# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7942 | 0 | 0.9627 | Insight into effects of polyethylene microplastics in anaerobic digestion systems of waste activated sludge: Interactions of digestion performance, microbial communities and antibiotic resistance genes. The environmental risks of microplastics (MPs) have raised an increasing concern. However, the effects of MPs in anaerobic digestion (AD) systems of waste activated sludge (WAS), especially on the fate of antibiotic resistance genes (ARGs), have not been clearly understood. Herein, the variation and interaction of digestion performance, microbial communities and ARGs during AD process of WAS in the presence of polyethylene (PE) MPs with two sizes, PE MPs-180μm and PE MPs-1mm, were investigated. The results showed that the presence of PE MPs, especially PE MPs-1mm, led to the increased hydrolysis of soluble polysaccharides and proteins and the accumulation of volatile fatty acids. The methane production decreased by 6.1% and 13.8% in the presence of PE MPs-180μm and PE MPs-1mm, respectively. Together with this process, hydrolytic bacteria and acidogens were enriched, and methanogens participating in acetoclastic methanogenesis were reduced. Meanwhile, ARGs were enriched obviously by the presence of PE MPs, the abundances of which in PE MPs-180μm and PE MPs-1mm groups were 1.2-3.0 times and 1.5-4.0 times higher than that in the control by the end of AD. That was associated with different co-occurrence patterns between ARGs and bacterial taxa and the enrichment of ARG-hosting bacteria caused by the presence of PE MPs. Together these results suggested the adverse effects of PE MPs on performance and ARGs removal during AD process of WAS through inducing the changes of microbial populations. | 2022 | 35944782 |
| 7893 | 1 | 0.9620 | Removal of ofloxacin and inhibition of antibiotic resistance gene spread during the aerobic biofilm treatment of rural domestic sewage through the micro-nano aeration technology. Micro-nano aeration (MNA) has great potential for emerging contaminant removal. However, the mechanism of antibiotic removal and antibiotic resistance gene (ARG) spread, and the impact of the different aeration conditions remain unclear. This study investigated the adsorption and biodegradation of ofloxacin (OFL) and the spread of ARGs in aerobic biofilm systems under MNA and conventional aeration (CVA) conditions. Results showed that the MNA increased OFL removal by 17.27 %-40.54 % and decreased total ARG abundance by 36.37 %-54.98 %, compared with CVA. MNA-induced biofilm rough morphology, high zeta potential, and reduced extracellular polymeric substance (EPS) secretion enhanced OFL adsorption. High dissolved oxygen and temperature, induced by MNA-enriched aerobic bacteria and their carrying OFL-degrading genes, enhanced OFL biodegradation. MNA inhibited the enrichment of ARG host bacteria, which acquired ARGs possibly via horizontal gene transfer (HGT). Functional profiles involved in the HGT process, including reactive oxygen species production, membrane permeability, mobile genetic elements (MGEs), adenosine triphosphate synthesis, and EPS secretion, were down-regulated by MNA, inhibiting ARG spread. Partial least-squares path modeling revealed that MGEs might be the main factor inhibiting ARG spread. This study provides insights into the mechanisms by which MNA enhances antibiotic removal and inhibits ARG spread in aerobic biofilm systems. | 2025 | 39733752 |
| 7940 | 2 | 0.9619 | Microplastics affect the ammonia oxidation performance of aerobic granular sludge and enrich the intracellular and extracellular antibiotic resistance genes. Microplastics (MPs) and antibiotic resistance genes (ARGs), as emerging pollutants, are frequently detected in wastewater treatment plants, and their threats to the environment have received extensive attentions. However, the effects of MPs on the nitrification of aerobic granular sludge (AGS) and the spread patterns of intracellular and extracellular ARGs (iARGs and eARGs) in AGS were still unknown. In this study, the responses of AGS to the exposure of 1, 10 and 100 mg/L of typical MPs (polyvinyl chloride (PVC), polyamide (PA), polystyrene (PS) and polyethylene (PE)) and tetracycline were focused on in 3 L nitrifying sequencing batch reactors. 10 mg/L MPs decreased the nitrification function, but nitrification could recover. Furthermore, MPs inhibited ammonia-oxidizing bacteria and enriched nitrite-oxidizing bacteria, leading partial nitrification to losing stability. PVC, PA and PS stimulated the secretion of extracellular polymeric substances and reactive oxygen species. PE had less negative effect on AGS than PVC, PA and PS. The abundances of iARGs and eARGs (tetW, tetE and intI1) increased significantly and the intracellular and extracellular microbial communities obviously shifted in AGS system under MPs stress. Potential pathogenic bacteria might be the common hosts of iARGs and eARGs in AGS system and were enriched in AGS and MPs biofilms. | 2021 | 33387747 |
| 8112 | 3 | 0.9616 | Fate of antibiotic resistance bacteria and genes during enhanced anaerobic digestion of sewage sludge by microwave pretreatment. The fate of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) were investigated during the sludge anaerobic digestion (AD) with microwave-acid (MW-H), microwave (MW) and microwave-H2O2-alkaline (MW-H2O2) pretreatments. Results showed that combined MW pretreatment especially for the MW-H pretreatment could efficiently reduce the ARB concentration, and most ARG concentrations tended to attenuate during the pretreatment. The subsequent AD showed evident removal of the ARB, but most ARGs were enriched after AD. Only the concentration of tetX kept continuous declination during the whole sludge treatment. The total ARGs concentration showed significant correlation with 16S rRNA during the pretreatment and AD. Compared with unpretreated sludge, the AD of MW and MW-H2O2 pretreated sludge presented slightly better ARB and ARGs reduction efficiency. | 2016 | 26970692 |
| 7898 | 4 | 0.9616 | Effects of graphite and Mn ore media on electro-active bacteria enrichment and fate of antibiotic and corresponding resistance gene in up flow microbial fuel cell constructed wetland. This study assessed the influence of substrate type on pollutants removal, antibiotic resistance gene (ARG) fate and bacterial community evolution in up-flow microbial fuel cell constructed wetlands (UCW-MFC) with graphite and Mn ore electrode substrates. Better COD removal and higher bacterial community diversity and electricity generation performance were achieved in Mn ore constructed UCW-MFC (Mn). However, the lower concentration of sulfadiazine (SDZ) and the total abundances of ARGs were obtained in the effluent in the graphite constructed UCW-MFC (s), which may be related to higher graphite adsorption and filter capacity. Notably, both reactors can remove more than 97.8% of ciprofloxacin. In addition, significant negative correlations were observed between SDZ, COD concentration, ARG abundances and bacterial a-diversity indices. The LEfse analysis revealed significantly different bacterial communities due to the substrate differences in the two reactors, and Geobacter, a typical model electro-active bacteria (EAB), was greatly enriched on the anode of UCW-MFC (Mn). In contrast, the relative abundance of methanogens (Methanosaeta) was inhibited. PICRUSt analysis results further demonstrated that the abundance of extracellular electron transfer related functional genes was increased, but the methanogen function genes and multiple antibiotic resistance genes in UCW-MFC (Mn) anode were reduced. Redundancy analyses indicated that substrate type, antibiotic accumulation and bacterial community were the main factors affecting ARGs. Moreover, the potential ARG hosts and the co-occurrence of ARGs and intI1 were revealed by network analysis. | 2019 | 31442759 |
| 523 | 5 | 0.9613 | Sulfide-carbonate-mineralized functional bacterial consortium for cadmium removal in flue gas. Sulfide-carbonate-mineralized functional bacterial consortium was constructed for flue gas cadmium biomineralization. A membrane biofilm reactor (MBfR) using the bacterial consortium containing sulfate reducing bacteria (SRB) and denitrifying bacteria (DNB) was investigated for flue gas cadmium (Cd) removal. Cadmium removal efficiency achieved 90%. The bacterial consortium containing Citrobacter, Desulfocurvus and Stappia were dominated for cadmium resistance-nitrate-sulfate reduction. Under flue gas cadmium stress, ten cadmium resistance genes (czcA, czcB, czcC, czcD, cadA, cadB, cadC, cueR, copZ, zntA), and seven genes related to sulfate reduction, increased in abundance; whereas others, nine genes related to denitrification, decreased, indicating that cadmium stress was advantageous to sulfate reduction in the competition with denitrification. A bacterial consortium could capable of simultaneously cadmium resistance, sulfate reduction and denitrification. Microbial induced carbonate precipitation (MICP) and biological adsorption process would gradually yield to sulfide-mineralized process. Flue gas cadmium could transform to Cd-EPS, cadmium carbonate (CdCO(3)) and cadmium sulfide (CdS) bioprecipitate. The functional bacterial consortium was an efficient and eco-friendly bifunctional bacterial consortium for sulfide-carbonate-mineralized of cadmium. This provides a green and low-carbon advanced treatment technology using sulfide-carbonate-mineralized functional bacterial consortium for the removal of cadmium or other hazardous heavy metal contaminants in flue gas. | 2024 | 39019186 |
| 8652 | 6 | 0.9609 | Co-occurrence of dominant bacteria and methanogenic archaea and their metabolic traits in a thermophilic anaerobic digester. Thermophilic anaerobic digestion (TAD) represents a promising biotechnology for both methane energy production and waste stream treatment. However, numerous critical microorganisms and their metabolic characteristics involved in this process remain unidentified due to the limitations of culturable isolates. This study investigated the phylogenetic composition and potential metabolic traits of bacteria and methanogenic archaea in a TAD system using culture-independent metagenomics. Predominant microorganisms identified in the stable phase of TAD included hydrogenotrophic methanogens (Methanothermobacter and Methanosarcina) and hydrogen-producing bacteria (Coprothermobacter, Acetomicrobium, and Defluviitoga). Nine major metagenome-assembled genomes (MAGs) associated with the dominant genera were selected to infer their metabolic potentials. Genes related to thermal resistance were widely found in all nine major MAGs, such as the molecular chaperone genes, Clp protease gene, and RNA polymerase genes, which may contribute to their predominance under thermophilic condition. Thermophilic temperatures may increase the hydrogen partial pressure of Coprothermobacter, Acetomicrobium, and Defluviitoga, subsequently altering the primary methanogenesis pathway from acetoclastic pathway to hydrogenotrophic pathway in the TAD. Consequently, genes encoding the hydrogenotrophic methanogenesis pathway were the most abundant in the recovered archaeal MAGs. The potential interaction between hydrogen-producing bacteria and hydrogenotrophic methanogens may play critical roles in TAD processes. | 2024 | 38753237 |
| 7897 | 7 | 0.9608 | Enhanced removal of antibiotic and antibiotic resistance genes by coupling biofilm electrode reactor and manganese ore substrate up-flow microbial fuel cell constructed wetland system. Manganese ore substrate up-flow microbial fuel cell constructed wetland (UCW-MFC(Mn)) as an innovative wastewater treatment technology for purifying antibiotics and electricity generation with few antibiotic resistance genes (ARGs) generation has attracted attention. However, antibiotic purifying effects should be further enhanced. In this study, a biofilm electrode reactor (BER) that needs direct current driving was powered by a Mn ore anode (UCW-MFC(Mn)) to form a coupled system without requiring direct-current source. Removal efficiencies of sulfadiazine (SDZ), ciprofloxacin (CIP) and the corresponding ARGs in the coupled system were compared with composite (BER was powered by direct-current source) and anaerobic systems (both of BER and UCW-MFC were in open circuit mode). The result showed that higher antibiotic removal efficiency (94% for SDZ and 99.1% for CIP) in the coupled system was achieved than the anaerobic system (88.5% for SDZ and 98.2% for CIP). Moreover, electrical stimulation reduced antibiotic selective pressure and horizontal gene transfer potential in BER, and UCW-MFC further reduced ARG abundances by strengthening the electro-adsorption of ARG hosts determined by Network analysis. Bacterial community diversity continuously decreased in BER while it increased in UCW-MFC, indicating that BER mitigated the toxicity of antibiotic. Degree of modularity, some functional bacteria (antibiotic degrading bacteria, fermentative bacteria and EAB), and P450 enzyme related to antibiotic and xenobiotics biodegradation genes were enriched in electric field existing UCW-MFC, accounting for the higher degradation efficiency. In conclusion, this study provided an effective strategy for removing antibiotics and ARGs in wastewater by operating a BER-UCW-MFC coupled system. | 2023 | 37437616 |
| 8113 | 8 | 0.9607 | Fate of antibiotic resistance genes in mesophilic and thermophilic anaerobic digestion of chemically enhanced primary treatment (CEPT) sludge. Anaerobic digestion (AD) of chemically enhanced primary treatment (CEPT) sludge and non-CEPT (conventional sedimentation) sludge were comparatively operated under mesophilic and thermophilic conditions. The highest methane yield (692.46±0.46mL CH(4)/g VS(removed) in CEPT sludge) was observed in mesophilic AD of CEPT sludge. Meanwhile, thermophilic conditions were more favorable for the removal of total antibiotic resistance genes (ARGs). In this study, no measurable difference in the fates and removal of ARGs and class 1 integrin-integrase gene (intI1) was observed between treated non-CEPT and CEPT sludge. However, redundancy analysis indicated that shifts in bacterial community were primarily accountable for the variations in ARGs and intI1. Network analysis further revealed potential host bacteria for ARGs and intI1. | 2017 | 28797965 |
| 7945 | 9 | 0.9606 | Effects of eutrophication on the horizontal transfer of antibiotic resistance genes in microalgal-bacterial symbiotic systems. Overloading of nutrients such as nitrogen causes eutrophication of freshwater bodies. The spread of antibiotic resistance genes (ARGs) poses a threat to ecosystems. However, studies on the enrichment and spread of ARGs from increased nitrogen loading in algal-bacterial symbiotic systems are limited. In this study, the transfer of extracellular kanamycin resistance (KR) genes from large (RP4) small (pEASY-T1) plasmids into the intracellular and extracellular DNA (iDNA, eDNA) of the inter-algal environment of Chlorella pyrenoidosa was investigated, along with the community structure of free-living (FL) and particle-attached (PA) bacteria under different nitrogen source concentrations (0-2.5 g/L KNO(3)). The results showed that KR gene abundance in the eDNA adsorbed on solid particles (D-eDNA) increased initially and then decreased with increasing nitrogen concentration, while the opposite was true for the rest of the free eDNA (E-eDNA). Medium nitrogen concentrations promoted the transfer of extracellular KR genes into the iDNA attached to algal microorganisms (A-iDNA), eDNA attached to algae (B-eDNA), and the iDNA of free microorganisms (C-iDNA); high nitrogen contributed to the transfer of KR genes into C-iDNA. The highest percentage of KR genes was found in B-eDNA with RP4 plasmid treatment (66.2%) and in C-iDNA with pEASY-T1 plasmid treatment (86.88%). In addition, dissolved oxygen (DO) significantly affected the bacterial PA and FL community compositions. Nephelometric turbidity units (NTU) reflected the abundance of ARGs in algae. Proteobacteria, Cyanobacteria, Bacteroidota, and Actinobacteriota were the main potential hosts of ARGs. These findings provide new insights into the distribution and dispersal of ARGs in the phytoplankton inter-algal environment. | 2024 | 38493856 |
| 8054 | 10 | 0.9606 | Effects of nanoscale zero-valent iron on the performance and the fate of antibiotic resistance genes during thermophilic and mesophilic anaerobic digestion of food waste. The effects of nanoscale zero-valent iron (nZVI) on the performance of food waste anaerobic digestion and the fate of antibiotic resistance genes (ARGs) were investigated in thermophilic (TR) and mesophilic (MR) reactors. Results showed that nZVI enhanced biogas production and facilitated ARGs reduction. The maximum CH(4) production was 212.00 ± 4.77 ml/gVS with 5 g/L of nZVI in MR. The highest ARGs removal ratio was 86.64 ± 0.72% obtained in TR at nZVI of 2 g/L. nZVI corrosion products and their contribution on AD performance were analyzed. The abundance of tetracycline genes reduced significantly in nZVI amended digesters. Firmicutes, Chloroflexi, Proteobacteria and Spirochaetes showed significant positive correlations with various ARGs (p < 0.05) in MR and TR. Redundancy analysis indicated that microbial community was the main factor that influenced the fate of ARGs. nZVI changed microbial communities, with decreasing the abundance bacteria belonging to Firmicutes and resulting in the reduction of ARGs. | 2019 | 31505392 |
| 7873 | 11 | 0.9605 | Wheat straw pyrochar more efficiently decreased enantioselective uptake of dinotefuran by lettuce and dissemination of antibiotic resistance genes than hydrochar in an agricultural soil. Remediation of soils pollution caused by dinotefuran, a chiral pesticide, is indispensable for ensuring human food security. In comparison with pyrochar, the effect of hydrochar on enantioselective fate of dinotefuran, and antibiotic resistance genes (ARGs) profiles in the contaminated soils remain poorly understood. Therefore, wheat straw hydrochar (SHC) and pyrochar (SPC) were prepared at 220 and 500 °C, respectively, to investigate their effects and underlying mechanisms on enantioselective fate of dinotefuran enantiomers and metabolites, and soil ARG abundance in soil-plant ecosystems using a 30-day pot experiment planted with lettuce. SPC showed a greater reduction effect on the accumulation of R- and S-dinotefuran and metabolites in lettuce shoots than SHC. This was mainly resulted from the lowered soil bioavailability of R- and S-dinotefuran due to adsorption/immobilization by chars, together with the char-enhanced pesticide-degrading bacteria resulted from increased soil pH and organic matter content. Both SPC and SHC efficiently reduced ARG levels in soils, owing to lowered abundance of ARG-carrying bacteria and declined horizontal gene transfer induced by decreased dinotefuran bioavailability. The above results provide new insights for optimizing char-based sustainable technologies to mitigate pollution of dinotefuran and spread of ARGs in agroecosystems. | 2023 | 36996986 |
| 7896 | 12 | 0.9603 | Accumulation of sulfonamide resistance genes and bacterial community function prediction in microbial fuel cell-constructed wetland treating pharmaceutical wastewater. Microbial fuel cell constructed wetlands (CW-MFCs) with different circuit operation conditions and hydraulic retention time (HRT) were constructed to evaluate their ability to remove and accumulate pharmaceutical and personal care products (PPCPs) (sulfadiazine (SDZ), carbamazepine (CBZ), naproxen (NPX) and ibuprofen (IBP)) during four months running process. The abundance level of corresponding sulfonamide antibiotic resistance genes (ARGs) was also investigated. The results showed that closed circuit operation of CW-MFC contributed to the decrease in mass loading of COD, NH(4)(+)-N, PPCPs, and wastewater toxicity in the effluent. Additionally, closed circuit operation with low HRT contributed to enhancing selected PPCP mass accumulation on electrodes by electro-adsorption, and thus the higher sulfonamide ARG abundance was detected in the electrodes and effluent. Moreover, the composition of bacteria was greatly influenced by the mass accumulation of PPCPs revealed by redundancy analysis results. Procrustes analysis results further demonstrated that bacterial community contributed greatly to the ARGs profiles. Therefore, ARGs with their host bacteria revealed by network analysis were partially deposited on electrode substrates, and thus ARGs were effectively accumulated on electrodes. Function analysis of the bacterial community from PICRUSt predicted metagenomes revealed that closed circuit mode enhanced the abundances of the function genes of metabolic and the multiple ARGs, suggesting that closed circuit operation exhibited positive effects on metabolic process and ARG accumulation in CW-MFC system. | 2020 | 31995737 |
| 7917 | 13 | 0.9603 | Mechanisms of metabolic performance enhancement and ARGs attenuation during nZVI-assisted anaerobic chloramphenicol wastewater treatment. Anaerobic wastewater treatment is a promising technology for refractory pollutant treatment. The nano zero-valent iron (nZVI) assisted anaerobic system could enhance contaminant removal. In this work, we added nZVI into an anaerobic system to investigate the effects on system performances and metabolic mechanism for chloramphenicol (CAP) wastewater treatment. As nZVI concentrations increased from 0 to 1 g/L, the CAP removal efficiency was appreciably improved from 46.5% to 99.2%, while the CH(4) production enhanced more than 20 times. The enhanced CAP removal resulted from the enrichments of dechlorination-related bacteria (Hyphomicrobium) and other functional bacteria (e.g., Zoogloea, Syntrophorhabdus) associated with refractory contaminants degradation. The improved CH(4) production was ascribed to the increases in fermentative-related bacteria (Smithella and Acetobacteroides), homoacetogen (Treponema), and methanogens. The increased abundances of anaerobic functional genes further verified the mechanism of CH(4) production. Furthermore, the abundances of potential hosts of antibiotic resistance genes (ARGs) were reduced under high nZVI concentration (1 g/L), contributing to ARGs attenuation. This study provides a comprehensive analysis of the mechanism in metabolic performance enhancement and ARGs attenuation during nZVI-assisted anaerobic CAP wastewater treatment. | 2021 | 34323729 |
| 7927 | 14 | 0.9602 | Different microplastics distinctively enriched the antibiotic resistance genes in anaerobic sludge digestion through shifting specific hosts and promoting horizontal gene flow. Both microplastics (MPs) and antibiotic resistance genes (ARGs) are intensively detected in waste activated sludge (WAS). However, the distinctive impacts of different MPs on ARGs emergence, dissemination, and its potential mechanisms remain unclear. In this study, long-term semi-continuous digesters were performed to examine the profiles of ARGs and antibiotic-resistant bacteria (ARB) in response to two different typical MPs (polyethylene (PE) and polyvinyl chloride (PVC)) in anaerobic sludge digestion. Metagenomic results show that PE- and PVC-MPs increase ARGs abundance by 14.8% and 23.6% in digester, respectively. ARB are also enriched by PE- and PVC-MPs, Acinetobacter sp. and Salmonella sp. are the dominant ARB. Further exploration reveals that PVC-MPs stimulates the acquisition of ARGs by human pathogen bacteria (HPB) and functional microorganisms (FMs), but PE-MPs doesn't. Network analysis shows that more ARGs tend to co-occur with HBP and FMs after MPs exposure, and more importantly, new bacteria are observed to acquire ARGs possibly via horizontal gene flow (HGF) in MPs-stressed digester. The genes involved in the HGF process, including reactive oxygen species (ROS) production, cell membrane permeability, extracellular polymeric substances (EPS) secretion, and ATP synthesis, are also enhanced by MPs, thereby attributing to the promoted ARGs dissemination. These findings offer advanced insights into the distinctive contribution of MPs to fate, host, dissemination of ARGs in anaerobic sludge digestion. | 2023 | 36423550 |
| 7950 | 15 | 0.9602 | Fate and removal of fluoroquinolone antibiotics in mesocosmic wetlands: Impact on wetland performance, resistance genes and microbial communities. The fate of fluoroquinolone antibiotics norfloxacin and ofloxacin were investigated in mesocosmic wetlands, along with their effects on nutrients removal, antibiotic resistance genes (ARGs) and epiphytic microbial communities on Hydrilla verticillate using bionic plants as control groups. Approximately 99% of norfloxacin and ofloxacin were removed from overlaying water, and H. verticillate inhibited fluoroquinolones accumulation in surface sediments compared to bionic plants. Partial least squares path modeling showed that antibiotics significantly inhibited the nutrient removal capacity (0.55) but had no direct effect on plant physiology. Ofloxacin impaired wetland performance more strongly than norfloxacin and more impacted the primary microbial phyla, whereas substrates played the most decisive role on microbial diversities. High antibiotics concentration shifted the most dominant phyla from Proteobacteria to Bacteroidetes and inhibited the Xenobiotics biodegradation function, contributing to the aggravation in wetland performance. Dechloromonas and Pseudomonas were regarded as the key microorganisms for antibiotics degradation. Co-occurrence network analysis excavated that microorganisms degrade antibiotics mainly through co-metabolism, and more complexity and facilitation/reciprocity between microbes attached to submerged plants compared to bionic plants. Furthermore, environmental factors influenced ARGs mainly by altering the community dynamics of differential bacteria. This study offers new insights into antibiotic removal and regulation of ARGs accumulation in wetlands with submerged macrophyte. | 2024 | 38569335 |
| 7877 | 16 | 0.9601 | External circuit loading mode regulates anode biofilm electrochemistry and pollutants removal in microbial fuel cells. This study investigated the effects of different external circuit loading mode on pollutants removal and power generation in microbial fuel cells (MFC). The results indicated that MFC exhibited distinct characteristics of higher maximum power density (P(max)) (named MFC-HP) and lower P(max) (named MFC-LP). And the capacitive properties of bioanodes may affect anodic electrochemistry. Reducing external load to align with the internal resistance increased P(max) of MFC-LP by 54.47 %, without no obvious effect on MFC-HP. However, intermittent external resistance loading (IER) mitigated the biotoxic effects of sulfamethoxazole (SMX) (a persistent organic pollutant) on chemical oxygen demand (COD) and NH(4)(+)-N removal and maintained high P(max) (424.33 mW/m(2)) in MFC-HP. Meanwhile, IER mode enriched electrochemically active bacteria (EAB) and environmental adaptive bacteria Advenella, which may reduce antibiotic resistance genes (ARGs) accumulation. This study suggested that the external circuit control can be effective means to regulate electrochemical characteristics and pollutants removal performance of MFC. | 2024 | 39153696 |
| 7941 | 17 | 0.9600 | Microplastics accelerate nitrification, shape the microbial community, and alter antibiotic resistance during the nitrifying process. Microplastics (MPs) and antibiotic resistance genes (ARGs) are both emerging pollutants that are frequently detected in wastewater treatment plants. In this study, the effects of various MPs, including polyethylene (PE), polyvinyl chloride (PVC), and biodegradable polylactic acid (PLA), on nitrification performance, dominant microbial communities, and antibiotic resistance during nitrification were investigated. The results revealed that the addition of MPs increased the specific ammonia oxidation rate and specific nitrate production rate by 15.2 % - 15.5 % and 8.0 % - 11.6 %, respectively, via enrichment of nitrifying microorganisms, Nitrospira and Nitrosomonas. Moreover, ARGs were selectively enriched in nitrifying sludge and microplastic biofilms under stress from different MPs. Compared with PE-MPs (23.9 %) and PVC-MPs (21.4 %), exposure to PLA-MPs significantly increased intI1 abundance by 51.6 %. The results of the variance decomposition analysis implied that MPs and the microbial community play important roles in the behavior of ARGs. Network analysis indicated that Nitrosomonas and potentially pathogenic bacteria emerged as possible hosts, harboring ARGs and intI1 genes in the nitrifying sludge and microplastic biofilms. Critically, PLA-MPs were found to enrich both ARGs and potential pathogenic bacteria during nitrification, which should be considered in their promotion of application processes due to their biodegradability. | 2025 | 39740624 |
| 7887 | 18 | 0.9600 | Double-edged sword effects of sulfate reduction process in sulfur autotrophic denitrification system: Accelerating nitrogen removal and promoting antibiotic resistance genes spread. This study proposed the double-edged sword effects of sulfate reduction process on nitrogen removal and antibiotic resistance genes (ARGs) transmission in sulfur autotrophic denitrification system. Excitation-emission matrix-parallel factor analysis identified the protein-like fraction in soluble microbial products as main endogenous organic matter driving the sulfate reduction process. The resultant sulfide tended to serve as bacterial modulators, augmenting electron transfer processes and mitigating oxidative stress, thereby enhancing sulfur oxidizing bacteria (SOB) activity, rather than extra electron donors. The cooperation between SOB and heterotroph (sulfate reducing bacteria (SRB) and heterotrophic denitrification bacteria (HDB)) were responsible for advanced nitrogen removal, facilitated by multiple metabolic pathways including denitrification, sulfur oxidation, and sulfate reduction. However, SRB and HDB were potential ARGs hosts and assimilatory sulfate reduction pathway positively contributed to ARGs spread. Overall, the sulfate reduction process in sulfur autotrophic denitrification system boosted nitrogen removal process, but also increased the risk of ARGs transmission. | 2024 | 39122125 |
| 7880 | 19 | 0.9599 | The synergistic mechanism of β-lactam antibiotic removal between ammonia-oxidizing microorganisms and heterotrophs. Nitrifying system is an effective strategy to remove numerous antibiotics, however, the contribution of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and heterotrophs for antibiotic removal are still unclear. In this study, the mechanism of β-lactam antibiotic (cefalexin, CFX) removal was studied in a nitrifying sludge system. Results showed that CFX was synergistically removed by AOB (Nitrosomonas, played a major role) and AOA (Candidatus_Nitrososphaera) through ammonia monooxygenase-mediated co-metabolism, and by heterotrophs (Pseudofulvimonas, Hydrogenophaga, RB41, Thauera, UTCFX1, Plasticicumulans, Phaeodactylibacter) through antibiotic resistance genes (ARGs)-encoded β-lactamases-mediated hydrolysis. Regardless of increased archaeal and heterotrophic CFX removal with the upregulation of amoA in AOA and ARGs, the system exhibited poorer CFX removal performance at 10 mg/L, mainly due to the inhibition of AOB. This study provides new reference for the important roles of heterotrophs and ARGs, opening the possibilities for the application of ARGs in antibiotic biodegradation. | 2023 | 36174754 |