# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2521 | 0 | 0.9366 | Insights into antimicrobial resistance among long distance migratory East Canadian High Arctic light-bellied Brent geese (Branta bernicla hrota). BACKGROUND: Antimicrobial resistance (AMR) is the most significant threat to global public health and ascertaining the role wild birds play in the epidemiology of resistance is critically important. This study investigated the prevalence of AMR Gram-negative bacteria among long-distance migratory East Canadian High Arctic (ECHA) light-bellied Brent geese found wintering on the east coast of Ireland. FINDINGS: In this study a number of bacterial species were isolated from cloacal swabs taken from ECHA light-bellied Brent geese. Nucleotide sequence analysis identified five species of Gram-negative bacteria; the dominant isolated species were Pantoea spp. (n = 5) followed by Buttiauxella agrestis (n = 2). Antimicrobial susceptibility disk diffusion results identified four of the Pantoea spp. strains, and one of the Buttiauxella agrestis strains resistant to amoxicillin-clavulanic acid. CONCLUSION: To our knowledge this is the first record of AMR bacteria isolated from long distance migratory ECHA light-bellied Brent geese. This indicates that this species may act as reservoirs and potential disseminators of resistance genes into remote natural ecosystems across their migratory range. This population of geese frequently forage (and defecate) on public amenity areas during the winter months presenting a potential human health risk. | 2015 | 27651892 |
| 958 | 1 | 0.9360 | Whole-Genome Analysis of Multidrug-Resistant Klebsiella pneumoniae Kp04 Reveals Distinctive Antimicrobial and Arsenic-Resistance Genomic Features: A Case Study from Bangladesh. Multidrug-resistant bacteria, particularly extended-spectrum-beta-lactamase-producing (ESBL) bacteria, pose a significant global public health challenge. Klebsiella pneumoniae (KPN) is frequently implicated in cases of this resistance. This study aimed to investigate the presence of drug and metal resistance genes in clinical K. pneumoniae isolate Kp04 and comparative genomics of clinical KPN isolates characterized from Bangladesh. A total of 12 isolates were collected. Disk-diffusion assay showed that all five isolates were resistant to 14 out of 21 tested antibiotics and sensitive to only three-tigecycline, imipenem, and meropenem. KPN Kp04 was positive for both bla(SHV) and bla(CTX-M) ESBL genes in PCR. All five isolates produced PCR amplicons of the correct size for ampicillin (ampC), tetracycline (tetC), fluoroquinolone (qnrS), and aminoglycoside (aadA) resistance genes. The whole genome of Kp04 was sequenced using the MiSeq Platform (V3 kit, 2 × 300 cycles). We utilized different databases to detect Antibiotic-Resistant Genes (ARGs), virulence factor genes (VFGs), and genomic functional features of the Kp04 strain. Whole-genome sequencing identified 75 ESBL, virulence, and multiple drug-resistant (MDR) genes including bla(SHV), tetA, oqxA, oqxB, aadA, sul1-5, and mphA in KPN Kp04 isolate. Pan-genomic analysis of 43 Bangladeshi KPN isolates showed similarities between Dhaka and Chattogram isolates regarding virulence and antibiotic-resistant genes. Our results indicate the transmission of similar virulent KPN strains in Dhaka and Chattogram. This study would provide valuable information about drug sensitivity, antibiotic, and metal resistance features of K. pneumoniae circulated among hospitalized patients in Bangladeshi megacities. | 2024 | 39613891 |
| 2603 | 2 | 0.9360 | Characterization of antimicrobial resistance genes in Enterobacteriaceae carried by suburban mesocarnivores and locally owned and stray dogs. The role of wildlife in the dissemination of antimicrobial-resistant bacteria and antimicrobial resistance genes (ARGs) in the environment is of increasing concern. We investigated the occurrence, richness and transmissibility potential of ARGs detected in the faeces of three mesocarnivore species: the coyote (Canis latrans), raccoon (Procyon lotor) and Virginia opossum (Didelphis virginiana), and of stray and owned dogs in suburban Chicago, IL, USA. Rectal swabs were collected from live-captured coyotes (n = 32), raccoons (n = 31) and Virginia opossums (n = 22). Fresh faecal samples were collected from locally owned (n = 13) and stray dogs (n = 18) and from the live-captured mesocarnivores, when available. Faecal samples and rectal swabs were enriched to select for Enterobacteriaceae and pooled by mesocarnivore species and dog type (owned or stray). Pooled enriched samples were then analysed for the presence of ARGs using shotgun sequencing. The three mesocarnivore and stray dog samples had twice as many unique ARGs compared to the owned dog sample, which was partly driven by a greater richness of beta-lactamase genes (genes conferring resistance to penicillins and cephalosporins). Raccoon and stray dog samples had the most ARGs in common, suggesting possible exposure to similar environmental sources of ARGs. In addition to identifying clinically relevant ARGs (e.g. bla(CMY) and qnrB), some ARGs were linked to the class 1 integrase gene, intI1, which may indicate anthropogenic origin. Findings from this pilot investigation suggest that the microbial communities of suburban mesocarnivores and stray dogs can host ARGs that can confer resistance to several antimicrobials used in human and veterinary medicine. | 2020 | 32034890 |
| 1808 | 3 | 0.9353 | Urban wastewater overflows as hotspots for dissemination of bacteria producing extended-spectrum β-lactamases and carbapenemases in the Suquía River, Argentina. Antimicrobial resistance (AMR) is a critical global challenge, yet the role of environmental dissemination of antibiotic-resistant bacteria remains underexplored, particularly in developing regions. This study investigated urban wastewater overflows from public streets as vectors for extended-spectrum-β-lactamase (ESBL)- and carbapenemase-producing Enterobacterales and Aeromonas in the Suquía River (Córdoba, Argentina). Sixty-two water samples were analyzed for coliform counts, antimicrobial susceptibility, and resistance genes. Horizontal gene transfer was assessed by conjugation. Sixty-five ESBL- and/or carbapenemase-producing isolates were recovered, including six carbapenemase producers subjected to whole-genome sequencing (WGS). Urban wastewater exhibited coliform levels >10(8) MPN/100 mL, while river counts increased 2-5 logs at urban and downstream sites compared to upstream, where no resistant strains were detected. ESBL- and/or carbapenemase-producers occurred in ~70% of wastewater and river samples, mainly Escherichia coli harboring bla(CTX-M) . Carbapenemase producers carried bla(KPC-2) or bla(NDM-1) in Enterobacter, Klebsiella, Citrobacter, and Aeromonas caviae. WGS revealed extensive resistomes, virulence genes, and plasmid replicons, including IncU and IncA/C2 linked to carbapenemases. Conjugation confirmed plasmid-mediated transfer of β-lactamase genes, and genetic context analysis identified clinically recognized transposons. Notably, Enterobacter kobei and Aeromonas caviae from the river carried bla(KPC-2) on plasmidic contigs combining clinical and environmental elements, consistent with genetic exchange within aquatic ecosystems and transfer of clinically significant resistance determinants to species adapted for riverine survival. These findings identify urban wastewater overflows as AMR hotspots that facilitate the dissemination of multidrug-resistant bacteria and mobile resistance elements into urban and peri-urban aquatic environments, underscoring the need for integrated environmental AMR surveillance. | 2025 | 41070122 |
| 5205 | 4 | 0.9344 | Antimicrobial resistance and virulence factors of Klebsiella quasipneumoniae, the novel sequence types (ST) 7979 and 7980 from Indonesia. Klebsiella pneumoniae is a human pathogen of global concern. The more recently described pathogen, K. quasipneumoniae, shares similar morphological characteristics with K. pneumoniae and is commonly misidentified as this species using conventional laboratory techniques. This study investigates the molecular characteristics of four phenotype-identified K. pneumoniae isolates obtained from hospital wastewater in Jakarta, Indonesia. Whole-genome sequencing (WGS) and the Average Nucleotide Identity (ANI) showed that these isolates were eventually identified as K. quasipneumoniae subsp. quasipneumoniae, a closely related species of K. pneumoniae. These isolates of novel ST7979 and ST7980 strains are classified as multi-drug resistant (MDR) bacteria and harbor many antibiotic-resistance genes. Interestingly, the novel ST7980 strain is carbapenem non-susceptible and harbors the sul1 gene and the heat-stable enterotoxin gene, astA. The ST7979 strains have KL55 capsular type and O3b type, whereas the ST7980 strains have KL107 and O12 types. Our finding highlights the significance of identifying the K. quasipneumoniae strain utilizing a genomic platform. Additionally, routine surveillance is needed to monitor the hospital wastewater and avoid the spread of multidrug-resistant bacteria. | 2025 | 40609771 |
| 2644 | 5 | 0.9344 | Prevalence of Antimicrobial-Resistant Escherichia coli in Migratory Greater White-Fronted Geese (Anser albifrons) and their Habitat in Miyajimanuma, Japan. The spread of antimicrobial-resistant bacteria (ARB) in natural environments including wild animals is a concern for public health. Birds cover large areas, and some fly across borders to migrate in large flocks. As a migratory bird, the Greater White-fronted Goose (Anser albifrons) travels to Miyajimanuma, North Japan, each spring and autumn. To investigate the ARB in migratory birds and their surroundings, we collected 110 fecal samples of A. albifrons and 18 water samples from Miyajimanuma in spring and autumn of 2019. Isolation of Escherichia coli was performed using selective agars with or without antimicrobials (cefazolin and nalidixic acid). Isolates of E. coli were recovered from 56 fecal samples (50.9%) and five water samples (27.8%) on agars without antimicrobials. No isolates were recovered on agars with antimicrobials. One E. coli isolate derived from a fecal sample exhibited resistance to β-lactams (ampicillin and cefazolin), whereas all other isolates exhibited susceptibility to all tested antimicrobials. The resistant isolate harbored blaACC, which could be transferred to other bacteria and confer resistance to β-lactams. These results suggest a low prevalence of antimicrobial resistance in wild migratory birds and their living environments; however, wild migratory birds sometimes carry ARB harboring transferrable antimicrobial resistance genes and therefore present a risk of spreading antimicrobial resistance. | 2021 | 34410412 |
| 5188 | 6 | 0.9343 | Zoonotic bacterial and parasitic intestinal pathogens in foxes, raccoons and other predators from eastern Germany. In this study, we investigated faecal specimens from legally hunted and road-killed red foxes, raccoons, raccoon dogs, badgers and martens in Germany for parasites and selected zoonotic bacteria. We found that Baylisascaris procyonis, a zoonotic parasite of raccoons, had spread to northeastern Germany, an area previously presumed to be free of this parasite. We detected various pathogenic bacterial species from the genera Listeria, Clostridium (including baratii), Yersinia and Salmonella, which were analysed using whole-genome sequencing. One isolate of Yersinia enterocolitica contained a virulence plasmid. The Salmonella Cholerasuis isolate encoded an aminoglycoside resistance gene and a parC point mutation, conferring resistance to ciprofloxacin. We also found tetracycline resistance genes in Paeniclostridium sordellii and Clostridium baratii. Phylogenetic analyses revealed that the isolates were polyclonal, indicating the absence of specific wildlife-adapted clones. Predators, which scavenge from various sources including human settlements, acquire and spread zoonotic pathogens. Therefore, their role should not be overlooked in the One Health context. | 2024 | 38747071 |
| 1386 | 7 | 0.9342 | ESBL/pAmpC-producing Enterobacterales in common leopard geckos (Eublepharis macularius) and central bearded dragons (Pogona vitticeps) from Portugal. Common leopard geckos (Eublepharis macularius) and central bearded dragon (Pogona vitticeps) are widely kept as pets but can harbor pathogenic bacteria, including antimicrobial-resistant (AMR) bacteria. This study aimed to research the frequency of β-lactamase-producing Enterobacterales in these two reptile species. A total of 132 samples were collected from the oral and cloacal cavities of healthy common leopard geckos and central bearded dragons in the Lisbon area, Portugal. Antimicrobial resistance was assessed for third-generation cephalosporin (3GC)-resistant Enterobacterales. The results revealed that 3GC-resistant Enterobacterales were observed in 17.9% (n = 14/78) of the reptiles. The most commonly identified species were: Citrobacter freundii and Klebsiella aerogenes. Furthermore, some isolates produced extended-spectrum β-lactamases (ESBLs) and AmpC β-lactamases (AmpC) encoding genes such as bla (CMY-2), bla (CTX-M-15,) and bla (TEM-1). These findings emphasize the potential role of these reptiles in the spread of AMR bacteria, particularly in urban settings where human- animal interactions are frequent. Given the zoonotic risks, this study emphasizes the importance of continued surveillance and responsible antimicrobial use in both veterinary and human medicine to mitigate the spread of AMR bacteria. | 2025 | 40370835 |
| 5204 | 8 | 0.9342 | Draft genome sequencing of a multidrug-resistant Klebsiella pneumoniae strain MBBL2 isolated from mastitic cow milk. Milk from cows with mastitis is a primary source of bacteria harboring antibiotic resistance genes (ARGs), including Klebsiella pneumoniae. We present the genome sequence of K. pneumoniae strain MBBL2 isolated from mastitic cow milk, which contains numerous ARGs and virulence-associated genes potentially pathogenic to humans. | 2025 | 39878535 |
| 2777 | 9 | 0.9341 | Detection of carbapenemase-producing, hypervirulent Klebsiella spp. in wastewater and their potential transmission to river water and WWTP employees. Wastewater treatment plants (WWTPs) release drug-resistant microorganisms to water bodies (with effluents), and WWTP employees are exposed to bioaerosol emissions from the processed wastewater. Bacteria of the genus Klebsiella, in particular carbapenemase-producing (CP), hyper-virulent (Hvr) strains of Klebsiella pneumoniae, play a special role in this process. Klebsiella spp. strains isolated from wastewater, river water and the upper respiratory tract of WWTP employees were analyzed in this study. The isolated strains were identified as K. pneumoniae (K. pn) or K. non-pneumoniae (K. npn). The prevalence of nine types of genes encoding resistance to beta-lactams, nine genes encoding virulence factors and K1/K2 capsular serotypes, three genes encoding multi drug effluent pump systems, and the class 1 integron-integrase gene was determined by PCR. A total of 284 Klebsiella spp. isolates were obtained in the study: 270 environmental strains and 14 strains from the upper respiratory tract. Among environmental isolates 90.7% (245/270) harbored beta-lactam resistance genes, 17.4% (47/270) were classified as CP strains, 11.1% (30/270) were classified as Hvr strains, and 1.9% (5/270) were classified as CP-Hvr strains. CP-Hvr strains were also isolated from WWTP employees. Genes encoding β-lactamases (including carbapenemases), complete efflux pump systems and the K1 serotype were identified more frequently in K. pn strains. In turn, K. npn strains were characterized by a higher prevalence of bla(SHV) and intI1 genes and K2 serotype gene. The strains isolated from wastewater and river water also differed in the abundance of drug resistance and virulence genes. The results of the study indicate that CP-Hvr K. pn strains are possibly transmitted from wastewater via bioareosol to the upper respiratory tract of WWTP employees. bla(GES)-type carbapenemases significantly contributed to the spread of drug resistance in the environment. | 2021 | 34455199 |
| 836 | 10 | 0.9340 | Cross-Sectional Assessment on Carbapenem-Resistant Gram-Negative Bacteria Isolated from Patients in Moldova. Information on the molecular epidemiology and carbapenem resistance mechanisms in Gram-negative bacterial isolates in Moldova is scarce. To close this knowledge gap, carbapenem-resistant Gram-negative bacteria were collected over an 11-month period in a routine diagnostic laboratory in Moldova. Antimicrobial susceptibility was phenotypically and genotypically assessed. Phylogenetic relationships were investigated and multi-locus sequence types were provided. The assessment indicated several clusters of phylogenetically closely related carbapenem-resistant Klebsiella pneumoniae (sequence types ST101, ST395 and ST377), Acinetobacter baumannii (ST2, ST19 and ST78) and Pseudomonas aeruginosa (ST357 and ST654) isolates next to a number of less frequently observed species and sequence types. A phylogenetic relationship to characterized isolates from neighboring Ukraine could be confirmed. Identified carbapenemase genes comprised bla(OXA-23), bla(OXA-72) and bla(GES-11) in A. baumannii, bla(KPC-3), bla(NDM-1) and bla(OXA-48) in K. pneumoniae, as well as bla(VIM-2) in Pseudomonas aeruginosa. In conclusion, the assessment suggested the spread of carbapenem-resistant Gram-negative bacteria in Moldova which were partly pre-described from neighboring Ukraine, as well as likely spill-over events, facilitating the regional spread of carbapenem-resistant clones. Several isolates with very high genomic similarity further support the hypothesis of likely regional transmission events driven by several evolutionary successful clonal lineages. | 2025 | 40005787 |
| 1392 | 11 | 0.9339 | High prevalence of bla(CTX-M-15) type extended-spectrum beta-lactamases in Gambian hooded vultures (Necrosyrtes monachus): A threatened species with substantial human interaction. One hundred fecal samples from hooded vultures in the Gambia (Banjul area) were investigated for the presence of bacteria with extended-spectrum cephalosporin- (ESBL/AmpC), carbapenemases, and colistin resistance. No Enterobacteriales carrying carbapenemases or resistance against colistin were detected. Fifty-four ESBL-producing Escherichia coli and five ESBL-producing Klebsiella pneumoniae isolates were identified in 52 of the samples, of which 52 E. coli and 4 K. pneumoniae yielded passed sequencing results. Fifty of the E. coli had ESBL phenotype and genotype harboring bla(CTX-M) genes, of which 88.5% (n = 46) were the bla(CTX-M-15) gene, commonly found on the African continent. Furthermore, the genetic context around bla(CTX-M-15) was similar between isolates, being colocalized with ISKpn19. In contrast, cgMLST analysis of the E. coli harboring ESBL genes revealed a genetic distribution over a large fraction of the currently known existing E. coli populations in the Gambia. Hooded vultures in the Gambia thus have a high ESBL E. coli-prevalence (>50%) with low diversity regarding key resistance genes. Furthermore, given the urban presence and frequent interactions between hooded vultures and humans, data from this study implies hooded vultures as potential vectors contributing to the further dissemination of antibiotic-resistance genes. | 2023 | 37186228 |
| 1401 | 12 | 0.9339 | Molecular Surveillance of Multidrug-Resistant Bacteria among Refugees from Afghanistan in 2 US Military Hospitals during Operation Allies Refuge, 2021. In 2021, two US military hospitals, Landstuhl Regional Medical Center in Landstuhl, Germany, and Walter Reed National Military Medical Center (WRNMMC) in Bethesda, Maryland, USA, observed a high prevalence of multidrug-resistant bacteria among refugees evacuated from Afghanistan during Operation Allies Refuge. Multidrug-resistant isolates collected from 80 patients carried an array of antimicrobial resistance genes, including carbapenemases (bla(NDM-1), bla(NDM-5), and bla(OXA-23)) and 16S methyltransferases (rmtC and rmtF). Considering the rising transmission of antimicrobial resistance and unprecedented population displacement globally, these data are a reminder of the need for robust infection control measures and surveillance. | 2024 | 39530854 |
| 3754 | 13 | 0.9338 | Cancer departments as a source of resistant bacteria and fungi? Antimicrobial resistance increases worldwide. Among many factors, such as clonal spread of genes of resistance among and intra species, local epidemiology, nosocomial transmission, also consumption of antimicrobials may be responsible. Cancer departments, mainly in centers treating hematologic malignancies and organizing bone marrow transplantation (BMT) are known to have extensive consumption of either prophylactically or therapeutically administered antibiotics and antifungals. It is worthy to remember, that first strains of quinolone resistant E. coli, vancomycin resistant enterococci and staphylococci and fluconazol-resistant Candida albicans appeared in the patients treated for cancer with antineoplastic chemotherapy, resulting in profound granulocytopenia. Therefore, assessment of risks of antibiotic prophylaxis with quinolones and azoles and extensive use of empiric therapy with glycopeptides and polyenes needs to be considered. Intensive prophylactic strategies should be limited to group of high risk, leukemic patients or BMT recipients. | 1999 | 10355526 |
| 1740 | 14 | 0.9338 | MDR Escherichia coli carrying CTX-M-24 (IncF[F-:A1:B32]) and KPC-2 (IncX3/IncU) plasmids isolated from community-acquired urinary trainfection in Brazil. Acquired antibiotic resistance in bacteria has become an important worldwide challenge. Currently, several bacteria, including Escherichia coli, have multidrug resistance profiles. Genes such as bla CTX-M-24 and bla KPC-2 (carbapenemase) are widespread. This research letter reports about a genomic surveillance study where multidrug-resistant E. coli containing CTX-M-24(IncF [F-:A1:B32]) and KPC-2(IncX3/IncU) plasmids were obtained from community- acquired urinary tract infection in Brazil. | 2022 | 36228665 |
| 3080 | 15 | 0.9338 | Antibiotic-resistant bacteria in the Bang Yai Canal and Phuket Bay in Phuket Province, Thailand. Antimicrobial resistance (AMR) represents a critical public health challenge, with surface waters serving as reservoirs for antibiotic-resistant bacteria (ARB). Among these, gram-negative enteric bacteria (GNEB) are recognized as major carriers of resistance genes and frequent causes of human infections. As a major tourism destination in Thailand, Phuket Province is likely to face increasing AMR-related issues. This study investigates water quality and the prevalence of ARB in the Bang Yai Canal, a key urban waterway in Phuket, and its transition into Phuket Bay. Water samples were collected from nine stations during the dry and rainy seasons of 2024. Total heterotrophic bacterial counts and GNEB resistant to amoxicillin, tetracycline, norfloxacin, and meropenem were examined in relation to water quality parameters. Results revealed significant spatial variation, with urban areas contributing substantially to ARB prevalence. Amoxicillin-resistant bacteria were the most prevalent, particularly among GNEB, while meropenem-resistant bacteria were consistently detected at most stations despite their low abundance. Seasonal variations indicated higher bacterial abundance upstream during the dry season and downstream during the rainy season, potentially driven by tourism and runoff dynamics. The coastal station exhibited a notably high proportion of antibiotic-resistant marine heterotrophic bacteria. Redundancy analysis identified turbidity and dissolved oxygen as significant factors influencing bacterial counts. Cluster analysis grouped stations based on water quality, with upstream and coastal sites exhibiting distinct profiles. This study underscores the critical role of urban activities in ARB dissemination and highlights the environmental and public health implications of ARB in coastal ecosystems, necessitating targeted mitigation and monitoring strategies. | 2025 | 40976823 |
| 3954 | 16 | 0.9337 | Evolution of transferable antibiotic resistance in coliform bacteria from remote environments. The influence of a mission hospital on the evolution of antibiotic resistance in coliform bacteria from a remote antibiotic-free Xhosa community and environment is described. | 1976 | 984780 |
| 5488 | 17 | 0.9336 | Comparative genomics analysis of Acinetobacter haemolyticus isolates from sputum samples of respiratory patients. Acinetobacter haemolyticus (A. haemolyticus) is a significant Acinetobacter pathogen, and the resistance of A. haemolyticus continues to rise due to abuse of antibiotics and the frequent gene exchange between bacteria in hospital. In this study, we performed complete genome sequencing of two A. haemolyticus strains TJR01 and TJS01 to improve our understanding of pathogenic and resistance of A. haemolyticus. Both TJR01 and TJS01 contain one chromosome and two plasmids. Compared to TJS01, more virulence factors (VFs) associated pathogenicity and resistant genes were predicted in TJR01 due to T4SS and integron associated with combination and transport. Antimicrobial susceptibility results were consistent with sequencing. We suppose TJS01 was a susceptive strain and TJR01 was an acquired multidrug resistance strain due to plasmid-mediated horizontal gene transfer. We hope these findings may be helpful for clinical treatment of A. haemolyticus infection and reduce the risk of potential outbreak infection. | 2020 | 32209379 |
| 1494 | 18 | 0.9336 | Characterization of a Novel Chromosomal Class C β-Lactamase, YOC-1, and Comparative Genomics Analysis of a Multidrug Resistance Plasmid in Yokenella regensburgei W13. Yokenella regensburgei, a member of the family Enterobacteriaceae, is usually isolated from environmental samples and generally resistant to early generations of cephalosporins. To characterize the resistance mechanism of Y. regensburgei strain W13 isolated from the sewage of an animal farm, whole genome sequencing, comparative genomics analysis and molecular cloning were performed. The results showed that a novel chromosomally encoded class C β-lactamase gene with the ability to confer resistance to β-lactam antibiotics, designated bla (YOC) (-) (1), was identified in the genome of Y. regensburgei W13. Kinetic analysis revealed that the β-lactamase YOC-1 has a broad spectrum of substrates, including penicillins, cefazolin, cefoxitin and cefotaxime. The two functionally characterized β-lactamases with the highest amino acid identities to YOC-1 were CDA-1 (71.69%) and CMY-2 (70.65%). The genetic context of the bla (YOC) (-) (1) -ampR-encoding region was unique compared with the sequences in the NCBI nucleotide database. The plasmid pRYW13-125 of Y. regensburgei W13 harbored 11 resistance genes (bla (OXA) (-) (10), bla (LAP) (-) (2), dfrA14, tetA, tetR, cmlA5, floR, sul2, ant(3″)-IIa, arr-2 and qnrS1) within an ∼34 kb multidrug resistance region; these genes were all related to mobile genetic elements. The multidrug resistance region of pYRW13-125 shared the highest identities with those of two plasmids from clinical Klebsiella pneumoniae isolates, indicating the possibility of horizontal transfer of these resistance genes between bacteria of various origins. | 2020 | 32973731 |
| 1861 | 19 | 0.9335 | Extended-spectrum beta-lactamase-producing Escherichia coli in common vampire bats Desmodus rotundus and livestock in Peru. Antibiotic resistance mediated by bacterial production of extended-spectrum beta-lactamase (ESBL) is a global threat to public health. ESBL resistance is most commonly hospital-acquired; however, infections acquired outside of hospital settings have raised concerns over the role of livestock and wildlife in the zoonotic spread of ESBL-producing bacteria. Only limited data are available on the circulation of ESBL-producing bacteria in animals. Here, we report ESBL-producing Escherichia coli in wild common vampire bats Desmodus rotundus and livestock near Lima, Peru. Molecular analyses revealed that most of this resistance resulted from the expression of bla(CTX-M-15) genes carried by plasmids, which are disseminating worldwide in hospital settings and have also been observed in healthy children of Peru. Multilocus sequence typing showed a diverse pool of E. coli strains carrying this resistance that were not always host species-specific, suggesting sharing of strains between species or infection from a common source. This study shows widespread ESBL resistance in wild and domestic animals, supporting animal communities as a potential source of resistance. Future work is needed to elucidate the role of bats in the dissemination of antibiotic-resistant strains of public health importance and to understand the origin of the observed resistance. | 2018 | 29575785 |