# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 176 | 0 | 0.9945 | The mercury resistance (mer) operon in a marine gliding flavobacterium, Tenacibaculum discolor 9A5. Genes conferring mercury resistance have been investigated in a variety of bacteria and archaea but not in bacteria of the phylum Bacteroidetes, despite their importance in many environments. We found, however, that a marine gliding Bacteroidetes species, Tenacibaculum discolor, was the predominant mercury-resistant bacterial taxon cultured from a salt marsh fertilized with mercury-contaminated sewage sludge. Here we report characterization of the mercuric reductase and the narrow-spectrum mercury resistance (mer) operon from one of these strains - T. discolor 9A5. This mer operon, which confers mercury resistance when cloned into Flavobacterium johnsoniae, encodes a novel mercury-responsive ArsR/SmtB family transcriptional regulator that appears to have evolved independently from other mercury-responsive regulators, a novel putative transport protein consisting of a fusion between the integral membrane Hg(II) transporter MerT and the periplasmic Hg(II)-binding protein MerP, an additional MerP protein, and a mercuric reductase that is phylogenetically distinct from other known mercuric reductases. | 2013 | 22816663 |
| 366 | 1 | 0.9943 | Genes encoding mercuric reductases from selected gram-negative aquatic bacteria have a low degree of homology with merA of transposon Tn501. An investigation of the Hg2+ resistance mechanism of four freshwater and four coastal marine bacteria that did not hybridize with a mer operonic probe was conducted (T. Barkay, C. Liebert, and M. Gillman, Appl. Environ. Microbiol. 55:1196-1202, 1989). Hybridization with a merA probe, the gene encoding the mercuric reductase polypeptide, at a stringency of hybridization permitting hybrid formation between evolutionarily distant merA genes (as exists between gram-positive and -negative bacteria), detected merA sequences in the genomes of all tested strains. Inducible Hg2+ volatilization was demonstrated for all eight organisms, and NADPH-dependent mercuric reductase activities were detected in crude cell extracts of six of the strains. Because these strains represented random selections of bacteria from three aquatic environments, it is concluded that merA encodes a common molecular mechanism for Hg2+ resistance and volatilization in aerobic heterotrophic aquatic communities. | 1990 | 2166470 |
| 494 | 2 | 0.9941 | The mercury resistance operon of the IncJ plasmid pMERPH exhibits structural and regulatory divergence from other Gram-negative mer operons. The bacterial mercury resistance determinant carried on the IncJ plasmid pMERPH has been characterized further by DNA sequence analysis. From the sequence of a 4097 bp Bg/II fragment which confers mercury resistance, it is predicted that the determinant consists of the genes merT, merP, merC and merA. The level of DNA sequence similarity between these genes and those of the mer determinant of Tn21 was between 56 center dot 4 and 62 center dot 4%. A neighbour-joining phylogenetic tree of merA gene sequences was constructed which suggested that pMERPH bears the most divergent Gram-negative mer determinant characterized to date. Although the determinant from pMERPH has been shown to be inducible, no regulatory genes have been found within the Bg/II fragment and it is suggested that a regulatory gene may be located elsewhere on the plasmid. The cloned determinant has been shown to express mercury resistance constitutively. Analysis of the pMERPH mer operator/promoter (O/P) region in vivo has shown constitutive expression from the mer PTCPA promoter, which could be partially repressed by the presence of a trans-acting MerR protein from a Tn21-like mer determinant. This incomplete repression of mer PTCPA promoter activity may be due to the presence of an extra base between the -35 and -10 sequences of the promoter and/or to variation in the MerR binding sites in the O/P region. Expression from the partially repressed mer PTCPA promoter could be restored by the addition of inducing levels of Hg2+ ions. Using the polymerase chain reaction with primers designed to amplify regions in the merP and merA genes, 1 center dot 37 kb pMERPH-like sequences have been amplified from the IncJ plasmid R391, the environmental isolate SE2 and from DNA isolated directly from non-cultivated bacteria in River Mersey sediment. This suggests that pMERPH-like sequences, although rare, are nevertheless persistent in natural environments. | 1996 | 8932707 |
| 178 | 3 | 0.9940 | Molecular basis of bacterial resistance to organomercurial and inorganic mercuric salts. Bacteria mediate resistance to organomercurial and inorganic mercuric salts by metabolic conversion to nontoxic elemental mercury, Hg(0). The genes responsible for mercury resistance are organized in the mer operon, and such operons are often found in plasmids that also bear drug resistance determinants. We have subcloned three of these mer genes, merR, merB, and merA, and have studied their protein products via protein overproduction and purification, and structural and functional characterization. MeR is a metalloregulatory DNA-binding protein that acts as a repressor of both its own and structural gene transcription in the absence of Hg(II); in addition it acts as a positive effector of structural gene transcription when Hg(II) is present. MerB, organomercury lyase, catalyzes the protonolytic fragmentation of organomercurials to the parent hydrocarbon and Hg(II) by an apparent SE2 mechanism. MerA, mercuric ion reductase, is an FAD-containing and redox-active disulfide-containing enzyme with homology to glutathione reductase. It has evolved the unique catalytic capacity to reduce Hg(II) to Hg(0) and thereby complete the detoxification scheme. | 1988 | 3277886 |
| 130 | 4 | 0.9938 | Genetics of metal resistance in acidophilic prokaryotes of acidic mine environments. Acidophilic bacteria inhabiting acidic mine regions cause natural leaching of sulphidic ores. They are now exploited in industrial operations for leaching of metals and beneficiation of low-grade and recalcitrant ores. Recent trends emphasize application of thermoacidophiles and genetic engineering of ore-leaching bacteria for greater success in this area. This requires an in-depth understanding on the molecular genetics of these bacteria and construction of cloning vectors for them. Metal resistance is considered as the most suitable phenotypic trait for cloning vectors of bio-mining chemolithoautotrophic (viz. Acidithiobacillus ferrooxidans) and heterotrophic (Acidiphilium and Acidocella species) bacteria of mine environments. These bacteria take part in ore-leaching either directly or indirectly, exhibit low to high level of resistance/tolerance to various metals under different conditions. Majority of these bacteria contain one or more plasmids--the genetic elements that usually carry metal resistant genes. But none of the At. ferrooxidans plasmids has been definitely proved to harbour metal-resistant genes which have mostly been found in the chromosome of this bacterium. Plasmids of acidophilic heterotrophs of the genera Acidiphilium and Acidocella, on the other hand, carry metal resistant genes. While genes bestowing arsenic resistance in Acidiphilium multivorum are similar to those analyzed from other sources, the metal (Cd and Zn)-resistance conferring cloned plasmid DNA fragments from Acidiphilium symbioticum KM2 and Acidocella GS19h strains were found to have no sequence similarity with the reported Cd- and Zn-resistant genes. Such observations indicate some novel aspects of metal resistance in acidophilic bacteria. | 2004 | 15274476 |
| 817 | 5 | 0.9937 | Mercury resistance transposons in Bacilli strains from different geographical regions. A total of 65 spore-forming mercury-resistant bacteria were isolated from natural environments worldwide in order to understand the acquisition of additional genes by and dissemination of mercury resistance transposons across related Bacilli genera by horizontal gene movement. PCR amplification using a single primer complementary to the inverted repeat sequence of TnMERI1-like transposons showed that 12 of 65 isolates had a transposon-like structure. There were four types of amplified fragments: Tn5084, Tn5085, Tn(d)MER3 (a newly identified deleted transposon-like fragment) and Tn6294 (a newly identified transposon). Tn(d)MER3 is a 3.5-kb sequence that carries a merRETPA operon with no merB or transposase genes. It is related to the mer operon of Bacillus licheniformis strain FA6-12 from Russia. DNA homology analysis shows that Tn6294 is an 8.5-kb sequence that is possibly derived from Tn(d)MER3 by integration of a TnMERI1-type transposase and resolvase genes and in addition the merR2 and merB1 genes. Bacteria harboring Tn6294 exhibited broad-spectrum mercury resistance to organomercurial compounds, although Tn6294 had only merB1 and did not have the merB2 and merB3 sequences for organomercurial lyases found in Tn5084 of B. cereus strain RC607. Strains with Tn6294 encode mercuric reductase (MerA) of less than 600 amino acids in length with a single N-terminal mercury-binding domain, whereas MerA encoded by strains MB1 and RC607 has two tandem domains. Thus, Tn(d)MER3 and Tn6294 are shorter prototypes for TnMERI1-like transposons. Identification of Tn6294 in Bacillus sp. from Taiwan and in Paenibacillus sp. from Antarctica indicates the wide horizontal dissemination of TnMERI1-like transposons across bacterial species and geographical barriers. | 2016 | 26802071 |
| 403 | 6 | 0.9936 | Nucleotide sequence and expression of the mercurial-resistance operon from Staphylococcus aureus plasmid pI258. The mercurial-resistance determinant from Staphylococcus aureus plasmid pI258 is located on a 6.4-kilobase-pair Bgl II fragment. The determinant was cloned into both Bacillus subtilis and Escherichia coli. Mercury resistance was found only in B. subtilis. The 6404-base-pair DNA sequence of the Bgl II fragment was determined. The mer DNA sequence includes seven open reading frames, two of which have been identified by homology with the merA (mercuric reductase) and merB (organomercurial lyase) genes from the mercurial-resistance determinants of Gram-negative bacteria. Whereas 40% of the amino acid residues overall were identical between the pI258 merA polypeptide product and mercuric reductases from Gram-negative bacteria, the percentage identity in the active-site positions and those thought to be involved in NADPH and FAD contacts was above 90%. The 216 amino acid organomercurial lyase sequence was 39% identical with that from a Serratia plasmid, with higher conservation in the middle of the sequences and lower homologies at the amino and carboxyl termini. The remaining five open reading frames in the pI258 mer sequence have no significant homologies with the genes from previously sequenced Gram-negative mer operons. | 1987 | 3037534 |
| 404 | 7 | 0.9936 | Plasmid-borne cadmium resistance genes in Listeria monocytogenes are similar to cadA and cadC of Staphylococcus aureus and are induced by cadmium. pLm74 is the smallest known plasmid in Listeria monocytogenes. It confers resistance to the toxic divalent cation cadmium. It contains a 3.1-kb EcoRI fragment which hybridizes with the cadAC genes of plasmid pI258 of Staphylococcus aureus. When introduced into cadmium-sensitive L. monocytogenes or Bacillus subtilis strains, this fragment conferred cadmium resistance. The DNA sequence of the 3.1-kb EcoRI fragment contains two open reading frames, cadA and cadC. The deduced amino acid sequences are similar to those of the cad operon of plasmid pI258 of S. aureus, known to prevent accumulation of Cd2+ in the bacteria by an ATPase efflux mechanism. The cadmium resistance determinant of L. monocytogenes does not confer zinc resistance, in contrast to the cadAC determinant of S. aureus, suggesting that the two resistance mechanisms are slightly different. Slot blot DNA-RNA hybridization analysis showed cadmium-inducible synthesis of L. monocytogenes cadAC RNA. | 1994 | 8188605 |
| 816 | 8 | 0.9936 | High-Level Nickel Resistance in Alcaligenes xylosoxydans 31A and Alcaligenes eutrophus KTO2. Two new nickel-resistant strains of Alcaligenes species were selected from a large number (about 400) of strains isolated from ecosystems polluted by heavy metals and were studied on the physiological and molecular level. Alcaligenes xylosoxydans 31A is a heterotrophic bacterium, and Alcaligenes eutrophus KTO2 is an autotrophic aerobic hydrogen-oxidizing bacterium. Both strains carry-among other plasmids-a megaplasmid determining resistance to 20 to 50 mM NiCl(2) and 20 mM CoCl(2) (when growing in defined Tris-buffered media). Megaplasmids pTOM8, pTOM9 from strain 31A, and pGOE2 from strain KTO2 confer nickel resistance to the same degree to transconjugants of all strains of A. eutrophus tested but were not transferred to Escherichia coli. However, DNA fragments carrying the nickel resistance genes, cloned into broad-hostrange vector pVDZ'2, confer resistance to A. eutrophus derivatives as well as E. coli. The DNA fragments of both bacteria, TBA8, TBA9, and GBA (14.5-kb BamHI fragments), appear to be identical. They share equal size, restriction maps, and strong DNA homology but are largely different from fragment HKI of nickel-cobalt resistance plasmid pMOL28 of A. eutrophus CH34. | 1991 | 16348590 |
| 185 | 9 | 0.9936 | The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. The chromosomal arsenic resistance genes of the acidophilic, chemolithoautotrophic, biomining bacterium Thiobacillus ferrooxidans were cloned and sequenced. Homologues of four arsenic resistance genes, arsB, arsC, arsH, and a putative arsR gene, were identified. The T. ferrooxidans arsB (arsenite export) and arsC (arsenate reductase) gene products were functional when they were cloned in an Escherichia coli ars deletion mutant and conferred increased resistance to arsenite, arsenate, and antimony. Therefore, despite the fact that the ars genes originated from an obligately acidophilic bacterium, they were functional in E. coli. Although T. ferrooxidans is gram negative, its ArsC was more closely related to the ArsC molecules of gram-positive bacteria. Furthermore, a functional trxA (thioredoxin) gene was required for ArsC-mediated arsenate resistance in E. coli; this finding confirmed the gram-positive ArsC-like status of this resistance and indicated that the division of ArsC molecules based on Gram staining results is artificial. Although arsH was expressed in an E. coli-derived in vitro transcription-translation system, ArsH was not required for and did not enhance arsenic resistance in E. coli. The T. ferrooxidans ars genes were arranged in an unusual manner, and the putative arsR and arsC genes and the arsBH genes were translated in opposite directions. This divergent orientation was conserved in the four T. ferrooxidans strains investigated. | 2000 | 10788346 |
| 491 | 10 | 0.9935 | Class II broad-spectrum mercury resistance transposons in Gram-positive bacteria from natural environments. We have studied the mechanisms of the horizontal dissemination of a broad-spectrum mercury resistance determinant among Bacillus and related species. This mer determinant was first described in Bacillus cereus RC607 from Boston Harbor, USA, and was then found in various Bacillus and related species in Japan, Russia and England. We have shown that the mer determinant can either be located at the chromosome, or on a plasmid in the Bacillus species, and is carried by class II mercury resistance transposons: Tn5084 from B. cereus RC607 and B. cereus VKM684 (ATCC10702) and Tn5085 from Exiguobacterium sp. TC38-2b. Tn5085 is identical in nucleotide sequence to TnMERI1, the only other known mer transposon from Bacillus species, but it does not contain an intron like TnMERI1. Tn5085 is functionally active in Escherichia coli. Tn5083, which we have isolated from B. megaterium MK64-1, contains an RC607-like mer determinant, that has lost some mercury resistance genes and possesses a merA gene which is a novel sequence variant that has not been previously described. Tn5083 and Tn5084 are recombinants, and are comprised of fragments from several transposons including Tn5085, and a relative of a putative transposon from B. firmus (which contains similar genes to the cadmium resistance operon of Staphylococcus aureus), as well as others. The sequence data showed evidence for recombination both between transposition genes and between mer determinants. | 2001 | 11446519 |
| 179 | 11 | 0.9935 | The genetics and biochemistry of mercury resistance. The ability of bacteria to detoxify mercurial compounds by reduction and volatilization is conferred by mer genes, which are usually plasmid located. The narrow spectrum (Hg2+ detoxifying) Tn501 and R100 determinants have been subjected to molecular genetic and DNA sequence analysis. Biochemical studies on the flavoprotein mercuric reductase have elucidated the mechanism of reduction of Hg2+ to Hg0. The mer genes have been mapped and sequenced and their protein products studied in minicells. Based on the deduced amino acid sequences, these proteins have been assigned a role in a mechanistic scheme for mercury flux in resistant bacteria. The mer genes are inducible, with regulatory control being exerted at the transcriptional level both positively and negatively. Attention is now focusing on broad-spectrum resistance involving detoxification of organomercurials by an additional enzyme, organomercurial lyase. Lyase genes have recently been cloned and sequencing studies are in progress. | 1987 | 2827958 |
| 367 | 12 | 0.9934 | Translocatable resistance to mercuric and phenylmercuric ions in soil bacteria. Of a sample of 42 gram-negative Hg-resistant bacteria, three (a Pseudomonas fluorescens, a Klebsiella sp. and a Citrobacter sp.) contained translocatable elements conferring resistance to Hg2+ (all three) and to Hg2+ and phenylmercuric acetate (P. fluorescens). The discovery of transposable phenylmercuric acetate resistance extends the range of known resistance "transposons" from heavy metals and antibiotics to organometallic compounds. | 1981 | 6268601 |
| 3027 | 13 | 0.9934 | Tn5045, a novel integron-containing antibiotic and chromate resistance transposon isolated from a permafrost bacterium. A novel antibiotic and chromate resistance transposon, Tn5045, was isolated from a permafrost strain of Pseudomonas sp. Tn5045 is a compound transposon composed of three distinct genetic elements. The backbone element is a Tn1013-like Tn3 family transposon, termed Tn1013∗, that contains the tnpA and the tnpR genes, encoding the transposase and resolvase, respectively, the res-site and four genes (orfA, B, C, D) related to different house-keeping genes. The second element is class 1 integron, termed InC∗, which is inserted into the Tn1013∗ res-region and contains 5'-CS-located integrase, 3'-CS-located qacE∆1 and sulfonamide resistance sulI genes, and a single cassette encoding the streptomycin resistance aadA2-gene. The third element is a TnOtChr-like Tn3 family transposon termed TnOtChr∗, which is inserted into the transposition module of the integron and contains genes of chromate resistance (chrB, A, C, F). Tn5045 is the first example of an ancient integron-containing mobile element and also the first characterized compound transposon coding for both antibiotic and chromate, resistance. Our data demonstrate that antibiotic and chromate resistance genes were distributed in environmental bacteria independently of human activities and provide important insights into the origin and evolution of antibiotic resistance integrons. | 2011 | 21262357 |
| 180 | 14 | 0.9934 | Bacterial resistances to inorganic mercury salts and organomercurials. Environmental and clinical isolates of mercury-resistant (resistant to inorganic mercury salts and organomercurials) bacteria have genes for the enzymes mercuric ion reductase and organomercurial lyase. These genes are often plasmid-encoded, although chromosomally encoded resistance determinants have been occasionally identified. Organomercurial lyase cleaves the C-Hg bond and releases Hg(II) in addition to the appropriate organic compound. Mercuric reductase reduces Hg(II) to Hg(O), which is nontoxic and volatilizes from the medium. Mercuric reductase is a FAD-containing oxidoreductase and requires NAD(P)H and thiol for in vitro activity. The crystal structure of mercuric ion reductase has been partially solved. The primary sequence and the three-dimensional structure of the mercuric reductase are significantly homologous to those of other flavin-containing oxidoreductases, e.g., glutathione reductase and lipoamide dehydrogenase. The active site sequences are the most conserved region among these flavin-containing enzymes. Genes encoding other functions have been identified on all mercury ion resistance determinants studied thus far. All mercury resistance genes are clustered into an operon. Hg(II) is transported into the cell by the products of one to three genes encoded on the resistance determinants. The expression of the operon is regulated and is inducible by Hg(II). In some systems, the operon is inducible by both Hg(II) and some organomercurials. In gram-negative bacteria, two regulatory genes (merR and merD) were identified. The (merR) regulatory gene is transcribed divergently from the other genes in gram-negative bacteria. The product of merR represses operon expression in the absence of the inducers and activates transcription in the presence of the inducers. The product of merD coregulates (modulates) the expression of the operon. Both merR and merD gene products bind to the same operator DNA. The primary sequence of the promoter for the polycistronic mer operon is not ideal for efficient transcription by the RNA polymerase. The -10 and -35 sequences are separated by 19 (gram-negative systems) or 20 (gram-positive systems) nucleotides, 2 or 3 nucleotides longer than the 17-nucleotide optimum distance for binding and efficient transcription by the Escherichia coli sigma 70-containing RNA polymerase. The binding site of MerR is not altered by the presence of Hg(II) (inducer). Experimental data suggest that the MerR-Hg(II) complex alters the local structure of the promoter region, facilitating initiation of transcription of the mer operon by the RNA polymerase. In gram-positive bacteria MerR also positively regulates expression of the mer operon in the presence of Hg(II). | 1992 | 1311113 |
| 131 | 15 | 0.9933 | Characterization of Two Highly Arsenic-Resistant Caulobacteraceae Strains of Brevundimonas nasdae: Discovery of a New Arsenic Resistance Determinant. Arsenic (As), distributed widely in the natural environment, is a toxic substance which can severely impair the normal functions in living cells. Research on the genetic determinants conferring functions in arsenic resistance and metabolism is of great importance for remediating arsenic-contaminated environments. Many organisms, including bacteria, have developed various strategies to tolerate arsenic, by either detoxifying this harmful element or utilizing it for energy generation. More and more new arsenic resistance (ars) determinants have been identified to be conferring resistance to diverse arsenic compounds and encoded in ars operons. There is a hazard in mobilizing arsenic during gold-mining activities due to gold- and arsenic-bearing minerals coexisting. In this study, we isolated 8 gold enrichment strains from the Zijin gold and copper mine (Longyan, Fujian Province, China) wastewater treatment site soil, at an altitude of 192 m. We identified two Brevundimonas nasdae strains, Au-Bre29 and Au-Bre30, among these eight strains, having a high minimum inhibitory concentration (MIC) for As(III). These two strains contained the same ars operons but displayed differences regarding secretion of extra-polymeric substances (EPS) upon arsenite (As(III)) stress. B. nasdae Au-Bre29 contained one extra plasmid but without harboring any additional ars genes compared to B. nasdae Au-Bre30. We optimized the growth conditions for strains Au-Bre29 and Au-Bre30. Au-Bre30 was able to tolerate both a lower pH and slightly higher concentrations of NaCl. We also identified folE, a folate synthesis gene, in the ars operon of these two strains. In most organisms, folate synthesis begins with a FolE (GTP-Cyclohydrolase I)-type enzyme, and the corresponding gene is typically designated folE (in bacteria) or gch1 (in mammals). Heterologous expression of folE, cloned from B. nasdae Au-Bre30, in the arsenic-hypersensitive strain Escherichia coli AW3110, conferred resistance to As(III), arsenate (As(V)), trivalent roxarsone (Rox(III)), pentavalent roxarsone (Rox(V)), trivalent antimonite (Sb(III)), and pentavalent antimonate (Sb(V)), indicating that folate biosynthesis is a target of arsenite toxicity and increased production of folate confers increased resistance to oxyanions. Genes encoding Acr3 and ArsH were shown to confer resistance to As(III), Rox(III), Sb(III), and Sb(V), and ArsH also conferred resistance to As(V). Acr3 did not confer resistance to As(V) and Rox(V), while ArsH did not confer resistance to Rox(V). | 2022 | 35628430 |
| 493 | 16 | 0.9933 | Mercury resistance transposons of gram-negative environmental bacteria and their classification. A total of 29 mercury resistance transposons were isolated from mercury-resistant environmental strains of proteobacteria collected in different parts of Eurasia and the USA and tested for hybridization with probes specific for transposase genes of known mercury resistance transposons. 9 were related to Tn21 in this test, 12 were related to Tn5053, 4 to Tn5041 and 1 to Tn5044; three transposons were negative in this test. Restriction mapping and DNA sequencing revealed that 12 transposons were identical or nearly identical to their corresponding relatives while the rest showed varying divergence from their closest relatives. Most of these previously unknown transposons apparently arose as a result of homologous or site-specific recombination. One of these, Tn5046, was completely sequenced, and shown to be a chimera with the mer operon and the transposition module derived from the transposons related to Tn5041 and to Tn5044, respectively. Transposon Tn5070, showing no hybridization with the specific probes used in this study, was also completely sequenced. The transposition module of Tn5070 was most closely related to that of Tn3 while the mer operon was most closely related to that of plasmid pMERPH. The merR of Tn5070 is transcribed in the same direction as the mer structural genes, which is typical for mer operons of gram-positive bacteria. Our data suggest that environmental bacteria may harbor many not yet recognized mercury resistance transposons and warrant their further inventory. | 2001 | 11763242 |
| 362 | 17 | 0.9932 | Complete Genome Sequences of Highly Arsenite-Resistant Bacteria Brevibacterium sp. Strain CS2 and Micrococcus luteus AS2. The complete genome sequences of two highly arsenite-resistant Actinomycetales isolates are presented. Both genomes are G+C rich and consist of a single chromosome containing homologs of known arsenite resistance genes. | 2019 | 31371538 |
| 186 | 18 | 0.9932 | Plasmid-encoded resistance to arsenic and antimony. Resistance determinants to the toxic oxyanionic salts of arsenic and antimony are found on plasmids of both gram-negative and gram-positive organisms. In most cases these provide resistance to both the oxyanions of +III oxidation state, antimonite and arsenite, and the +V oxidation state, arsenate. In both gram-positive and -negative bacteria, resistance is correlated with efflux of the anions from cells. The determinant from the plasmid R773, isolated from a gram-negative organism, has been studied in detail. It encodes an oxyanion-translocating ATPase with three subunits, a catalytic subunit, the ArsA protein, a membrane subunit, the ArsB subunit, and a specificity factor, the ArsC protein. The first two form a membrane-bound complex with arsenite-stimulated ATPase activity. The determinants from gram-positive bacteria have only the arsB and arsC genes and encode an efflux system without the participation of an ArsA homologue. | 1992 | 1531541 |
| 374 | 19 | 0.9932 | Simultaneous detection and removal of organomercurial compounds by using the genetic expression system of an organomercury lyase from the transposon Tn MERI1. Using a newly identified organomercury lyase gene (merB3) expression system from Tn MERI1, the mercury resistance transposon first found in Gram-positive bacteria, a dual-purpose system to detect and remove organomercurial contamination was developed. A plasmid was constructed by fusing the promoterless luxAB genes as bioluminescence reporter genes downstream of the merB3 gene and its operator/promoter region. Another plasmid, encoding mer operon genes from merR1 to merA, was also constructed to generate an expression regulatory protein, MerR1, and a mercury reductase enzyme, MerA. These two plasmids were transformed into Escherichia coli cells to produce a biological system that can detect and remove environmental organomercury contamination. Organomercurial compounds, such as neurotoxic methylmercury at nanomolar levels, were detected using the biomonitoring system within a few minutes and were removed during the next few hours. | 2002 | 12073137 |