# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6376 | 0 | 0.9793 | Mechanisms of mepA Overexpression and Membrane Potential Reduction Leading to Ciprofloxacin Heteroresistance in a Staphylococcus aureus Isolate. Heteroresistance has seriously affected the evaluation of antibiotic efficacy against pathogenic bacteria, causing misjudgment of antibiotics' sensitivity in clinical therapy, leading to treatment failure, and posing a serious threat to current medical health. However, the mechanism of Staphylococcus aureus heteroresistance to ciprofloxacin remains unclear. In this study, heteroresistance to ciprofloxacin in S. aureus strain 529 was confirmed by antimicrobial susceptibility testing and population analysis profiling (PAP), with the resistance of subclonal 529_HR based on MIC being 8-fold that of the original bacteria. A 7-day serial MIC evaluation and growth curves demonstrate that their phenotype was stable, with 529_HR growing more slowly than 529, but reaching a plateau in a similar proportion. WGS analysis showed that there were 11 nonsynonymous mutations and one deletion gene between the two bacteria, but none of these SNPs were directly associated with ciprofloxacin resistance. Transcriptome data analysis showed that the expression of membrane potential related genes (qoxA, qoxB, qoxC, qoxD, mprF) was downregulated, and the expression of multidrug resistance efflux pump gene mepA was upregulated. The combination of ciprofloxacin and limonene restored the 529_HR MIC from 1 mg/L to 0.125 mg/L. Measurement of the membrane potential found that 529_HR had a lower potential, which may enable it to withstand the ciprofloxacin-induced decrease in membrane potential. In summary, we demonstrated that upregulation of mepA gene expression and a reduction in membrane potential are the main heteroresistance mechanisms of S. aureus to ciprofloxacin. Additionally, limonene may be a potentially effective agent to inhibit ciprofloxacin heteroresistance phenotypes. | 2025 | 40076991 |
| 6373 | 1 | 0.9792 | Antibiotic resistance and multidrug-resistant efflux pumps expression in lactic acid bacteria isolated from pozol, a nonalcoholic Mayan maize fermented beverage. Pozol is a handcrafted nonalcoholic Mayan beverage produced by the spontaneous fermentation of maize dough by lactic acid bacteria. Lactic acid bacteria (LAB) are carriers of chromosomal encoded multidrug-resistant efflux pumps genes that can be transferred to pathogens and/or confer resistance to compounds released during the fermentation process causing food spoiling. The aim of this study was to evaluate the antibiotic sensibility and the transcriptional expression of ABC-type efflux pumps in LAB isolated from pozol that contributes to multidrug resistance. Analysis of LAB and Staphylococcus (S.) aureus ATCC 29213 and ATCC 6538 control strains to antibiotic susceptibility, minimal inhibitory concentration (MIC), and minimal bactericidal concentration (MBC) to ethidium bromide were based in "standard methods" whereas the ethidium bromide efflux assay was done by fluorometric assay. Transcriptional expression of efflux pumps was analyzed by RT-PCR. LAB showed antibiotic multiresistance profiles, moreover, Lactococcus (L.) lactis and Lactobacillus (L.) plantarum displayed higher ethidium bromide efflux phenotype than S. aureus control strains. Ethidium bromide resistance and ethidium bromide efflux phenotypes were unrelated with the overexpression of lmrD in L. lactics, or the underexpression of lmrA in L. plantarum and norA in S. aureus. These findings suggest that, moreover, the analyzed efflux pumps genes, other unknown redundant mechanisms may underlie the antibiotic resistance and the ethidium bromide efflux phenotype in L. lactis and L. plantarum. Phenotypic and molecular drug multiresistance assessment in LAB may improve a better selection of the fermentation starter cultures used in pozol, and to control the antibiotic resistance widespread and food spoiling for health safety. | 2016 | 27247772 |
| 5748 | 2 | 0.9792 | Nosocomial Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus: Sensitivity to Chlorhexidine-Based Biocides and Prevalence of Efflux Pump Genes. The widespread use of disinfectants and antiseptics has led to the emergence of nosocomial pathogens that are less sensitive to these agents, which in combination with multidrug resistance (MDR) can pose a significant epidemiologic risk. We investigated the susceptibility of nosocomial Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus to a 0.05% chlorhexidine (CHX) solution and a biocidal S7 composite solution based on CHX (0.07%) and benzalkonium chloride (BAC, 0.055%). The prevalence of efflux pump genes associated with biocide resistance and their relationship to antibiotic resistance was also determined. Both biocides were more effective against Gram-positive S. aureus than Gram-negative bacteria. The most resistant strains were P. aeruginosa strains, which were mainly killed by 0.0016% CHX and by 0.0000084% (CHX)/0.0000066% (BAC) S7. The S7 bactericidal effect was observed on P. aeruginosa and S. aureus after 10 min, while the bactericidal effect of CHX was only observed after 30 min. qacEΔ1 and qacE efflux pump genes were prevalent among E. coli and K. pneumoniae, while mexB was more often detected in P. aeruginosa. norA, norB, mepA, mdeA, and sepA were prevalent in S. aureus. The observed prevalence of efflux pump genes highlights the potential problem whereby the sensitivity of bacteria to biocides could decline rapidly in the future. | 2025 | 39796210 |
| 5437 | 3 | 0.9791 | Analysis of antibiotics resistant genes in different strains of Staphylococcus aureus. The control of Staphylococcus aureus infection is being hampered by methicillin and other resistant strains. The identification of the unique antibiotic resistant genes from the genomes of various strains of S. aureus is of interest. We analyzed 11 S. aureus genomes sequences for Antibiotics Resistance Genes (ARGs) using CARD 2017 platform. We identified 32 ARGs across 11 S. aureus strains. Tet(38), norB, lmrB, mepA and mepR were present across genomes except for S. aureus strain UTSW MRSA 55. The mepA and mepR were found across 11 different genomes. However, FosB3, vgaALC, mphC and SAT-4 were found in UTSW MRSA 55, S.a. strain ISU935 and S.a. strain FDAARGOS_159. The prevalent mode of mechanism of antibiotics resistant was efflux pump complex or subunit conferring antibiotic resistance as well as protein(s). Analysis of norB, ImrB, norA, ImrB, tet (38), sav1866 and mecA have 12 to 14 TMHs. The results help in the understanding of Staphylococcus aureus pathogenesis in the context of antibiotic resistance. | 2018 | 29785070 |
| 6372 | 4 | 0.9788 | Sensitizing multi drug resistant Staphylococcus aureus isolated from surgical site infections to antimicrobials by efflux pump inhibitors. BACKGROUND: Staphylococcus aureus is a common hospital acquired infections pathogen. Multidrug-resistant Methicillin-resistant Staphylococcus aureus represents a major problem in Egyptian hospitals. The over-expression of efflux pumps is a main cause of multidrug resistance. The discovery of efflux pump inhibitors may help fight multidrug resistance by sensitizing bacteria to antibiotics. This study aimed to investigate the role of efflux pumps in multidrug resistance. METHODS: Twenty multidrug resistant S. aureus isolates were selected. Efflux pumps were screened by ethidium bromide agar cartwheel method and polymerase chain reaction. The efflux pump inhibition by seven agents was tested by ethidium bromide agar cartwheel method and the effect on sensitivity to selected antimicrobials was investigated by broth microdilution method. RESULTS: Seventy percent of isolates showed strong efflux activity, while 30% showed intermediate activity. The efflux genes mdeA, norB, norC, norA and sepA were found to play the major role in efflux, while genes mepA, smr and qacA/B had a minor role. Verapamil and metformin showed significant efflux inhibition and increased the sensitivity to tested antimicrobials, while vildagliptin, atorvastatin, domperidone, mebeverine and nifuroxazide showed no effect. CONCLUSION: Efflux pumps are involved in multidrug resistance in Staphylococcus aureus. Efflux pump inhibitors could increase the sensitivity to antimicrobials. | 2020 | 34394224 |
| 6181 | 5 | 0.9785 | Two distinct major facilitator superfamily drug efflux pumps mediate chloramphenicol resistance in Streptomyces coelicolor. Chloramphenicol, florfenicol, and thiamphenicol are used as antibacterial drugs in clinical and veterinary medicine. Two efflux pumps of the major facilitator superfamily encoded by the cmlR1 and cmlR2 genes mediate resistance to these antibiotics in Streptomyces coelicolor, a close relative of Mycobacterium tuberculosis. The transcription of both genes was observed by reverse transcription-PCR. Disruption of cmlR1 decreased the chloramphenicol MIC 1.6-fold, while disruption of cmlR2 lowered the MIC 16-fold. The chloramphenicol MIC of wild-type S. coelicolor decreased fourfold and eightfold in the presence of reserpine and Phe-Arg-beta-naphthylamide, respectively. These compounds are known to potentiate the activity of some antibacterial drugs via efflux pump inhibition. While reserpine is known to potentiate drug activity against gram-positive bacteria, this is the first time that Phe-Arg-beta-naphthylamide has been shown to potentiate drug activity against a gram-positive bacterium. | 2009 | 19687245 |
| 5379 | 6 | 0.9784 | Membrane-Targeting Triphenylphosphonium Functionalized Ciprofloxacin for Methicillin-Resistant Staphylococcus aureus (MRSA). Multidrug-resistant (MDR) bacteria have become a severe problem for public health. Developing new antibiotics for MDR bacteria is difficult, from inception to the clinically approved stage. Here, we have used a new approach, modification of an antibiotic, ciprofloxacin (CFX), with triphenylphosphonium (TPP, PPh(3)) moiety via ester- (CFX-ester-PPh(3)) and amide-coupling (CFX-amide-PPh(3)) to target bacterial membranes. In this study, we have evaluated the antibacterial activities of CFX and its derivatives against 16 species of bacteria, including MDR bacteria, using minimum inhibitory concentration (MIC) assay, morphological monitoring, and expression of resistance-related genes. TPP-conjugated CFX, CFX-ester-PPh(3), and CFX-amide-PPh(3) showed significantly improved antibacterial activity against Gram-positive bacteria, Staphylococcus aureus, including MDR S. aureus (methicillin-resistant S. aureus (MRSA)) strains. The MRSA ST5 5016 strain showed high antibacterial activity, with MIC values of 11.12 µg/mL for CFX-ester-PPh(3) and 2.78 µg/mL for CFX-amide-PPh(3). The CFX derivatives inhibited biofilm formation in MRSA by more than 74.9% of CFX-amide-PPh(3). In the sub-MIC, CFX derivatives induced significant morphological changes in MRSA, including irregular deformation and membrane disruption, accompanied by a decrease in the level of resistance-related gene expression. With these promising results, this method is very likely to combat MDR bacteria through a simple TPP moiety modification of known antibiotics, which can be readily prepared at clinical sites. | 2020 | 33143023 |
| 5376 | 7 | 0.9780 | In vitro Activity of Contezolid Against Methicillin-Resistant Staphylococcus aureus, Vancomycin-Resistant Enterococcus, and Strains With Linezolid Resistance Genes From China. Contezolid is a novel oxazolidinone, which exhibits potent activity against gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), and penicillin-resistant Streptococcus pneumoniae (PRSP). In this study, the in vitro activity of contezolid was compared with linezolid (LZD), tigecycline (TGC), teicoplanin (TEC), vancomycin (VA), daptomycin (DAP), and florfenicol (FFC) against MRSA and VRE strains isolated from China. Contezolid revealed considerable activity against MRSA and VRE isolates with MIC(90) values of 0.5 and 1.0 μg/mL, respectively. For VRE strains with different resistance genotypes, including vanA- and vanM-type strains, contezolid did not exhibit significantly differential antibacterial activity. Furthermore, the antimicrobial activity of contezolid is similar to or slightly better than that of linezolid against MRSA and VRE strains. Subsequently, the activity of contezolid was tested against strains carrying linezolid resistance genes, including Staphylococcus capitis carrying cfr gene and Enterococcus faecalis carrying optrA gene. The results showed that contezolid exhibited similar antimicrobial efficacy to linezolid against strains with linezolid resistance genes. In general, contezolid may have potential benefits to treat the infections caused by MRSA and VRE pathogens. | 2021 | 34489919 |
| 6186 | 8 | 0.9780 | A triclosan-ciprofloxacin cross-resistant mutant strain of Staphylococcus aureus displays an alteration in the expression of several cell membrane structural and functional genes. Triclosan is an antimicrobial agent found in many consumer products. Triclosan inhibits the bacterial fatty acid biosynthetic enzyme, enoyl-ACP reductase (FabI). Decreased susceptibility to triclosan correlates with ciprofloxacin resistance in several bacteria. In these bacteria, resistance to both drugs maps to genes encoding multi-drug efflux pumps. The focus of this study was to determine whether triclosan resistance contributes to ciprofloxacin resistance in Staphylococcus aureus. In S. aureus, triclosan resistance maps to a fabI homolog and ciprofloxacin resistance maps to genes encoding DNA gyrase, topoisomerase IV and to the multi-drug efflux pump, NorA. Using a norA overexpressing mutant, we demonstrated that upregulation of NorA does not lead to triclosan resistance. To further investigate triclosan/ciprofloxacin resistance in S. aureus, we isolated triclosan/ciprofloxacin-resistant mutants. The mutants were screened for mutations in the genes encoding the targets of triclosan and ciprofloxacin. One mutant, JJ5, was wild-type for all sequences analyzed. We next monitored the efflux of triclosan from JJ5 and determined that triclosan resistance in the mutant was not due to active efflux of the drug. Finally, gene expression profiling demonstrated that an alteration in cell membrane structural and functional gene expression is likely responsible for triclosan and ciprofloxacin resistance in JJ5. | 2007 | 17997080 |
| 6370 | 9 | 0.9780 | Inhibitory effects of silybin on the efflux pump of methicillin‑resistant Staphylococcus aureus. Bacterial multidrug resistance efflux systems serve an important role in antimicrobial resistance. Thus, identifying novel and effective efflux pump inhibitors that are safe with no adverse side effects is urgently required. Silybin is a flavonolignan component of the extract from the milk thistle seed. To order to investigate the mechanism by which silybin inhibits the efflux system of methicillin‑resistant Staphylococcus aureus (MRSA), antimicrobial susceptibility testing and the double‑plate method were used to evaluate the effect of silybin on MRSA41577. The ability of silybin to inhibit the efflux of ciprofloxacin from MRSA was evaluated by performing a fluorescence assay. Reverse transcription‑quantitative polymerase chain reaction analysis revealed that silybin reduced the expression of the quinolone resistance protein NorA (norA) and quaternary ammonium resistance proteins A/B (qacA/B) efflux genes in MRSA. This suggested that silybin may effectively inhibit the efflux system of MRSA41577. Compared with the control, MRSA41577 treated with silybin for 16 h exhibited a 36 and 49% reduction in the expression of norA and qacA/B, respectively. Inhibition of the expression of these genes by silybin restored the sensitivity of MRSA41577 to antibiotics, indicating that efflux pump inhibitors, which act by inhibiting the efflux system of MRSA, may disrupt the MRSA resistance to antibiotics, rendering the bacteria sensitive to these drugs. | 2018 | 29845191 |
| 6359 | 10 | 0.9779 | Drug resistance of oral bacteria to new antibacterial dental monomer dimethylaminohexadecyl methacrylate. Only two reports exist on drug-resistance of quaternary ammonium monomers against oral bacteria; both studies tested planktonic bacteria for 10 passages, and neither study tested biofilms or resins. The objectives of this study were to investigate the drug-resistance of Streptococcus mutans, Streptococcus sanguinis and Streptococcus gordonii against dimethylaminohexadecyl methacrylate (DMAHDM), and to evaluate biofilms on resins with repeated exposures for 20 passages for the first time. DMAHDM, dimethylaminododecyl methacrylate (DMADDM) and chlorhexidine (CHX) were tested with planktonic bacteria. Biofilms were grown on a resin containing 3% DMAHDM. Minimum-inhibitory concentrations were measured. To detect drug-resistance, the survived bacteria from the previous passage were used as inoculum for the next passage for repeated exposures. S. gordonii developed drug-resistance against DMADDM and CHX, but not against DMAHDM. Biofilm colony-forming units (CFU) on DMAHDM-resin was reduced by 3-4 log; there was no difference from passages 1 to 20 (p > 0.1). No drug-resistance to DMAHDM was detected for all three bacterial species. In conclusion, this study showed that DMAHDM induced no drug-resistance, and DMAHDM-resin reduced biofilm CFU by 3-4 log, with no significant change from 1 to 20 passages. DMAHDM with potent antibacterial activities and no drug-resistance is promising for dental applications. | 2018 | 29615732 |
| 6371 | 11 | 0.9779 | Bioactive compounds from the African medicinal plant Cleistochlamys kirkii as resistance modifiers in bacteria. Cleistochlamys kirkii (Benth) Oliv. (Annonaceae) is a medicinal plant traditionally used in Mozambique to treat infectious diseases. The aim of this study was to find resistance modifiers in C. kirkii for Gram-positive and Gram-negative model bacterial strains. One of the most important resistance mechanisms in bacteria is the efflux pump-related multidrug resistance. Therefore, polycarpol (1), three C-benzylated flavanones (2-4), and acetylmelodorinol (5) were evaluated for their multidrug resistance-reverting activity on methicillin-susceptible and methicillin-resistant Staphylococcus aureus and Escherichia coli AG100 and AG100 A strains overexpressing and lacking the AcrAB-TolC efflux pump system. The combined effects of antibiotics and compounds (2 and 4) were also assessed by using the checkerboard microdilution method in both S. aureus strains. The relative gene expression of the efflux pump genes was determined by real-time reverse transcriptase quantitative polymerase chain reaction. The inhibition of quorum sensing was also investigated. The combined effect of the antibiotics and compound 2 or 4 on the methicillin-sensitive S. aureus resulted in synergism. The most active compounds 2 and 4 increased the expression of the efflux pump genes. These results suggested that C. kirkii constituents could be effective adjuvants in the antibiotic treatment of infections. | 2018 | 29464798 |
| 8460 | 12 | 0.9778 | Correlation Analysis of the Transcriptome and Gut Microbiota in Salmo trutta Resistance to Aeromonas salmonicida. Aeromonas salmonicida is a major pathogenic bacterium that poses a significant threat to salmonid fish. Yadong County, located in the Xizang Autonomous Region, is renowned for its characteristic industry of Salmo trutta aquaculture. In recent years, the outbreak of Bacterial Gill Disease (BGD) has led to substantial economic losses for S. trutta farmers. Our prior research identified A. salmonicida as one of the primary culprits behind BGD. To mitigate the impact of A. salmonicida on S. trutta, we conducted a comprehensive study aimed at identifying genes associated with resistance to A. salmonicida. This involved transcriptome sequencing and 16S rRNA sequencing of intestinal flora, providing valuable insights for the study of disease resistance in S. trutta. In this study, we identified 324 genera with 5171 ASVs in the susceptible group and 293 genera with 5669 ASVs in the resistant group. Notably, Methylobacterium and Sphingomonas were common bacteria present in the salmon's gut, and their proportions remained relatively stable before and after infection. Shewanella, with its antagonistic relationship with Aeromonas, may play a crucial role in the salmon's defense against A. salmonicida. Several related genes were identified, including angptl4, cipcb, grasp, ccr9a, sulf1, mtmr11, B3GNT3, mt2, PLXDC1, and ank1b. | 2024 | 39458292 |
| 6378 | 13 | 0.9777 | Metagenomics reveals the divergence of gut microbiome composition and function in two common pika species (Ochotona curzoniae and Ochotona daurica) in China. Gut microbiome plays crucial roles in animal adaptation and evolution. However, research on adaptation and evolution of small wild high-altitude mammals from the perspective of gut microbiome is still limited. In this study, we compared differences in intestinal microbiota composition and function in Plateau pikas (Ochotona curzoniae) and Daurian pikas (O. daurica) using metagenomic sequencing. Our results showed that microbial community structure had distinct differences in different pika species. Prevotella, Methanosarcina, Rhizophagus, and Podoviridae were abundant bacteria, archaea, eukaryotes, and viruses in Plateau pikas, respectively. However, Prevotella, Methanosarcina, Ustilago, and Retroviridae were dominated in Daurian pikas. Functional pathways related to carbohydrate metabolism that refer to the utilization of pectin, hemicellulose, and debranching enzymes were abundant in Plateau pikas, while the function for degradation of chitin, lignin, and cellulose was more concentrated in Daurian pikas. Pika gut had abundant multidrug resistance genes, followed by glycopeptide and beta-lactamase resistance genes, as well as high-risk antibiotic resistance genes, such as mepA, tetM, and bacA. Escherichia coli and Klebsiella pneumoniae may be potential hosts of mepA. This research provided new insights for adaptation and evolution of wild animals from perspective of gut microbiome and broadened our understanding of high-risk antibiotic resistance genes and potential pathogens of wild animals. | 2024 | 39500545 |
| 5747 | 14 | 0.9775 | Synergistic effects of antimicrobial peptide DP7 combined with antibiotics against multidrug-resistant bacteria. Antibiotic-resistant bacteria present a great threat to public health. In this study, the synergistic effects of antimicrobial peptides (AMPs) and antibiotics on several multidrug-resistant bacterial strains were studied, and their synergistic effects on azithromycin (AZT)-resistance genes were analyzed to determine the relationships between antimicrobial resistance and these synergistic effects. A checkerboard method was used to evaluate the synergistic effects of AMPs (DP7 and CLS001) and several antibiotics (gentamicin, vancomycin [VAN], AZT, and amoxicillin) on clinical bacterial strains (Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, and Escherichia coli). The AZT-resistance genes (ermA, ermB, ermC, mefA, and msrA) were identified in the resistant strains using quantitative polymerase chain reaction. For all the clinical isolates tested that were resistant to different antibiotics, DP7 had high antimicrobial activity (≤32 mg/L). When DP7 was combined with VAN or AZT, the effect was most frequently synergistic. When we studied the resistance genes of the AZT-resistant isolates, the synergistic effect of DP7-AZT occurred most frequently in highly resistant strains or strains carrying more than two AZT-resistance genes. A transmission electron microscopic analysis of the S. aureus strain synergistically affected by DP7-AZT showed no noteworthy morphological changes, suggesting that a molecular-level mechanism plays an important role in the synergistic action of DP7-AZT. AMP DP7 plus the antibiotic AZT or VAN is more effective, especially against highly antibiotic-resistant strains. | 2017 | 28356719 |
| 9046 | 15 | 0.9775 | Burkholderia pseudomallei resistance to antibiotics in biofilm-induced conditions is related to efflux pumps. Burkholderia pseudomallei, the causative agent of melioidosis, has been found to increase its resistance to antibiotics when growing as a biofilm. The resistance is related to several mechanisms. One of the possible mechanisms is the efflux pump. Using bioinformatics analysis, it was found that BPSL1661, BPSL1664 and BPSL1665 were orthologous genes of the efflux transporter encoding genes for biofilm-related antibiotic resistance, PA1874-PA1877 genes in Pseudomonas aeruginosa strain PAO1. Expression of selected encoding genes for the efflux transporter system during biofilm formation were investigated. Real-time reverse transcriptase PCR expression of amrB, cytoplasmic membrane protein of AmrAB-OprA efflux transporter encoding gene, was slightly increased, while BPSL1665 was significantly increased during growth of bacteria in biofilm formation. Minimum biofilm inhibition concentration and minimum biofilm eradication concentration (MBEC) of ceftazidime (CTZ), doxycycline (DOX) and imipenem were found to be 2- to 1024-times increased when compared to their MICs for of planktonic cells. Inhibition of the efflux transporter by adding phenylalanine arginine β-napthylamide (PAβN), a universal efflux inhibitor, decreased 2 to 16 times as much as MBEC in B. pseudomallei biofilms with CTZ and DOX. When the intracellular accumulation of antibiotics was tested to reveal the pump inhibition, only the concentrations of CTZ and DOX increased in PAβN treated biofilm. Taken together, these results indicated that BPSL1665, a putative precursor of the efflux pump gene, might be related to the adaptation of B. pseudomallei in biofilm conditions. Inhibition of efflux pumps may lead to a decrease of resistance to CTZ and DOX in biofilm cells. | 2016 | 27702426 |
| 3739 | 16 | 0.9774 | Survey of drug resistance associated gene mutations in Mycobacterium tuberculosis, ESKAPE and other bacterial species. Tuberculosis treatment includes broad-spectrum antibiotics such as rifampicin, streptomycin and fluoroquinolones, which are also used against other pathogenic bacteria. We developed Drug Resistance Associated Genes database (DRAGdb), a manually curated repository of mutational data of drug resistance associated genes (DRAGs) across ESKAPE (i.e. Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens, and other bacteria with a special focus on Mycobacterium tuberculosis (MTB). Analysis of mutations in drug-resistant genes listed in DRAGdb suggested both homoplasy and pleiotropy to be associated with resistance. Homoplasy was observed in six genes namely gidB, gyrA, gyrB, rpoB, rpsL and rrs. For these genes, drug resistance-associated mutations at codon level were conserved in MTB, ESKAPE and many other bacteria. Pleiotropy was exemplified by a single nucleotide mutation that was associated with resistance to amikacin, gentamycin, rifampicin and vancomycin in Staphylococcus aureus. DRAGdb data also revealed that mutations in some genes such as pncA, inhA, katG and embA,B,C were specific to Mycobacterium species. For inhA and pncA, the mutations in the promoter region along with those in coding regions were associated with resistance to isoniazid and pyrazinamide respectively. In summary, the DRAGdb database is a compilation of all the major MTB drug resistance genes across bacterial species, which allows identification of homoplasy and pleiotropy phenomena of DRAGs. | 2020 | 32488120 |
| 6175 | 17 | 0.9774 | Phenotype microarray analysis of the drug efflux systems in Salmonella enterica serovar Typhimurium. A large number of drug efflux transporters have been identified in Salmonella enterica serovar Typhimurium, and increased expression of these transporters confers drug resistance in this organism. Here we compared the respiration activities of the wild-type strain and a mutant with nine deleted transporters by phenotype microarray analysis. The mutant was susceptible to 66 structurally unrelated compounds including many antibiotics, dyes, detergents, antihistamine agents, plant alkaloids, antidepressants, antipsychotic drugs, and antiprotozoal drugs. To investigate the effect of each transporter on the susceptibilities to these drugs, we used the single transporter mutants, several multiple deletion mutants, and the transporter overexpressor strains to determine minimum inhibitory concentrations of ampicillin, erythromycin, minocycline, ciprofloxacin, orphenadrine, amitriptyline, thioridazine, and chlorpromazine. The data indicate that the increased susceptibilities of the mutant lacking nine transporter genes are mainly dependent on the absence of the acrAB efflux genes as well as the tolC gene. In addition to the AcrAB-TolC efflux system, the results from the overexpressor strains show that AcrEF confers resistance to these compounds as well as AcrAB of Escherichia coli, MexAB-OprM and MexXY-OprM of Pseudomonas aeruginosa. The results highlight the importance of the efflux systems not only for resistance to antibiotics but also for resistance to antihistamine agents, plant alkaloids, antidepressants, antipsychotic drugs, and antiprotozoal drugs. | 2016 | 27210311 |
| 8832 | 18 | 0.9773 | Pharyngeal Pumping and Tissue-Specific Transgenic P-Glycoprotein Expression Influence Macrocyclic Lactone Susceptibility in Caenorhabditis elegans. Macrocyclic lactones (MLs) are widely used drugs to treat and prevent parasitic nematode infections. In many nematode species including a major pathogen of foals, Parascaris univalens, resistance against MLs is widespread, but the underlying resistance mechanisms and ML penetration routes into nematodes remain unknown. Here, we examined how the P-glycoprotein efflux pumps, candidate genes for ML resistance, can modulate drug susceptibility and investigated the role of active drug ingestion for ML susceptibility in the model nematode Caenorhabditis elegans. Wildtype or transgenic worms, modified to overexpress P. univalens PGP-9 (Pun-PGP-9) at the intestine or epidermis, were incubated with ivermectin or moxidectin in the presence (bacteria or serotonin) or absence (no specific stimulus) of pharyngeal pumping (PP). Active drug ingestion by PP was identified as an important factor for ivermectin susceptibility, while moxidectin susceptibility was only moderately affected. Intestinal Pun-PGP-9 expression elicited a protective effect against ivermectin and moxidectin only in the presence of PP stimulation. Conversely, epidermal Pun-PGP-9 expression protected against moxidectin regardless of PP and against ivermectin only in the absence of active drug ingestion. Our results demonstrate the role of active drug ingestion by nematodes for susceptibility and provide functional evidence for the contribution of P-glycoproteins to ML resistance in a tissue-specific manner. | 2021 | 33668460 |
| 5749 | 19 | 0.9773 | Antibiotic resistance as an indicator of bacterial chlorhexidine susceptibility. The antibiotic and chlorhexidine (CHX) susceptibility of 70 distinct clinical isolates: Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Staphylococcus aureus (not MRSA), Streptococcus pyogenes and Enterococcus faecalis (10 of each) were tested using minimal bactericidal (MBC) and/or minimal inhibitory (MIC) concentrations. Non-fermentative bacteria tolerated CHX at high concentrations; Gram-positive cocci, especially S. pyogenes, were the most susceptible. We found a good correlation between CHX and antibiotic susceptibility in both MIC and MBC among Gram-negative bacteria, and mainly in MBC among Gram-positive bacteria. Resistance to ciprofloxacin, imipenem, cefotaxime, ceftazidime, gentamicin and aztreonam appeared to indicate increased CHX resistance among Gram-negative bacteria. This finding gives clinicians the ability to predict CHX susceptibility according to routine antibiotic resistance testing. | 2002 | 12090797 |