# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3485 | 0 | 0.9435 | Abundance and Diversity of Phages, Microbial Taxa, and Antibiotic Resistance Genes in the Sediments of the River Ganges Through Metagenomic Approach. In this study, we have analyzed the metagenomic DNA from the pooled sediment sample of the river Ganges to explore the abundance and diversity of phages, microbial community, and antibiotic resistance genes (ARGs). Utilizing data from Illumina platform, 4,174 (∼0.0013%) reads were classified for the 285 different DNA viruses largely dominated by the group of 260 distinctive phages (3,602 reads, ∼86.3%). Among all, Microcystis (782 hits), Haemophilus (403), Synechococcus (386), Pseudomonas (279), Enterococcus (232), Bacillus (196), Rhodococcus (166), Caulobacter (163), Salmonella (146), Enterobacteria (143), Mycobacterium and (128) phages show the highest abundance and account for ∼90% of the total identified phages. In addition, we have also identified corresponding host pertaining to these phages. Mainly, Proteobacteria (∼69.3%) dominates the microbial population structure. Primarily, orders such as Caulobacterales (∼28%), Burkholderiales (∼13.9%), Actinomycetales (∼13.7%), and Pseudomonadales (∼7.5%) signify the core section. Furthermore, 21,869 (∼0.00695%) reads were classified in 20 ARG types (classes) and 240 ARGs (subtypes), among which 4 ARG types, namely multidrug resistance (12,041 reads, ∼55%), bacitracin (3,202 reads, ∼15%), macrolide-lincosamide-streptogramin (1,744 reads, ∼7.98%), and fosmidomycin (990 reads, ∼4.53%), have the highest abundance. Simultaneously, six resistance mechanisms were also recognized with the dominance of antibiotic efflux (72.8%, 15,919 reads). The results unveil the distribution of (pro)-phages; microbial community; and various ARGs in the Ganges river sediments. | 2021 | 33913739 |
| 1809 | 1 | 0.9433 | Deciphering antibiotic resistance genes and plasmids in pathogenic bacteria from 166 hospital effluents in Shanghai, China. Although previous studies using phenotypic or metagenomic approaches have revealed the patterns of antibiotic resistance genes (ARGs) in hospital effluents in local regions, limited information is available regarding the antibiotic resistome and plasmidome in human pathogenic bacteria in hospital effluents of megacity in China. To address this knowledge gap, we analyzed effluent samples from 166 hospitals across 13 geographical districts in Shanghai, China, using both cultivation-based approaches and metagenomics. A total of 357 strains were isolated from these samples, with the predominant species being Escherichia coli (n = 61), Aeromonas hydrophila (n = 57), Klebsiella pneumoniae (n = 48), and Aeromonas caviae (n = 42). Those identified indicator bacteria were classified into biosafety level 1 (BSL-1, 60 %) and BSL-2 (40 %). We identified 1237 ARG subtypes across 22 types, predominantly including beta-lactam, tetracycline, multidrug, polymyxin, and aminoglycoside resistance genes, using culture-enriched phenotypic metagenomics. Mobile genetic elements such as plasmids, transposons (tnpA), integrons (intI1), and insertion sequences (IS91) were abundant. We recovered 135 plasmids classified into mobilizable (n = 94) and non-mobilizable (n = 41) types. Additionally, 80 metagenome-assembled genomes (MAGs) were reconstructed from the hospital effluents for the assessment of ARG transmission risks, including genes for last-line antibiotics such as bla(NDM), bla(KPC), bla(imiH), and mcr. This study is the first to comprehensively characterize and assess the risk of antimicrobial resistance levels and plasmidome in the hospital effluents of China's megacity, providing city-wide surveillance data and evidence to inform public health interventions. | 2025 | 39612873 |
| 3488 | 2 | 0.9427 | Characteristics of Antibiotic Resistance Genes and Antibiotic-Resistant Bacteria in Full-Scale Drinking Water Treatment System Using Metagenomics and Culturing. The contamination of antibiotic resistance genes (ARGs) may directly threaten human health. This study used a metagenomic approach to investigate the ARG profile in a drinking water treatment system (DWTS) in south China. In total, 317 ARG subtypes were detected; specifically, genes encoding bacitracin, multidrug, and sulfonamide were widely detected in the DWTS. Putative ARG hosts included Acidovorax (6.0%), Polynucleobacter (4.3%), Pseudomonas (3.4%), Escherichia (1.7%), and Klebsiella (1.5%) as the enriched biomarkers in the DWTS, which mainly carried bacitracin, beta-lactam, and aminoglycoside ARGs. From a further analysis of ARG-carrying contigs (ACCs), Stenotrophomonas maltophilia and Pseudomonas aeruginosa were the most common pathogens among the 49 ACC pathogens in the DWTS. The metagenomic binning results demonstrated that 33 high-quality metagenome-assembled genomes (MAGs) were discovered in the DWTS; particularly, the MAG identified as S. maltophilia-like (bin.195) harbored the greatest number of ARG subtypes (n = 8), namely, multidrug (n = 6; smeD, semE, multidrug_transporter, mexE, semB, and smeC), beta-lactam (n = 1; metallo-beta-lactamase), and aminoglycoside [n = 1; aph(3')-IIb]. The strong positive correlation between MGEs and ARG subtypes revealed a high ARG dissemination risk in the DWTS. Based on the pure-culture method, 93 isolates that belong to 30 genera were recovered from the DWTS. Specifically, multidrug-resistant pathogens and opportunistic pathogens such as P. aeruginosa, Bacillus cereus, and S. maltophilia were detected in the DWTS. These insights into the DWTS's antibiotic resistome indicated the need for more comprehensive ARG monitoring and management in the DWTS. Furthermore, more effective disinfection methods need to be developed to remove ARGs in DWTSs, and these findings could assist governing bodies in the surveillance of antibiotic resistance in DWTSs. | 2021 | 35273579 |
| 7738 | 3 | 0.9423 | The microbiome and its association with antibiotic resistance genes in the hadal biosphere at the Yap Trench. The hadal biosphere, the deepest part of the ocean, is known as the least-explored aquatic environment and hosts taxonomically diverse microbial communities. However, the microbiome and its association with antibiotic resistance genes (ARGs) in the hadal ecosystem remain unknown. Here, we profiled the microbiome diversity and ARG occurrence in seawater and sediments of the Yap Trench (YT) using metagenomic sequencing. Within the prokaryote (bacteria and archaea) lineages, the main components of bacteria were Gammaproteobacteria (77.76 %), Firmicutes (8.36 %), and Alphaproteobacteria (2.25 %), whereas the major components of archaea were Nitrososphaeria (6.51 %), Nanoarchaeia (0.42 %), and Thermoplasmata (0.25 %), respectively. Taxonomy of viral contigs showed that the classified viral communities in YT seawater and sediments were dominated by Podoviridae (45.96 %), Siphoviridae (29.41 %), and Myoviridae (24.63 %). A large majority of viral contigs remained uncharacterized and exhibited endemicity. A total of 48 ARGs encoding resistance to 12 antibiotic classes were identified and their hosts were bacteria and viruses. Novel ARG subtypes mexF(YTV-1), mexF(YTV-2), mexF(YTV-3), vanR(YTV-1), vanS(YTV-1) (carried by unclassified viruses), and bacA(YTB-1) (carried by phylum Firmicutes) were detected in seawater samples. Overall, our findings imply that the hadal environment of the YT is a repository of viral and ARG diversity. | 2022 | 35870206 |
| 3484 | 4 | 0.9422 | Occurrence of human pathogenic bacteria carrying antibiotic resistance genes revealed by metagenomic approach: A case study from an aquatic environment. Antibiotic resistance genes (ARGs), human pathogenic bacteria (HPB), and HPB carrying ARGs are public issues that pose a high risk to aquatic environments and public health. Their diversity and abundance in water, intestine, and sediments of shrimp culture pond were investigated using metagenomic approach. A total of 19 classes of ARGs, 52 HPB species, and 7 species of HPB carrying ARGs were found. Additionally, 157, 104, and 86 subtypes of ARGs were detected in shrimp intestine, pond water, and sediment samples, respectively. In all the samples, multidrug resistance genes were the highest abundant class of ARGs. The dominant HPB was Enterococcus faecalis in shrimp intestine, Vibrio parahaemolyticus in sediments, and Mycobacterium yongonense in water, respectively. Moreover, E. faecalis (contig Intestine_364647) and Enterococcus faecium (contig Intestine_80272) carrying efrA, efrB and ANT(6)-Ia were found in shrimp intestine, Desulfosaricina cetonica (contig Sediment_825143) and Escherichia coli (contig Sediment_188430) carrying mexB and APH(3')-IIa were found in sediments, and Laribacter hongkongensis (contig Water_478168 and Water_369477), Shigella sonnei (contig Water_880246), and Acinetobacter baumannii (contig Water_525520) carrying sul1, sul2, ereA, qacH, OXA-21, and mphD were found in pond water. Mobile genetic elements (MGEs) analysis indicated that horizontal gene transfer (HGT) of integrons, insertion sequences, and plasmids existed in shrimp intestine, sediment, and water samples, and the abundance of integrons was higher than that of other two MGEs. The results suggested that HPB carrying ARGs potentially existed in aquatic environments, and that these contributed to the environment and public health risk evaluation. | 2019 | 30952342 |
| 3482 | 5 | 0.9421 | Metagenomic profiling of ARGs in airborne particulate matters during a severe smog event. Information is currently limited regarding the distribution of antibiotic resistance genes (ARGs) in smog and their correlations with airborne bacteria. This study characterized the diversity and abundance of ARGs in the particulate matters (PMs) of severe smog based on publicly available metagenomic data, and revealed the occurrence of 205 airborne ARG subtypes, including 31 dominant ones encoding resistance to 11 antibiotic types. Among the detectable ARGs, tetracycline, β-lactam and aminoglycoside resistance genes had the highest abundance, and smog and soil had similar composition characteristics of ARGs. During the smog event, the total abundance of airborne ARGs ranged from 4.90 to 38.07ppm in PM(2.5) samples, and from 7.61 to 38.49ppm in PM(10) samples, which were 1.6-7.7 times and 2.1-5.1 times of those in the non-smog day, respectively. The airborne ARGs showed complicated co-occurrence patterns, which were heavily influenced by the interaction of bacterial community, and physicochemical and meteorological factors. Lactobacillus and sulfonamide resistance gene sul1 were determined as keystones in the co-occurrence network of microbial taxa and airborne ARGs. The results may help to understand the distribution patterns of ARGs in smog for the potential health risk evaluation. | 2018 | 29751438 |
| 6789 | 6 | 0.9421 | Metagenomic insights on promoting the removal of resistome in aerobic composting pig manure by lightly burned modified magnesite. The antibiotic resistance genes (ARGs) have become a serious issue facing public health. In this study, light-burned magnesite with a high specific surface area at 650 °C (MS650) was used for aerobic composting, evaluating its effect on the resistome during pig manure composting. Different concentrations of MS650 reduced the abundance of the resistome, including seven high-risk ARGs, class two metal and biocide resistance genes (MBRGs), and human pathogenic bacteria (HPBs). The addition of 2.5 % MS650 (L1) in the composting had the best reduction effect on ARGs, MBRGs and HPBs. ARG and microbial community assembly are deterministic processes. Proteobacteria and Actinobacteria was the main factor associated with the decrease in ARGs, followed by virulence factor genes (VFGs, 44.2 %). The reduction in MBRGs by MS650 mainly suppressed HGT by reducing the Isfinder abundance. To summarize, MS650 is an effective method to improve emission reduction of ARGs and MBRGs. This study provided a theoretical basis for improving the engineering application potential of MS650. | 2024 | 39490844 |
| 3107 | 7 | 0.9420 | Metagenomic binning analyses of pig manure composting reveal potential antibiotic-degrading bacteria and their risk of antibiotic resistance genes. Antibiotic-degrading bacteria are commonly used to treat antibiotic contamination, but the antibiotic resistance genes (ARGs) they carry are often overlooked. This study used metagenomic assembly and binning analyses to explore potential antibiotic-degrading bacteria and their ARGs during pig manure composting. The result showed that 35 metagenome-assembled genomes (MAGs) mainly containing alkyl-aryl transferase and decarboxylase genes involved in the removal of antibiotics. Multidrug (124), β-lactam (67), macrolide-lincosamide-streptogramin (MLS) (64), and tetracycline (43) were the central ARG types detected in the 35 MAGs. Furthermore, the risk of ARGs was evaluated using the arg_ranker framework, and 19 MAGs were found to contain intermediate-high-risk ARGs with human-associated-enrichment, gene transferability, and host pathogenicity. Bin 34 of the genus of Geofilum had the highest ARG risk. Bin 6, Bin 11 and Bin 14 of the genus of Limnochorda, Chelatococcus and Niabella, had a lower ARG risk and were considered as potential antibiotic-degrading bacteria. | 2023 | 36581234 |
| 6381 | 8 | 0.9414 | Occurrence and distribution of antibiotic resistance genes in Elymus nutans silage from different altitudes on the Qinghai-Tibetan Plateau. INTRODUCTION: Antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) have attracted more attentions in fermented feed recently. However, little information is available on the occurrence and distribution of ARGs in ensiled forages in the alpine region of the Qinghai-Tibetan plateau (QTP) with an extremely harsh environment. METHODS: The study investigated the distribution and spread mechanism of ARB and ARGs in Elymus nutans silage along 2600 m (low), 3600 m (medium) and 4600 m (high) altitude in the QTP. RESULTS: The major ARG types in Elymus nutans silage were multidrug, aminoglycoside, bacitracin, beta-lactam and polymyxin, while tnpA and IS91 were the dominant mobile genetic elements (MGEs) subtypes in the Elymus nutans silage. The dominant ARGs were mainly carried by Pantoea, Enterobacter, Serratia, and Lelliottia. Although altitudinal gradient had no influence on the diversity or abundance of other ARGs and MGEs in the Elymus nutans silage (p > 0.05), the network co-occurrence patterns among ARGs, MGEs, and bacteria in high-altitude silage were more complex than that in low- and medium-altitude silages. The dominant clinical ARGs in the alpine silage were bacA and acrF, and the abundance of clinical ARGs decreased with prolonged fermentation time. DISCUSSION: This study provides important data on the status of ARGs in ensiled forage from the alpine region of the QTP. | 2025 | 40458713 |
| 6385 | 9 | 0.9413 | Study on microbes and antibiotic resistance genes in karst primitive mountain marshes - A case study of Niangniang Mountain in Guizhou, China. Previous research on antibiotic resistance genes and microorganisms centered on those in urban sewage treatment plants, breeding farms, hospitals and others with serious antibiotic pollution. However, at present, there are evident proofs that antibiotic resistance genes (ARGs) indeed exist in a primitive environment hardly without any human's footprints. Accordingly, an original karst mountain swamp ecosystem in Niangniang Mountain, Guizhou, China, including herbaceous swamp, shrub swamp, sphagnum bog and forest swamp, was selected to analyze the physical and chemical parameters of sediments. Moreover, microbial compositions, functions, as well as their connections with ARGs were assayed and analyzed using metagenomic technology. The results showed that there was no significant difference in the dominant microorganisms and ARGs in the four marshes, in which the dominant bacteria phyla were Proteobacteria (37.82 %), Acidobacteriota (22.17 %) and Actinobacteriota (20.64 %); the dominant archaea Euryarchaeota. (1.00 %); and the dominant eukaryotes Ascomycota (0.07 %), with metabolism as their major functions. Based on the ARDB database, the number of ARGs annotated reached 209 including 30 subtypes, and the dominant ARGs were all Bacitracin resistance genes (bacA, 84.77 %). In terms of the diversity of microorganisms and ARGs, the herbaceous swamp ranked the top, and the shrub swamp were at the bottom. Correlation analysis between microorganisms and resistance genes showed that, apart from aac2ic, macB, smeE, tetQ, and tetL, other ARGs were positively correlated with microorganisms. Among them, baca coexisted with microorganisms. Pearson correlation analysis results showed that contrary to ARGs, microorganisms were more affected by environmental factors. | 2022 | 36306620 |
| 1751 | 10 | 0.9413 | Strain Characterization of Streptococcus suis Serotypes 28 and 31, Which Harbor the Resistance Genes optrA and ant(6)-Ia. Streptococcus suis causes disease in pigs and is implicated increasingly in human disease worldwide. Although most clinical cases are associated with serotype 2, infections by other serotypes have sometimes been reported. Here, we sequenced the genome of a multidrug-resistant S. suis serotype 28 (strain 11313) and a multidrug-resistant S. suis serotype 31 (strain 11LB5). Strain 11313 was apathogenic in mouse infection models, whereas strain 11LB5 displayed ganglion demyelination, meningeal thickening, congestion, mononuclear cell infiltration, massive proliferation of cortical glial cells, and bacteria (>10(4) CFU/g) in the spinal cord and ganglia in mice. Furthermore, immunohistochemistry found that the heavily infiltrated glial cells were astrocytes. Strain 11313 harbored the resistance genes ant(6)-Ia, erm(B), optrA, tet(l), tet(o), and strain 11LB5 harbored the resistance genes ant(6)-Ia, erm(B), tet(40), tet(o/w/32/o), aac(6')-aph(2″). Mouse studies showed that strain 11LB5 exhibited a similar virulence to serotype 2 strain 700794, highlighting the need for surveillance of the other serotype S. suis isolates, in addition to serotype 2, in farms. This is the first report of the aminoglycoside resistance gene ant(6)-Ia in S. suis from animals. This suggests that S. suis might serve as an antibiotic resistance reservoir, which spreads the resistance gene ant(6)-Ia or optrA to other streptococcal pathogens on farms. | 2021 | 33669225 |
| 5185 | 11 | 0.9412 | Genomic characterisation of nasal isolates of coagulase-negative Staphylococci from healthy medical students reveals novel Staphylococcal cassette chromosome mec elements. Coagulase-negative staphylococci (CoNS) are a diverse group of Gram-positive bacteria that are part of the normal human microbiota. Once thought to be non-pathogenic, CoNS has emerged in recent years as opportunistic pathogens of concern particularly in healthcare settings. In this study, the genomes of four methicillin-resistant CoNS isolates obtained from the nasal swabs of healthy university medical students in Malaysia were sequenced using the Illumina short-read platform. Genome sequencing enabled the identification of the four isolates as Staphylococcus warneri UTAR-CoNS1, Staphylococcus cohnii subsp. cohnii UTAR-CoNS6, Staphylococcus capitis subsp. urealyticus UTAR-CoNS20, and Staphylococcus haemolyticus UTAR-CoNS26. The genome of S. cohnnii UTAR-CoNS6 harboured the mecA methicillin-resistance gene on a Staphylococcal cassette chromosome mec (SCCmec) element similar to SCCmec type XIV (5 A) but the SCCmec cassettes identified in the other three CoNS genomes were novel and untypeable. Some of these SCCmec elements also encoded heavy metal resistance genes while the SCCmec type XIV (5 A) variant in S. cohnii UTAR-CoNS6 harboured the complete ica operon, a known virulence factor that functions in biofilm formation. In S. cohnii UTAR-CoNS6, the macrolide resistance genes msrA and mphC along with copper and cadmium resistance genes were located on a 26,630 bp plasmid, pUCNS6. This study showcased the diversity of CoNS in the nasal microbiota of medical students but the discovery of novel SCCmec elements, various antimicrobial and heavy metal resistance along with virulence genes in these isolates is of concern and warrants vigilance due to the likelihood of spread, especially to hospitalised patients. | 2025 | 40595841 |
| 3179 | 12 | 0.9412 | Deciphering the mobility, pathogenic hosts, and co-selection of antibiotic resistance genes in untreated wastewater from three different hospitals. OBJECTIVE: Antibiotic resistance genes (ARGs) in hospital wastewater pose significant environmental and public health risks, yet the co-selection mechanisms involving metal/biocide resistance genes (MRGs/BRGs) and the role of mobile genetic elements (MGEs) remain poorly characterized. This study aimed to comprehensively assess the abundance, mobility, pathogenic hosts, and co-selection patterns of ARGs, MRGs, and BRGs in untreated wastewater from three types of hospitals. METHODS: Untreated wastewater samples from nine sources across three hospital types (general, traditional Chinese medicine, and dental) were analyzed using metagenomic sequencing and assembly. ARGs, MRGs, and BRGs were identified via the SARG and BacMet databases. ARG hosts, mobility, and MGE co-occurrence were analyzed using PlasFlow and MOB-suite, with risk levels evaluated alongside pathogenic bacteria databases. RESULTS: A total of 1911 ARGs (222 subtypes), 1662 MRGs (167 subtypes), and 916 BRGs (139 subtypes) were detected. Tetracycline, multidrug, and β-lactam resistance genes were predominant, with 46.43 % of ARGs being plasmid-associated. Key pathogens including Klebsiella pneumoniae and Enterococcus spp. harbored high-risk ARGs such as KPC-2 and NDM-1. Notably, 76.2 % of ARGs in traditional Chinese medicine hospital wastewater were classified as high-risk. Significant co-occurrence of ARGs with MGEs (e.g., DDE recombinases) and MRGs/BRGs was observed, underscoring the role of horizontal gene transfer and co-selection. CONCLUSION: Untreated hospital wastewater represents a significant reservoir of ARGs, with risks exacerbated by pathogenic hosts, MGE-mediated HGT, and metal/biocide co-selection. These findings underscore the urgent need for optimized wastewater treatment strategies to curb the spread of antibiotic resistance and inform future intervention efforts. | 2025 | 41067299 |
| 7169 | 13 | 0.9411 | Distributions of pathogenic bacteria, antibiotic resistance genes, and virulence factors in pig farms in China. The abundance of antibiotic resistance genes (ARGs) in pig feces can lead to their dissemination in the pig farm environment, posing a serious risk to human health through potential exposure and transmission. However, the extent of microbial contamination in pig farms, including ARGs, virulence factor genes (VFGs), mobile genetic elements (MGEs), and human bacterial pathogens (HBPs), is still largely unknown. In this study, metagenomics was employed to identify the composition and characteristics of microorganism communities, ARGs, VFGs, MGEs and HBPs in pig farm environments from seven different regions of China. The results showed that there were significant differences in the composition of microorganisms and Firmicutes, Bacteroides, Proteobacteriahe Spirochaetes were the dominant phyla in the pig farm environment. The abundance and composition of ARGs, VFGs, MGEs and HBPs varied significantly in pig farm environments in different regions, with the abundance in Fujian being significantly higher than that in other regions. In total, 216 ARGs, 479 VFGs, 143 MGEs and 78 HBPs were identified across all pig feces, soil, and wastewater samples. The most prominent ARGs were those related to tetracycline, aminoglycoside, and MLS resistance. Escherichia coli, Arcobacter cryaerophilus, Corynebacterium xerosis, Aerococcus viridans, and Collinsella aerofaciens were the most commonly found HBPs in the pig farm environment. Procrustes analysis and Mantel test results showed a strong correlation between ARGs and HBPs, VFGs and HBPs, and ARGs and VFGs. ARGs were mainly harbored by E. coli, Klebsiella pneumoniae, and Enterococcus faecalis in the pig farm environments. The random forest model indicated that the presence of MGEs (intI1, IS91, and tnpA) was significantly correlated with the total abundance of resistance genes, which can be utilized as an important indicator for measuring resistance genes. The study establishes a foundational understanding of the prevalence and diversity of ARGs, VFGs, and HBPs in pig farm environments, aiding in the development of effective management strategies to mitigate ecological and public health risks. | 2025 | 40609272 |
| 3274 | 14 | 0.9411 | Integrative metagenomic dissection of last-resort antibiotic resistance genes and mobile genetic elements in hospital wastewaters. Hospital wastewater is a critical source of antimicrobial resistance (AMR), which facilitates the proliferation and spread of clinically significant antimicrobial resistance genes (ARGs) and pathogenic bacteria. This study utilized metagenomic approaches, including advanced binning techniques, such as MetaBAT2, MaxBin2, and CONCOCT, which offer significant improvements in accuracy and completeness over traditional binning methods. These methods were used to comprehensively assess the dynamics and composition of resistomes and mobilomes in untreated wastewater samples taken from two general hospitals and one cancer hospital. This study revealed a diverse bacterial landscape, largely consisting of Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, with notable variations in microbial composition among hospitals. Analysis of the top 15 genera showed unique microbial pattern distribution in each hospital: Aeromonas was predominant in 1stHWTS (49.39 %), Acidovorax in the CAHWTS at 16.85 %, and Escherichia and Bacteroides in the 2ndHWTS at 11.44 % and 11.33 %, respectively. A total of 114 pathogenic bacteria were identified, with drug-resistant Aeromonas caviae and Escherichia coli being the most prevalent. The study identified 34 types and 1660 subtypes of ARGs, including important last-resort antibiotic resistance genes (LARGs), such as bla(NDM), mcr, and tet(X). Using metagenomic binning, this study uncovered distinct patterns of host-resistance associations, particularly with Proteobacteria and Firmicutes. Network analysis highlighted the complex interactions among ARGs, mobile genetic elements (MGEs), and bacterial species, all contributing to the dissemination of AMR. These findings emphasize the intricate nature of AMR in hospital wastewater and the influence of hospital-specific factors on microbial resistance patterns. This study provides support for implementing integrated management strategies, including robust surveillance, advanced wastewater treatment, and strict antibiotic stewardship, to control the dissemination of AMR. Understanding the interplay among bacterial communities, ARGs, and MGEs is important for developing effective public health measures against AMR. | 2024 | 39067608 |
| 3273 | 15 | 0.9410 | Integrating metagenomic and isolation strategies revealed high contamination of pathogenies and resistome in market shrimps. This study employs a comprehensive approach combining metagenomic analysis and bacterial isolation to elucidate the microbial composition, antibiotic resistance genes (ARGs), and virulence factors (VFGs) present in shrimps from market and supermarket. Metagenomic analysis of shrimps revealed a dominance of Proteobacteria and Bacteroidetes with Firmicutes notably enriched in some samples. On the other hand, the dominant bacteria isolated included Citrobacter portucalensis, Escherichia coli, Salmonella enterica, Vibrio species and Klebsiella pneumonaie. Metagenomic analysis unveiled a diverse spectrum of 23 main types and 380 subtypes of ARGs in shrimp samples including many clinical significant ARGs such as bla(KPC), bla(NDM), mcr, tet(X4) etc. Genomic analysis of isolated bacterial strains identified 14 ARG types with 109 subtype genes, which complemented the metagenomic data. Genomic analysis also allowed us to identify a rich amount of MDR plasmids, which provided further insights into the dissemination of resistance genes in different species of bacteria in the same samples. Examination of VFGs and mobile genetic elements (MGEs) in both metagenomic and bacterial genomes revealed a complex landscape of factors contributing to bacterial virulence and genetic mobility. Potential co-occurrence patterns of ARGs and VFGs within human pathogenic bacteria underlined the intricate interplay between antibiotic resistance and virulence. In conclusion, this integrated analysis for the first time provides a comprehensive view and sheds new light on the potential hazards associated with shrimp products in the markets. The findings underscore the necessity of ongoing surveillance and intervention strategies to mitigate risks posed by antibiotic-resistant bacteria in the food supply chain using the novel comprehensive approaches. | 2024 | 38522537 |
| 1753 | 16 | 0.9410 | Characterization of a Linezolid- and Vancomycin-Resistant Streptococcus suis Isolate That Harbors optrA and vanG Operons. Linezolid and vancomycin are among the last-resort antimicrobial agents in the treatment of multidrug-resistant Gram-positive bacterial infections. Linezolid- and vancomycin-resistant (LVR) Gram-positive bacteria may pose severe threats to public health. In this study, three optrA- and vanG-positive Streptococcus suis strains were isolated from two farms of different cities. There were only 1 and 343 single-nucleotide polymorphisms in coding region (cSNPs) of HCB4 and YSJ7 to YSJ17, respectively. Mobilome analysis revealed the presence of vanG, erm(B), tet(O/W/32/O), and aadE-apt-sat4-aphA3 cluster on an integrative and conjugative element, ICESsuYSJ17, and erm(B), aphA3, aac(6')-aph(2″), catpC(194), and optrA on a prophage, ΦSsuYSJ17-3. ICESsuYSJ17 exhibited a mosaic structure and belongs to a highly prevalent and transferable ICESa2603 family of Streptococcus species. ΦSsuYSJ17-3 shared conserved backbone to a transferable prophage Φm46.1. A novel composite transposon, IS1216E-araC-optrA-hp-catpC(194)-IS1216E, which can be circulated as translocatable unit (TU) by IS1216E, was integrated on ΦSsuYSJ17-3. Vancomycin resistance phenotype and vanG transcription assays revealed that the vanG operon was inducible. The LVR strain YSJ17 exhibited moderate virulence in a zebrafish infection model. To our knowledge, this is the first report of LVR isolate, which is mediated by acquired resistance genes optrA and vanG operons in Gram-positive bacteria. Since S. suis has been recognized as an antimicrobial resistance reservoir in the spread of resistance genes to major streptococcal pathogens, the potential risks of disseminating of optrA and vanG from S. suis to other Streptococcus spp. are worrisome and routine surveillance should be strengthened. | 2019 | 31551963 |
| 7135 | 17 | 0.9410 | Exploring the disparity of inhalable bacterial communities and antibiotic resistance genes between hazy days and non-hazy days in a cold megacity in Northeast China. The physicochemical properties of inhalable particles during hazy days have been extensively studied, but their biological health threats have not been well-explored. This study aimed to explore the impacts of haze pollution on airborne bacteria and antibiotic-resistance genes (ARGs) by conducting a comparative study of the bacterial community structure and functions, pathogenic compositions, and ARGs between hazy days and non-hazy days in a cold megacity in Northeast China. The results suggested that bacterial communities were shaped by local weather and customs. In this study, cold-resistant and Chinese sauerkraut-related bacterial compositions were identified as predominant genera. In the comparative analysis, higher proportions of gram-negative bacteria and pathogens were detected on hazy days than on non-hazy days. Pollutants on hazy days provided more nutrients (sulfate, nitrate and ammonium) for bacterial metabolism but also caused more bacterial cell damage and death than on non-hazy days. This study also detected increases in the sub-types and average absolute abundance of airborne resistance genes on hazy days compared to non-hazy days. The results of this study revealed that particle pollution promotes the dissemination and exchange of pathogenic bacteria and ARGs among large urban populations, which leads to a higher potential for human inhalation exposure. | 2020 | 32512457 |
| 1386 | 18 | 0.9410 | ESBL/pAmpC-producing Enterobacterales in common leopard geckos (Eublepharis macularius) and central bearded dragons (Pogona vitticeps) from Portugal. Common leopard geckos (Eublepharis macularius) and central bearded dragon (Pogona vitticeps) are widely kept as pets but can harbor pathogenic bacteria, including antimicrobial-resistant (AMR) bacteria. This study aimed to research the frequency of β-lactamase-producing Enterobacterales in these two reptile species. A total of 132 samples were collected from the oral and cloacal cavities of healthy common leopard geckos and central bearded dragons in the Lisbon area, Portugal. Antimicrobial resistance was assessed for third-generation cephalosporin (3GC)-resistant Enterobacterales. The results revealed that 3GC-resistant Enterobacterales were observed in 17.9% (n = 14/78) of the reptiles. The most commonly identified species were: Citrobacter freundii and Klebsiella aerogenes. Furthermore, some isolates produced extended-spectrum β-lactamases (ESBLs) and AmpC β-lactamases (AmpC) encoding genes such as bla (CMY-2), bla (CTX-M-15,) and bla (TEM-1). These findings emphasize the potential role of these reptiles in the spread of AMR bacteria, particularly in urban settings where human- animal interactions are frequent. Given the zoonotic risks, this study emphasizes the importance of continued surveillance and responsible antimicrobial use in both veterinary and human medicine to mitigate the spread of AMR bacteria. | 2025 | 40370835 |
| 3178 | 19 | 0.9410 | Metagenomic analysis reveals the diversity, transmission and potential ecological risks of yak nasal bacteria-carried antibiotic resistance genes in the Sichuan region of Qinghai-Tibet plateau. The Qinghai-Tibet Plateau (QTP) and yaks play respectively vital roles in global and plateau ecosystems. Antibiotic resistance is a global threat to public health, with antibiotic resistance genes (ARGs) being one of the emerging contaminants. However, few studies have investigated the abundance and diversity of ARGs and mobile genetic elements (MGEs) in the yak upper respiratory tract and their surrounding pastures. Moreover, the possible pathways for ARG transmission within these ecosystems have not yet been elucidated. Therefore, we investigated the ARG profiles, MGE profiles, and ARG-carrying host bacteria in yaks and their pasture collected from Ganzi and Aba region in Sichuan Province. Metagenomic analyses showed that 22 ARG types and 5 MGEs types were identified in 18 samples. Multidrug resistance gene (mexT) and bacitracin resistance gene (bacA) was identiffed as hotspots, which may compromise medical treatment options. Co-occurrence network analysis revealed that 12 bacterial genera may be potential hosts at the genus level. The enrich of ARGs and MGEs diversity were observed in QTP (Sichuan province) pasture ecosystems which demands evidence-based interventions to mitigate ARGs transmission risks. | 2025 | 40373403 |