# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6045 | 0 | 0.9894 | Lacticaseicin 30 and Colistin as a Promising Antibiotic Formulation against Gram-Negative β-Lactamase-Producing Strains and Colistin-Resistant Strains. Antimicrobial resistance is a global health concern across the world and it is foreseen to swell if no actions are taken now. To help curbing this well announced crisis different strategies are announced, and these include the use of antimicrobial peptides (AMP), which are remarkable molecules known for their killing activities towards pathogenic bacteria. Bacteriocins are ribosomally synthesized AMP produced by almost all prokaryotic lineages. Bacteriocins, unlike antibiotics, offer a set of advantages in terms of cytotoxicity towards eukaryotic cells, their mode of action, cross-resistance and impact of microbiota content. Most known bacteriocins are produced by Gram-positive bacteria, and specifically by lactic acid bacteria (LAB). LAB-bacteriocins were steadily reported and characterized for their activity against genetically related Gram-positive bacteria, and seldom against Gram-negative bacteria. The aim of this study is to show that lacticaseicin 30, which is one of the bacteriocins produced by Lacticaseibacillus paracasei CNCM I-5369, is active against Gram-negative clinical strains (Salmonella enterica Enteritidis H10, S. enterica Typhimurium H97, Enterobacter cloacae H51, Escherichia coli H45, E. coli H51, E. coli H66, Klebsiella oxytoca H40, K. pneumoniae H71, K. variicola H77, K. pneumoniae H79, K. pneumoniae H79), whereas antibiotics failed. In addition, lacticaseicin 30 and colistin enabled synergistic interactions towards the aforementioned target Gram-negative clinical strains. Further, the combinations of lacticaseicin 30 and colistin prompted a drastic downregulation of mcr-1 and mcr-9 genes, which are associated with the colistin resistance phenotypes of these clinical strains. This report shows that lacticaseicin 30 is active against Gram-negative clinical strains carrying a rainbow of mcr genes, and the combination of these antimicrobials constitutes a promising therapeutic option that needs to be further exploited. | 2021 | 35052897 |
| 2493 | 1 | 0.9889 | Multidrug-resistant hypervirulent Klebsiella pneumoniae: an evolving superbug. Multidrug-resistant hypervirulent Klebsiella pneumoniae (MDR-hvKP) combines high pathogenicity with multidrug resistance to become a new superbug. MDR-hvKP reports continue to emerge, shattering the perception that hypervirulent K. pneumoniae (hvKP) strains are antibiotic sensitive. Patients infected with MDR-hvKP strains have been reported in Asia, particularly China. Although hvKP can acquire drug resistance genes, MDR-hvKP seems to be more easily transformed from classical K. pneumoniae (cKP), which has a strong gene uptake ability. To better understand the biology of MDR-hvKP, this review discusses the virulence factors, resistance mechanisms, formation pathways, and identification of MDR-hvKP. Given their destructive and transmissible potential, continued surveillance of these organisms and enhanced control measures should be prioritized. | 2025 | 40135944 |
| 2467 | 2 | 0.9889 | Whole-genome sequencing of multidrug-resistant Klebsiella pneumoniae with capsular serotype K2 isolates from mink in China. BACKGROUND: Klebsiella pneumoniae is a zoonotic opportunistic pathogen, and also one of the common pathogenic bacteria causing mink pneumonia. The aim of this study was to get a better understanding of the whole-genome of multi-drug resistant Klebsiella pneumoniae with K2 serotype in China. This study for the first time to analyze Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, resistance and virulence genes of Klebsiella pneumoniae in mink. RESULTS: The isolate was Klebsiella pneumoniae with serotype K2 and ST6189 by PCR method. The string test was positive and showed high mucus phenotype. There was one plasmid with IncFIB replicons in the genome. The virulence factors including capsule, lipopolysaccharide, adhesin, iron uptake system, urease, secretory system, regulatory gene (rcsA, rcsB), determinants of pili adhesion, enolase and magnesium ion absorption related genes. The strain was multi-drug resistant. A total of 26 resistance genes, including beta-lactam, aminoglycosides, tetracycline, fluoroquinolones, sulfonamides, amide alcohols, macrolides, rifampicin, fosfomycin, vancomycin, diaminopyrimidines and polymyxin. Multidrug-resistant efflux protein AcrA, AcrB, TolC, were predicted in the strain. CONCLUSION: It was the first to identify that serotype K2 K. pneumonia with ST6189 isolated from mink in China. The finding indicated that hypervirulent and multi-drug resistant K. pneumoniae was exist in Chinese mink. The whole-genome of K. pneumoniae isolates have importance in mink farming practice. | 2024 | 39127663 |
| 2470 | 3 | 0.9885 | Whole-genome sequencing of Klebsiella pneumoniae MDR circulating in a pediatric hospital setting: a comprehensive genome analysis of isolates from Guayaquil, Ecuador. BACKGROUND: Klebsiella pneumoniae is the major cause of nosocomial infections worldwide and is related to a worsening increase in Multidrug-Resistant Bacteria (MDR) and virulence genes that seriously affect immunosuppressed patients, long-stay intensive care patients, elderly individuals, and children. Whole-Genome Sequencing (WGS) has resulted in a useful strategy for characterizing the genomic components of clinically important bacteria, such as K. pneumoniae, enabling them to monitor genetic changes and understand transmission, highlighting the risk of dissemination of resistance and virulence associated genes in hospitals. In this study, we report on WGS 14 clinical isolates of K. pneumoniae from a pediatric hospital biobank of Guayaquil, Ecuador. RESULTS: The main findings revealed pronounced genetic heterogeneity among the isolates. Multilocus sequencing type ST45 was the predominant lineage among non-KPC isolates, whereas ST629 was found more frequently among KPC isolates. Phylogenetic analysis suggested local transmission dynamics. Comparative genomic analysis revealed a core set of 3511 conserved genes and an open pangenome in neonatal isolates. The diversity of MLSTs and capsular types, and the high genetic diversity among these isolates indicate high intraspecific variability. In terms of virulence factors, we identified genes associated with adherence, biofilm formation, immune evasion, secretion systems, multidrug efflux pump transporters, and a notably high number of genes related to iron uptake. A large number of these genes were detected in the ST45 isolate, whereas iron uptake yersiniabactin genes were found exclusively in the non-KPC isolates. We observed high resistance to commonly used antibiotics and determined that these isolates exhibited multidrug resistance including β-lactams, aminoglycosides, fluoroquinolones, quinolones, trimetropins, fosfomycin and macrolides; additionally, resistance-associated point mutations and cross-resistance genes were identified in all the isolates. We also report the first K. pneumoniae KPC-3 gene producers in Ecuador. CONCLUSIONS: Our WGS results for clinical isolates highlight the importance of MDR in neonatal K. pneumoniae infections and their genetic diversity. WGS will be an imperative strategy for the surveillance of K. pneumoniae in Ecuador, and will contribute to identifying effective treatment strategies for K. pneumoniae infections in critical units in patients at stratified risk. | 2024 | 39367302 |
| 4819 | 4 | 0.9884 | Gram-Negative Bacteria. Gram-negative bacteria (GNB) are among the world's most significant public health problems due to their high resistance to antibiotics. These microorganisms have significant clinical importance in hospitals because they put patients in the intensive care unit (ICU) at high risk and lead to high morbidity and mortality. Two large groups, Enterobacteriaceae and the non-fermenters, are responsible for most clinical isolates; nevertheless, other clinically concerning gram-negative organisms exist, including but not limited to Neisseria, Haemophilus spp., Helicobacter pylori, and Chlamydia trachomatis. Enterobacteriaceae Enterobacteriaceae are a heterogeneous group widely dispersed in nature. They account for about 80% of gram-negative isolates with a myriad of disease-causing general/species in humans, including urinary tract infections, pneumonia, diarrhea, meningitis, sepsis, endotoxic shock, and many others. The general/species that frequently affect humans are Escherichia, Proteus, Enterobacter, Klebsiella, Citrobacter, Yersinia, Shigella, and Salmonella, among others. Laboratory characterization is an essential component when it comes to microorganisms; therefore, it is imperative to expose characteristics of Enterobacteriaceae, which are bacilli, non-sporulated, have variable motility, grow in the presence and absence of oxygen, ferment organisms of glucose, are cytochrome oxidase negative, and can reduce nitrate to nitrite. Non-Fermenters The non-fermenter, gram-negative bacilli (BNF) have a lower frequency of isolation when compared to Enterobacteriaceae; however, they are a relevant group since they cause severe, fatal infections, especially in the hospital environment. They also cause opportunistic diseases in ICU patients who undergo invasive procedures. The main BNF microorganisms that cause human disease are Pseudomonas aeruginosa, Acinetobacter baumannii, Burkholderia cepacia, Burkholderia pseudomallei, Stenotrophomonas., Alcaligenes, and Moraxella. These stand out for being aerobic and non-sporulated; they are incapable of fermenting sugars, using them through the oxidative route. The critical issue regarding BNF, when it comes to the antimicrobial sensitivity profile, is undoubtedly their intrinsic resistance since they produce a variety of genes with multiple mechanisms capable of mitigating the microbicidal action. Thus, it stands out in P. aeruginosa, cephalosporinase of type AmpC, and efflux systems that confer resistance to b-lactams. The most frequent are MexAB-OprM; and loss of OprD (which gives impermeability to the bacterial cell due to the loss of porin.) Acinetobacter baumannii naturally produces AmpC cephalosporinase and oxacillinase (OXA), leaving it spontaneously immune to many drugs. The genetic ingenuity of this microorganism goes further, and it combines high impermeability with genetic plasticity, combining with the resistance of mechanisms such as extended-spectrum b-lactamases (ESBL). The Stenotrophomonas exhibit a pattern of intrinsic multi-resistance, especially in patients who have had contact with carbapenems. Thus, Stenotrophomonas present several efflux pumps and produce two carbapenemases – L1 (resistance to all carbapenems) and L2 (cephalosporinase). These mechanisms, associated or separate, restrict the treatment options to an alarming level. Sulfamethoxazole-trimethoprim remains the mainstay of treatment. Antibiotic Resistance These organisms have a range of mechanisms to prevent the action of many antimicrobials used in clinical medicine. Some of the mechanisms of resistance include efflux pumps, alteration of the drug binding site and membrane permeability, degradation enzymes, and the conformational change of the drug culminating in its inactivation. GNB have two membranes, an external and an internal. The external membrane expresses a potent immune response inducer, lipopolysaccharide (LPS), which is composed of three units: a hydrophilic polysaccharide, O antigen, and a hydrophobic domain known as lipid A. Lipid A are responsible for the higher endotoxic activity of these bacteria. However, the LPS is heterogeneous in the various bacterial groups, and some bacteria manifest this antigen weakly due to genetic changes and are not recognized by Toll-like receptors. In contrast, there are BGN groups that can trigger such a response in large proportions. Thus, LPS can trigger the innate immune response through Toll-like receptors 4 (TLR4), which occurs in many immune cells such as monocytes, macrophages, dendritic cells, and neutrophils. The resulting activation of the innate immune response mediated by LPS together with TLR4 receptors culminates in an exacerbated response with the production of cytokines, chemokines, and interferons and their suppression. Enterobacteriaceae diffuse their plasmids by conjugation, which gives rise to resistance to almost all existing antibiotics. The family of enzymes carbapenemase – KPC, NDM-1, IMP, VIM, OXA-48 – is undoubtedly one of the most significant health challenges of the century, given the potential for dissemination between species and mortality rates due to infections caused by bacteria with such plasmids. Colistin, one of the few antibiotics that still treat multiresistant infections, already has a mobile resistance gene, mcr-1, and Enterobacteriaceae has a crucial role in the spread of this gene, with worldwide reports. Moreover, a further concern is that they usually associate these genes with other resistance genes (CTX-M, NDM, IMP), producing resistance to cephalosporins and carbapenems, enhancing the deleterious effects caused by these microorganisms. | 2025 | 30855801 |
| 5235 | 5 | 0.9883 | Draft genome sequences of rare Lelliottia nimipressuralis strain MEZLN61 and two Enterobacter kobei strains MEZEK193 and MEZEK194 carrying mobile colistin resistance gene mcr-9 isolated from wastewater in South Africa. OBJECTIVES: Antimicrobial-resistant bacteria of the order Enterobacterales are emerging threats to global public and animal health, leading to morbidity and mortality. The emergence of antimicrobial-resistant, livestock-associated pathogens is a great public health concern. The genera Enterobacter and Lelliottia are ubiquitous, facultatively anaerobic, motile, non-spore-forming, rod-shaped Gram-negative bacteria belonging to the Enterobacteriaceae family and include pathogens of public health importance. Here, we report the first draft genome sequences of a rare Lelliottia nimipressuralis strain MEZLN61 and two Enterobacter kobei strains MEZEK193 and MEZEK194 in Africa. METHODS: The bacteria were isolated from environmental wastewater samples. Bacteria were cultured on nutrient agar, and the pure cultures were subjected to whole-genome sequencing. Genomic DNA was sequenced using an Illumina MiSeq platform. Generated reads were trimmed and subjected to de novo assembly. The assembled contigs were analysed for virulence genes, antimicrobial resistance genes, and extra-chromosomal plasmids, and multilocus sequence typing was performed. To compare the sequenced strains with other, previously sequenced E. kobei and L. nimipressuralis strains, available raw read sequences were downloaded, and all sequence files were treated identically to generate core genome bootstrapped maximum likelihood phylogenetic trees. RESULTS: Whole-genome sequencing analyses identified strain MEZLN61 as L. nimipressuralis and strains MEZEK193 and MEZEK194 as E. kobei. MEZEK193 and MEZEK194 carried genes encoding resistance to fosfomycin (fosA), beta-lactam antibiotics (bla(ACT-9)), and colistin (mcr-9). Additionally, MEZEK193 harboured nine different virulence genes, while MEZEK194 harboured eleven different virulence genes. The phenotypic analysis showed that L. nimipressuralis strain MEZLN61 was susceptible to colistin (2 μg/mL), while E. kobei MEZEK193 (64 μg/mL) and MEZEK194 (32 μg/mL) were resistant to colistin. CONCLUSION: The genome sequences of strains L. nimipressuralis MEZLN6, E. kobei MEZEK193, and E. kobei MEZEK194 will serve as a reference point for molecular epidemiological studies of L. nimipressuralis and E. kobei in Africa. In addition, this study provides an in-depth analysis of the genomic structure and offers important information that helps clarify the pathogenesis and antimicrobial resistance of L. nimipressuralis and E. kobei. The detection of mcr-9, which is associated with very low-level colistin resistance in Enterobacter species, is alarming and may indicate the undetected dissemination of mcr genes in bacteria of the order Enterobacterales. Continuous monitoring and surveillance of the prevalence of mcr genes and their associated phenotypic changes in clinically important pathogens and environmentally associated bacteria is necessary to control and prevent the spread of colistin resistance. | 2023 | 36948496 |
| 5047 | 6 | 0.9882 | Phenotypic and Genotypic Characterization of Pan-Drug-Resistant Klebsiella pneumoniae Isolated in Qatar. In secondary healthcare, carbapenem-resistant Enterobacterales (CREs), such as those observed in Klebsiella pneumoniae, are a global public health priority with significant clinical outcomes. In this study, we described the clinical, phenotypic, and genotypic characteristics of three pan-drug-resistant (PDR) isolates that demonstrated extended resistance to conventional and novel antimicrobials. All patients had risk factors for the acquisition of multidrug-resistant organisms, while microbiological susceptibility testing showed resistance to all conventional antimicrobials. Advanced susceptibility testing demonstrated resistance to broad agents, such as ceftazidime-avibactam, ceftolozane-tazobactam, and meropenem-vaborbactam. Nevertheless, all isolates were susceptible to cefiderocol, suggested as one of the novel antimicrobials that demonstrated potent in vitro activity against resistant Gram-negative bacteria, including CREs, pointing toward its potential therapeutic role for PDR pathogens. Expanded genomic studies revealed multiple antimicrobial-resistant genes (ARGs), including bla(NMD-5) and bla(OXA) derivative types, as well as a mutated outer membrane porin protein (OmpK37). | 2024 | 38534710 |
| 2538 | 7 | 0.9882 | Passenger pathogens on physicians. BACKGROUND: Hospital acquired infections pose a significant risk for patients undergoing hematopoietic stem cell transplantation. Horizontal transfer of antimicrobial resistance genes contributes to prevalence of multidrug-resistant infections in this patient population. METHODS: At an academic bone marrow transplantation center, we performed whole genome DNA sequencing (WGS) on commonly used physician items, including badges, stethoscopes, soles of shoes, and smart phones from 6 physicians. Data were analyzed to determine antimicrobial resistance and virulence factor genes. RESULTS: A total of 1,126 unique bacterial species, 495 distinct bacteriophages, 91 unique DNA viruses, and 175 fungal species were observed. Every item contained bacteria with antibiotic and/or antiseptic resistance genes. Stethoscopes contained greatest frequency of antibiotic resistance and more plasmid-carriage of antibiotic resistance. DISCUSSION AND CONCLUSIONS: These data indicate that physician examination tools and personal items possess potentially pathogenic microbes. Infection prevention policies must consider availability of resources to clean physical examination tools as well as provider awareness when enacting hospital policies. Additionally, the prevalence of antimicrobial resistance genes (eg, encoding resistance to aminoglycosides, β-lactams, and quinolones) reinforces need for antimicrobial stewardship, including for immunocompromised patients. Further research is needed to assess whether minute quantities of microbes on physician objects detectable by WGS represents clinically significant inoculums for immunocompromised patients. | 2023 | 36306861 |
| 2522 | 8 | 0.9882 | Identification and specificity validation of unique and antimicrobial resistance genes to trace suspected pathogenic AMR bacteria and to monitor the development of AMR in non-AMR strains in the environment and clinical settings. The detection of developing antimicrobial resistance (AMR) has become a global issue. The detection of developing antimicrobial resistance has become a global issue. The growing number of AMR bacteria poses a new threat to public health. Therefore, a less laborious and quick confirmatory test becomes important for further investigations into developing AMR in the environment and in clinical settings. This study aims to present a comprehensive analysis and validation of unique and antimicrobial-resistant strains from the WHO priority list of antimicrobial-resistant bacteria and previously reported AMR strains such as Acinetobacter baumannii, Aeromonas spp., Anaeromonas frigoriresistens, Anaeromonas gelatinfytica, Bacillus spp., Campylobacter jejuni subsp. jejuni, Enterococcus faecalis, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumonia subsp. pneumoniae, Pseudomonas aeruginosa, Salmonella enterica subsp. enterica serovar Typhimurium, Thermanaeromonas toyohensis, and Vibrio proteolyticus. Using in-house designed gene-specific primers, 18 different antibiotic resistance genes (algJ, alpB, AQU-1, CEPH-A3, ciaB, CMY-1-MOX-7, CMY-1-MOX-9, CMY-1/MOX, cphA2, cphA5, cphA7, ebpA, ECP_4655, fliC, OXA-51, RfbU, ThiU2, and tolB) from 46 strains were selected and validated. Hence, this study provides insight into the identification of strain-specific, unique antimicrobial resistance genes. Targeted amplification and verification using selected unique marker genes have been reported. Thus, the present detection and validation use a robust method for the entire experiment. Results also highlight the presence of another set of 18 antibiotic-resistant and unique genes (Aqu1, cphA2, cphA3, cphA5, cphA7, cmy1/mox7, cmy1/mox9, asaI, ascV, asoB, oxa-12, acr-2, pepA, uo65, pliI, dr0274, tapY2, and cpeT). Of these sets of genes, 15 were found to be suitable for the detection of pathogenic strains belonging to the genera Aeromonas, Pseudomonas, Helicobacter, Campylobacter, Enterococcus, Klebsiella, Acinetobacter, Salmonella, Haemophilus, and Bacillus. Thus, we have detected and verified sets of unique and antimicrobial resistance genes in bacteria on the WHO Priority List and from published reports on AMR bacteria. This study offers advantages for confirming antimicrobial resistance in all suspected AMR bacteria and monitoring the development of AMR in non-AMR bacteria, in the environment, and in clinical settings. | 2023 | 38058762 |
| 5607 | 9 | 0.9882 | Phenotypic and genotypic characterization of antimicrobial resistance and virulence profiles of Salmonella enterica serotypes isolated from necropsied horses in Kentucky. Salmonella is a foodborne pathogen that poses a significant threat to global public health. It affects several animal species, including horses. Salmonella infections in horses can be either asymptomatic or cause severe clinical illness. Infections caused by Salmonella are presently controlled with antibiotics. Due to the formation of biofilms and the emergence of antimicrobial resistance, the treatment has become more complicated. Our study focused on investigating the prevalence of Salmonella enterica in necropsied horses, assessing the capability for biofilm formation, and motility, determining the phenotypic and genotypic profiles of antibiotic resistance, and detecting virulence genes. A total of 2,182 necropsied horses were tested for the presence of Salmonella. Intestinal samples were enriched in selenite broth and cultured on hektoen and eosin methylene blue agar plates, whereas other samples were directly cultured on aforementioned plates. Confirmation of the serotypes was performed according to the Kauffmann-White-Le Minor Scheme followed by biofilm formation screening using crystal violet assay. The resistance profile of the isolates was determined by broth microdilution assay using the Sensititre️ Vet (Equine EQUIN2F). The genotypic antimicrobial resistance (AMR) and virulence profiles were detected using polymerase chain reaction (PCR). The overall prevalence of Salmonella was 1.19% (26/2182), with 11 different serotypes identified. Salmonella Typhimurium was the most prevalent serotype with 19.2% prevalence. All of the isolates were identified as biofilm producers and motile. Virulence genes related to invasion (invA, hilA, mgtC, and spiA), biofilm formation (csgA and csgB), and motility (filA, motA, flgG, figG, flgH, fimC, fimD, and fimH) of Salmonella were detected among 100% of the isolates. An overall 11.4% of the isolates were identified as multidrug-resistant (MDR), with resistance to gentamicin, amikacin, ampicillin, ceftazidime, ceftiofur, chloramphenicol, and trimethoprim/sulfamethoxazole. We found that beta-lactamase-producing genes bla(TEM), bla(CTXM), and bla(SHV2) were identified in 11.5% of the isolates, while only 3.8% carried the bla(OXA-9) gene. The presence of MDR pathogenic Salmonella in horses is alarming for human and animal health, especially when they have a high affinity for forming biofilm. Our study found horses as potential sources of pathogenic Salmonella transmission to humans. Thus, it is important to perform continuous monitoring and surveillance studies to track the source of infection and develop preventive measures. IMPORTANCE: This study focuses on understanding how Salmonella, specifically isolated from horses, can resist antibiotics and cause disease. Salmonella is a well-known foodborne pathogen that can pose risks not only to animals but also to humans. By studying the bacteria from necropsied horses, the research aims to uncover how certain Salmonella strains develop resistance to antibiotics and which genetic factors make them more dangerous. In addition to antibiotic resistance, the research explores the biofilm-forming ability of these strains, which enhances their survival in harsh environments. The study also investigates their motility, a factor that contributes to the spread of infection. The findings can improve treatment strategies for horses and help prevent the transmission of resistant bacteria to other animals as well as humans. Ultimately, the research could contribute to better management of antibiotic resistance in both veterinary and public health contexts, helping to safeguard animal welfare and public health. | 2025 | 39846771 |
| 2518 | 10 | 0.9881 | Plasmids Carrying Antimicrobial Resistance Genes in Gram-Negative Bacteria. Gram-negative bacteria are prevalent pathogens associated with hospital-acquired infections (HAI) that are a major challenge for patient safety, especially in intensive care units [...]. | 2022 | 36014095 |
| 1852 | 11 | 0.9881 | Genomic and Resistance Epidemiology of Gram-Negative Bacteria in Africa: a Systematic Review and Phylogenomic Analyses from a One Health Perspective. Antibiotic resistance (AR) remains a major threat to public and animal health globally. However, AR ramifications in developing countries are worsened by limited molecular diagnostics, expensive therapeutics, inadequate numbers of skilled clinicians and scientists, and unsanitary environments. The epidemiology of Gram-negative bacteria, their AR genes, and geographical distribution in Africa are described here. Data were extracted and analyzed from English-language articles published between 2015 and December 2019. The genomes and AR genes of the various species, obtained from the Pathosystems Resource Integration Center (PATRIC) and NCBI were analyzed phylogenetically using Randomized Axelerated Maximum Likelihood (RAxML) and annotated with Figtree. The geographic location of resistant clones/clades was mapped manually. Thirty species from 31 countries and 24 genera from 41 countries were analyzed from 146 articles and 3,028 genomes, respectively. Genes mediating resistance to β-lactams (including bla (TEM-1), bla (CTX-M), bla (NDM), bla (IMP), bla (VIM), and bla (OXA-48/181)), fluoroquinolones (oqxAB, qnrA/B/D/S, gyrA/B, and parCE mutations, etc.), aminoglycosides (including armA and rmtC/F), sulfonamides (sul1/2/3), trimethoprim (dfrA), tetracycline [tet(A/B/C/D/G/O/M/39)], colistin (mcr-1), phenicols (catA/B, cmlA), and fosfomycin (fosA) were mostly found in Enterobacter spp. and Klebsiella pneumoniae, and also in Serratia marcescens, Escherichia coli, Salmonella enterica, Pseudomonas, Acinetobacter baumannii, etc., on mostly IncF-type, IncX(3/4), ColRNAI, and IncR plasmids, within IntI1 gene cassettes, insertion sequences, and transposons. Clonal and multiclonal outbreaks and dissemination of resistance genes across species and countries and between humans, animals, plants, and the environment were observed; Escherichia coli ST103, K. pneumoniae ST101, S. enterica ST1/2, and Vibrio cholerae ST69/515 were common strains. Most pathogens were of human origin, and zoonotic transmissions were relatively limited.IMPORTANCE Antibiotic resistance (AR) is one of the major public health threats and challenges to effective containment and treatment of infectious bacterial diseases worldwide. Here, we used different methods to map out the geographical hot spots, sources, and evolutionary epidemiology of AR. Escherichia coli, Klebsiella pneumoniae, Salmonella enterica, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., Neisseria meningitis/gonorrhoeae, Vibrio cholerae, Campylobacter jejuni, etc., were common pathogens shuttling AR genes in Africa. Transmission of the same clones/strains across countries and between animals, humans, plants, and the environment was observed. We recommend Enterobacter spp. or K. pneumoniae as better sentinel species for AR surveillance. | 2020 | 33234606 |
| 1718 | 12 | 0.9881 | Pandrug-resistant Klebsiella pneumoniae isolated from Ukrainian war victims are hypervirulent. OBJECTIVES: Carbapenem- and colistin-resistant Klebsiella pneumoniae were isolated from war victims treated in hospitals in Ukraine. The question was whether these pandrug-resistant K. pneumoniae are pathogenic and capable of causing disease in a broader context. METHODS: Klebsiella pneumoniae clinical isolates (n = 37) were tested for antibiotic resistance and subjected to whole-genome sequencing (WGS). In addition, their pathogenicity was tested by serum resistance and two separate animal models. RESULTS: Isolates belonging to the sequence types (ST) 23, 147, 307, 395, and 512 were found to harbor resistance genes against carbapenems and cephalosporins. Nine isolates carried point mutations in pmrB and phoP genes associated with colistin resistance. All bacteria were equipped with multiple virulence genes, and the colistin-resistant isolates each carried 10 different genes. Colistin-resistant K. pneumoniae were more serum-resistant, more virulent against G. mellonella larvae, and displayed an increased survival in mice compared to colistin-susceptible bacteria. The iucA, peg-344, rmpA, rmpC, and rmpD genes were associated with increased virulence in animals. CONCLUSIONS: Pandrug-resistant K. pneumoniae in Ukraine are hypervirulent and retain their pathogenicity, highlighting the need to prevent disseminated spread. | 2024 | 39396555 |
| 2197 | 13 | 0.9880 | Antimicrobial susceptibility patterns of bacteria that commonly cause bacteremia at a tertiary hospital in Zambia. Background: Bloodstream infections and antimicrobial resistance cause global increases in morbidity and mortality. Aim: We evaluated the antimicrobial susceptibility patterns of bacteria that commonly cause bacteremia in humans. Materials & methods: We conducted a retrospective cross-sectional study at the University Teaching Hospitals in Lusaka, Zambia, using Laboratory Information Systems. Results: The commonest isolated bacteria associated with sepsis were Klebsiella pneumoniae. The distribution of bacteria associated with bacteremia in different wards and departments pneumonia. The distribution of bacteria associated with bacteremia in different wards and departments at University Teaching Hospitals was were statistically significant (χ2 = 1211.518; p < 0.001). Conclusion:K. pneumoniae, Escherichia coli, Pantoea agglomerans and Enterococcus species have developed high resistance levels against ampicillin, cefotaxime, ciprofloxacin, gentamicin and trimethoprim/sulfamethoxazole and a very low resistance levels against imipenem and Amikacin. | 2020 | 33315486 |
| 2097 | 14 | 0.9880 | Effective Photodynamic Therapy with Ir(III) for Virulent Clinical Isolates of Extended-Spectrum Beta-Lactamase Klebsiella pneumoniae. BACKGROUND: The extended-spectrum beta-lactamase (ESBL) Klebsiella pneumoniae is one of the leading causes of health-associated infections (HAIs), whose antibiotic treatments have been severely reduced. Moreover, HAI bacteria may harbor pathogenic factors such as siderophores, enzymes, or capsules, which increase the virulence of these strains. Thus, new therapies, such as antimicrobial photodynamic inactivation (aPDI), are needed. METHOD: A collection of 118 clinical isolates of K. pneumoniae was characterized by susceptibility and virulence through the determination of the minimum inhibitory concentration (MIC) of amikacin (Amk), cefotaxime (Cfx), ceftazidime (Cfz), imipenem (Imp), meropenem (Mer), and piperacillin-tazobactam (Pip-Taz); and, by PCR, the frequency of the virulence genes K2, magA, rmpA, entB, ybtS, and allS. Susceptibility to innate immunity, such as human serum, macrophages, and polymorphonuclear cells, was tested. All the strains were tested for sensitivity to the photosensitizer PSIR-3 (4 µg/mL) in a 17 µW/cm(2) for 30 min aPDI. RESULTS: A significantly higher frequency of virulence genes in ESBL than non-ESBL bacteria was observed. The isolates of the genotype K2+, ybtS+, and allS+ display enhanced virulence, since they showed higher resistance to human serum, as well as to phagocytosis. All strains are susceptible to the aPDI with PSIR-3 decreasing viability in 3log10. The combined treatment with Cfx improved the aPDI to 6log10 for the ESBL strains. The combined treatment is synergistic, as it showed a fractional inhibitory concentration (FIC) index value of 0.15. CONCLUSIONS: The aPDI effectively inhibits clinical isolates of K. pneumoniae, including the riskier strains of ESBL-producing bacteria and the K2+, ybtS+, and allS+ genotype. The aPDI with PSIR-3 is synergistic with Cfx. | 2021 | 33922077 |
| 1539 | 15 | 0.9880 | WGS of a lytic phage targeting biofilm-forming carbapenem-resistant Klebsiella pneumoniae prevalent in a tertiary healthcare setup. Carbapenem-resistant Enterobacteriaceae (CRE) are listed as a priority-one critical pathogen category by the WHO because of their abysmal treatment outcomes owing to antibiotic inefficiency. Among CRE, Klebsiella pneumoniae is prevalent in acquiring resistance genes and withstanding the last-resort drugs. Additionally, its ability to form robust biofilms further exacerbates the treatment challenges. The escalating resistance and recalcitrance of biofilm-residing bacteria against standard antibiotic treatments demand an alternative to antibiotics. Phages, being nature-tailored, are a never-ending arsenal against the bacteria because of their capacity to lyse bacteria rapidly and co-evolve with bacteria. In our study, we isolated K. pneumoniae from patients at Madras Medical Mission Hospital (MMMH), India, and assessed their antibiogram profiles, presence of carbapenemase genes, and biofilm-forming abilities. 100 % of the strains were extended-spectrum beta-lactamase producing, multidrug-resistant (ESBL-MDR), with 95 % harbouring carbapenemase genes. Among the isolates, 65 % were strong biofilm formers, and the rest were moderate. Further, we isolated a bacteriophage, SAKp11, from the hospital sewage, which was able to lyse 62 out of 167 clinical isolates and successfully reduced 99.99 % viable bacterial cells of the 24-h-old biofilm of strong biofilm forming MDR K. pneumoniae strains. Whole genome analysis revealed that SAKp11, with a genome size of 59,338bp, belonged to the Casjensviridae family, one of the less explored bacteriophage families. Comprehensive characterization of SAKp11 indicated its suitability for therapeutic use. Our study highlights the severity of drug-resistant K. pneumoniae in Indian healthcare and the inadequacy of current antibiotics, underscoring the potential of phages as an alternative therapeutic option. | 2025 | 40348211 |
| 2505 | 16 | 0.9880 | Resistance in nonfermenting gram-negative bacteria: multidrug resistance to the maximum. Nonfermenting gram-negative bacteria pose a particular difficulty for the healthcare community because they represent the problem of multidrug resistance to the maximum. Important members of the group in the United States include Pseudomonas aeruginosa, Acinetobacter baumannii, Stenotrophomonas maltophilia, and Burkholderia cepacia. These organisms are niche pathogens that primarily cause opportunistic healthcare-associated infections in patients who are critically ill or immunocompromised. Multidrug resistance is common and increasing among gram-negative nonfermenters, and a number of strains have now been identified that exhibit resistance to essentially all commonly used antibiotics, including antipseudomonal penicillins and cephalosporins, aminoglycosides, tetracyclines, fluoroquinolones, trimethoprim-sulfamethoxazole, and carbapenems. Polymyxins are the remaining antibiotic drug class with fairly consistent activity against multidrug-resistant strains of P aeruginosa, Acinetobacter spp, and S maltophilia. However, most multidrug-resistant B cepacia are not susceptible to polymyxins, and systemic polymyxins carry the risk of nephrotoxicity for all patients treated with these agents, the elderly in particular. A variety of resistance mechanisms have been identified in P aeruginosa and other gram-negative nonfermenters, including enzyme production, overexpression of efflux pumps, porin deficiencies, and target-site alterations. Multiple resistance genes frequently coexist in the same organism. Multidrug resistance in gram-negative nonfermenters makes treatment of infections caused by these pathogens both difficult and expensive. Improved methods for susceptibility testing are needed when dealing with these organisms, including emerging strains expressing metallo-beta-lactamases. Improved antibiotic stewardship and infection-control measures will be needed to prevent or slow the emergence and spread of multidrug-resistant, nonfermenting gram-negative bacilli in the healthcare setting. | 2006 | 16813979 |
| 2504 | 17 | 0.9880 | Resistance in nonfermenting gram-negative bacteria: multidrug resistance to the maximum. Nonfermenting gram-negative bacteria pose a particular difficulty for the healthcare community because they represent the problem of multidrug resistance to the maximum. Important members of the group in the United States include Pseudomonas aeruginosa, Acinetobacter baumannii, Stenotrophomonas maltophilia, and Burkholderia cepacia. These organisms are niche pathogens that primarily cause opportunistic healthcare-associated infections in patients who are critically ill or immunocompromised. Multidrug resistance is common and increasing among gram-negative nonfermenters, and a number of strains have now been identified that exhibit resistance to essentially all commonly used antibiotics, including antipseudomonal penicillins and cephalosporins, aminoglycosides, tetracyclines, fluoroquinolones, trimethoprim-sulfamethoxazole, and carbapenems. Polymyxins are the remaining antibiotic drug class with fairly consistent activity against multidrug-resistant strains of P aeruginosa, Acinetobacter spp, and S maltophilia. However, most multidrug-resistant B cepacia are not susceptible to polymyxins, and systemic polymyxins carry the risk of nephrotoxicity for all patients treated with these agents, the elderly in particular. A variety of resistance mechanisms have been identified in P aeruginosa and other gram-negative nonfermenters, including enzyme production, overexpression of efflux pumps, porin deficiencies, and target-site alterations. Multiple resistance genes frequently coexist in the same organism. Multidrug resistance in gram-negative nonfermenters makes treatment of infections caused by these pathogens both difficult and expensive. Improved methods for susceptibility testing are needed when dealing with these organisms, including emerging strains expressing metallo-beta-lactamases. Improved antibiotic stewardship and infection-control measures will be needed to prevent or slow the emergence and spread of multidrug-resistant, nonfermenting gram-negative bacilli in the healthcare setting. | 2006 | 16735148 |
| 5205 | 18 | 0.9879 | Antimicrobial resistance and virulence factors of Klebsiella quasipneumoniae, the novel sequence types (ST) 7979 and 7980 from Indonesia. Klebsiella pneumoniae is a human pathogen of global concern. The more recently described pathogen, K. quasipneumoniae, shares similar morphological characteristics with K. pneumoniae and is commonly misidentified as this species using conventional laboratory techniques. This study investigates the molecular characteristics of four phenotype-identified K. pneumoniae isolates obtained from hospital wastewater in Jakarta, Indonesia. Whole-genome sequencing (WGS) and the Average Nucleotide Identity (ANI) showed that these isolates were eventually identified as K. quasipneumoniae subsp. quasipneumoniae, a closely related species of K. pneumoniae. These isolates of novel ST7979 and ST7980 strains are classified as multi-drug resistant (MDR) bacteria and harbor many antibiotic-resistance genes. Interestingly, the novel ST7980 strain is carbapenem non-susceptible and harbors the sul1 gene and the heat-stable enterotoxin gene, astA. The ST7979 strains have KL55 capsular type and O3b type, whereas the ST7980 strains have KL107 and O12 types. Our finding highlights the significance of identifying the K. quasipneumoniae strain utilizing a genomic platform. Additionally, routine surveillance is needed to monitor the hospital wastewater and avoid the spread of multidrug-resistant bacteria. | 2025 | 40609771 |
| 1882 | 19 | 0.9879 | Genomic Characterization of Multidrug-Resistant Pathogenic Enteric Bacteria from Healthy Children in Osun State, Nigeria. Antimicrobial resistance (AMR) is responsible for the spread and persistence of bacterial infections. Surveillance of AMR in healthy individuals is usually not considered, though these individuals serve as reservoirs for continuous disease transmission. Therefore, it is essential to conduct epidemiological surveillance of AMR in healthy individuals to fully understand the dynamics of AMR transmission in Nigeria. Thirteen multidrug-resistant Citrobacter spp., Enterobacter spp., Klebsiella pneumoniae, and Escherichia coli isolated from stool samples of healthy children were subjected to whole genome sequencing (WGS) using Illumina and Oxford nanopore sequencing platforms. A bioinformatics analysis revealed antimicrobial resistance genes such as the pmrB_Y358N gene responsible for colistin resistance detected in E. coli ST219, virulence genes such as senB, and ybtP&Q, and plasmids in the isolates sequenced. All isolates harbored more than three plasmid replicons of either the Col and/or Inc type. Plasmid reconstruction revealed an integrated tetA gene, a toxin production caa gene in two E. coli isolates, and a cusC gene in K. quasivariicola ST3879, which induces neonatal meningitis. The global spread of AMR pathogenic enteric bacteria is of concern, and surveillance should be extended to healthy individuals, especially children. WGS for epidemiological surveillance will improve the detection of AMR pathogens for management and control. | 2024 | 38543556 |