistance determinants (lmrA and lmrB) from Streptomyces lincolnensis 78-11 were cloned in Streptomyces lividans 66 TK23. The gene lmrA was localized on a 2.16 kb fragment, the determined nucleotide sequence of which encoded a single open reading frame 1446 bp long. Analysis of the deduced amino acid sequence suggested the presence of 12 membrane-spanning domains and showed significant similarities to the methylenomycin-resistance protein (Mmr) from Streptomyces coelicolor, the QacA protein from Staphylococcus aureus, and several tetracycline-resistance proteins from both Gram-positive and Gram-negative bacteria, as well as to some sugar-transport proteins from Escherichia coli. The lmrB gene was actively expressed from a 2.7 kb fragment. An open reading frame of 837 bp could be localized which encoded a protein that was significantly similar to 23S rRNA adenine(2058)-N-methyltransferases conferring macrolide-lincosamide-streptogramin resistance. LmrB also had putative rRNA methyltransferase activity since lincomycin resistance of ribosomes was induced in lmrB-containing strains. Surprisingly, both enzymes, LmrA and LmrB, had a substrate specificity restricted to lincomycin and did not cause resistance to other lincosamides such as celesticetin and clindamycin, or to macrolides.19921328813
373170.8916The ybiT gene of Erwinia chrysanthemi codes for a putative ABC transporter and is involved in competitiveness against endophytic bacteria during infection. We investigated the role in bacterial infection of a putative ABC transporter, designated ybiT, of Erwinia chrysanthemi AC4150. The deduced sequence of this gene showed amino acid sequence similarity with other putative ABC transporters of gram-negative bacteria, such as Escherichia coli and Pseudomonas aeruginosa, as well as structural similarity with proteins of Streptomyces spp. involved in resistance to macrolide antibiotics. The gene contiguous to ybiT, designated as pab (putative antibiotic biosynthesis) showed sequence similarity with Pseudomonas and Streptomyces genes involved in the biosynthesis of antibiotics. A ybiT mutant (BT117) was constructed by marker exchange. It retained full virulence in potato tubers and chicory leaves, but it showed reduced ability to compete in planta against the wild-type strain or against selected saprophytic bacteria. These results indicate that the ybiT gene plays a role in the in planta fitness of the bacteria.200211916677
531180.8916p-Aminobenzoic acid and chloramphenicol biosynthesis in Streptomyces venezuelae: gene sets for a key enzyme, 4-amino-4-deoxychorismate synthase. Amplification of sequences from Streptomyces venezuelae ISP5230 genomic DNA using PCR with primers based on conserved prokaryotic pabB sequences gave two main products. One matched pabAB, a locus previously identified in S. venezuelae. The second closely resembled the conserved pabB sequence consensus and hybridized with a 3.8 kb NcoI fragment of S. venezuelae ISP5230 genomic DNA. Cloning and sequence analysis of the 3.8 kb fragment detected three ORFs, and their deduced amino acid sequences were used in BLAST searches of the GenBank database. The ORF1 product was similar to PabB in other bacteria and to the PabB domain encoded by S. venezuelae pabAB. The ORF2 product resembled PabA of other bacteria. ORF3 was incomplete; its deduced partial amino acid sequence placed it in the MocR group of GntR-type transcriptional regulators. Introducing vectors containing the 3.8 kb NcoI fragment of S. venezuelae DNA into pabA and pabB mutants of Escherichia coli, or into the Streptomyces lividans pab mutant JG10, enhanced sulfanilamide resistance in the host strains. The increased resistance was attributed to expression of the pair of discrete translationally coupled p-aminobenzoic acid biosynthesis genes (designated pabB/pabA) cloned in the 3.8 kb fragment. These represent a second set of genes encoding 4-amino-4-deoxychorismate synthase in S. venezuelae ISP5230. In contrast to the fused pabAB set previously isolated from this species, they do not participate in chloramphenicol biosynthesis, but like pabAB they can be disrupted without affecting growth on minimal medium. The gene disruption results suggest that S. venezuelae may have a third set of genes encoding PABA synthase.200111495989
403190.8916Nucleotide sequence and expression of the mercurial-resistance operon from Staphylococcus aureus plasmid pI258. The mercurial-resistance determinant from Staphylococcus aureus plasmid pI258 is located on a 6.4-kilobase-pair Bgl II fragment. The determinant was cloned into both Bacillus subtilis and Escherichia coli. Mercury resistance was found only in B. subtilis. The 6404-base-pair DNA sequence of the Bgl II fragment was determined. The mer DNA sequence includes seven open reading frames, two of which have been identified by homology with the merA (mercuric reductase) and merB (organomercurial lyase) genes from the mercurial-resistance determinants of Gram-negative bacteria. Whereas 40% of the amino acid residues overall were identical between the pI258 merA polypeptide product and mercuric reductases from Gram-negative bacteria, the percentage identity in the active-site positions and those thought to be involved in NADPH and FAD contacts was above 90%. The 216 amino acid organomercurial lyase sequence was 39% identical with that from a Serratia plasmid, with higher conservation in the middle of the sequences and lower homologies at the amino and carboxyl termini. The remaining five open reading frames in the pI258 mer sequence have no significant homologies with the genes from previously sequenced Gram-negative mer operons.19873037534