MEDICATIONS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
62000.9858Transcriptomic Responses and Survival Mechanisms of Staphylococci to the Antimicrobial Skin Lipid Sphingosine. Sphingosines are antimicrobial lipids that form part of the innate barrier to skin colonization by microbes. Sphingosine deficiencies can result in increased epithelial infections by bacteria including Staphylococcus aureus. Recent studies have focused on the potential use of sphingosine resistance or its potential mechanisms. We used RNA-Seq to identify the common d-sphingosine transcriptomic response of the transient skin colonizer S. aureus and the dominant skin coloniser S. epidermidis. A common d-sphingosine stimulon was identified that included downregulation of the SaeSR two-component system (TCS) regulon and upregulation of both the VraSR TCS and CtsR stress regulons. We show that the PstSCAB phosphate transporter, and VraSR offer intrinsic resistance to d-sphingosine. Further, we demonstrate increased sphingosine resistance in these staphylococci evolves readily through mutations in genes encoding the FarE-FarR efflux/regulator proteins. The ease of selecting mutants with resistance to sphingosine may impact upon staphylococcal colonization of skin where the lipid is present and have implications with topical therapeutic applications.202234902269
61110.9851The Staphylococcus aureus FASII bypass escape route from FASII inhibitors. Antimicrobials targeting the fatty acid synthesis (FASII) pathway are being developed as alternative treatments for bacterial infections. Emergence of resistance to FASII inhibitors was mainly considered as a consequence of mutations in the FASII target genes. However, an alternative and efficient anti-FASII resistance strategy, called here FASII bypass, was uncovered. Bacteria that bypass FASII incorporate exogenous fatty acids in membrane lipids, and thus dispense with the need for FASII. This strategy is used by numerous Gram-positive low GC % bacteria, including streptococci, enterococci, and staphylococci. Some bacteria repress FASII genes once fatty acids are available, and "constitutively" shift to FASII bypass. Others, such as the major pathogen Staphylococcus aureus, can undergo high frequency mutations that favor FASII bypass. This capacity is particularly relevant during infection, as the host supplies the fatty acids needed for bacteria to bypass FASII and thus become resistant to FASII inhibitors. Screenings for anti-FASII resistance in the presence of exogenous fatty acids confirmed that FASII bypass confers anti-FASII resistance among clinical and veterinary isolates. Polymorphisms in S. aureus FASII initiation enzymes favor FASII bypass, possibly by increasing availability of acyl-carrier protein, a required intermediate. Here we review FASII bypass and consequences in light of proposed uses of anti-FASII to treat infections, with a focus on FASII bypass in S. aureus.201728728970
816020.9849Quorum Sensing in Gram-Negative Bacteria: Strategies to Overcome Antibiotic Resistance in Ocular Infections. Truly miraculous medications and antibiotics have helped save untold millions of lives. Antibiotic resistance, however, is a significant issue related to health that jeopardizes the effectiveness of antibiotics and could harm everyone's health. Bacteria, not humans or animals, become antibiotic-resistant. Bacteria use quorum-sensing communication routes to manage an assortment of physiological exercises. Quorum sensing is significant for appropriate biofilm development. Antibiotic resistance occurs when bacteria establish a biofilm on a surface, shielding them from the effects of infection-fighting drugs. Acylated homoserine lactones are used as autoinducers by gram-negative microscopic organisms to impart. However, antibiotic resistance among ocular pathogens is increasing worldwide. Bacteria are a significant contributor to ocular infections around the world. Gram-negative microscopic organisms are dangerous to ophthalmic tissues. This review highlights the use of elective drug targets and treatments, for example, combinational treatment, to vanquish antibiotic-resistant bacteria. Also, it briefly portrays anti-biotic resistance brought about by gram-negative bacteria and approaches to overcome resistance with the help of quorum sensing inhibitors and nanotechnology as a promising medication conveyance approach to give insurance of anti-microbials and improve pathways for the administration of inhibitors of quorum sensing with a blend of anti-microbials to explicit target destinations and penetration through biofilms for treatment of ocular infections. It centres on the methodologies to sidestep the confinements of ocular anti-biotic delivery with new visual innovation.202437497706
77930.9849The menaquinone pathway is important for susceptibility of Staphylococcus aureus to the antibiotic adjuvant, cannabidiol. Emergence of antibiotic resistant bacteria is evolving at an alarming pace; therefore, we must start turning to alternative approaches. One of these, could be the use of antibiotic adjuvants that enhances the effect of antibiotics towards resistant bacteria. A novel antibiotic adjuvant is cannabidiol (CBD), which we have previously shown can enhance the effect of bacitracin (BAC). BAC targets cell wall synthesis by inhibiting dephosphorylation of the lipid carrier undecaprenyl pyrophosphate prior to recycling across the membrane. However, the mechanism underlying this CBD mediated potentiation of BAC has remained unknown. To explore this, we examined resistance to CBD in Staphylococcus aureus through daily exposures to CBD. By subsequent whole genome sequencing, we observed multiple genes to be mutated, including the farE/farR system encoding a fatty acid efflux pump (FarE) and its regulator (FarR). Importantly, recreation of mutations in these genes showed decreased susceptibility towards the combination of CBD and BAC. Furthermore, we searched the Nebraska Transposon Mutant Library for CBD susceptible strains and identified menH encoding a protein participating in menaquinone biosynthesis. Strains containing deletions in this and other menaquinone related genes showed increased susceptibility towards CBD, while addition of exogenous menaquinone reversed the effect and reduced susceptible towards CBD. These results suggest that CBD potentiates BAC by redirecting the isoprenoid precursor isopentenyl pyrophosphate towards production of menaquinone rather than the lipid carrier undecaprenyl pyrophosphate, which dephosphorylation is inhibited by BAC. This in turn might decrease the level of undecaprenyl pyrophosphate thus enhancing the effect of BAC. Our study illustrates how antibiotic adjuvants may apply to enhance efficacy of antimicrobial compounds.202235091344
902640.9841Citral and its derivatives inhibit quorum sensing and biofilm formation in Chromobacterium violaceum. With an upsurge in multidrug resistant bacteria backed by biofilm defence armours, there is a desperate need of new antibiotics with a non-traditional mechanism of action. Targeting bacteria by misguiding them or halting their communication is a new approach that could offer a new way to combat the multidrug resistance problem. Quorum sensing is considered to be the achilles heel of bacteria that has a lot to offer. Since, both quorum sensing and biofilm formation have been related to drug resistance and pathogenicity, in this study we synthesised new derivatives of citral with antiquorum sensing and biofilm disrupting properties. We previously reported antimicrobial and antiquorum sensing activity of citral and herein we report the synthesis and evaluation of citral and its derivatives (CD1-CD3) for antibacterial, antibiofilm and antiquorum sensing potential against Chromobacterium violaceum using standard methods. Preliminary results revealed that CD1 is the most active of all the derivatives. Qualitative and quantitative evaluation of antiquorum sensing activity at sub-inhibitory concentrations of these compounds also revealed high activity for CD1 followed by CD2, CD3 and citral. These compounds also inhibit biofilm formation at subinhibitory concentrations without causing any bacterial growth inhibition. These results were replicated by RT-qPCR with down regulation of the quorum sensing genes when C. violaceum was treated with these test compounds. Overall, the results are quite encouraging, revealing that biofilm and quorum sensing are interrelated processes and also indicating the potential of these derivatives to impede bacterial communication and biofilm formation.202133392626
61950.9840Inactivation of farR Causes High Rhodomyrtone Resistance and Increased Pathogenicity in Staphylococcus aureus. Rhodomyrtone (Rom) is an acylphloroglucinol antibiotic originally isolated from leaves of Rhodomyrtus tomentosa. Rom targets the bacterial membrane and is active against a wide range of Gram-positive bacteria but the exact mode of action remains obscure. Here we isolated and characterized a spontaneous Rom-resistant mutant from the model strain Staphylococcus aureus HG001 (Rom(R)) to learn more about the resistance mechanism. We showed that Rom-resistance is based on a single point mutation in the coding region of farR [regulator of fatty acid (FA) resistance] that causes an amino acid change from Cys to Arg at position 116 in FarR, that affects FarR activity. Comparative transcriptome analysis revealed that mutated farR affects transcription of many genes in distinct pathways. FarR represses for example the expression of its own gene (farR), its flanking gene farE (effector of FA resistance), and other global regulators such as agr and sarA. All these genes were consequently upregulated in the Rom(R) clone. Particularly the upregulation of agr and sarA leads to increased expression of virulence genes rendering the Rom(R) clone more cytotoxic and more pathogenic in a mouse infection model. The Rom-resistance is largely due to the de-repression of farE. FarE is described as an efflux pump for linoleic and arachidonic acids. We observed an increased release of lipids in the Rom(R) clone compared to its parental strain HG001. If farE is deleted in the Rom(R) clone, or, if native farR is expressed in the Rom(R) strain, the corresponding strains become hypersensitive to Rom. Overall, we show here that the high Rom-resistance is mediated by overexpression of farE in the Rom(R) clone, that FarR is an important regulator, and that the point mutation in farR (Rom(R) clone) makes the clone hyper-virulent.201931191485
905760.9840ABD-3, the confluence of powerful antibacterial modalities: ABDs delivering and expressing lss, the gene encoding lysostaphin. In response to the antimicrobial resistance crisis, we have developed a powerful and versatile therapeutic platform, the Antibacterial Drone (ABD) system. The ABD consists of a highly mobile staphylococcal pathogenicity island re-purposed to deliver genes encoding antibacterial proteins. The chromosomally located island is induced by a co-resident helper phage, packaged in phage-like particles, and released in very high numbers upon phage-induced lysis. ABD particles specifically adsorb to bacteria causing an infection and deliver their DNA to these bacteria, where the bactericidal cargo genes are expressed, kill the bacteria, and cure the infection. Here, we report a major advance of the system, incorporation of the gene encoding a secreted, bactericidal, species-specific lytic enzyme, lysostsphin. This ABD not only kills the bacterium that has been attacked by the ABD, but also any surrounding bacteria that are sensitive to the lytic enzyme which is released by secretion and by lysis of the doomed cell. So while the killing field is thus expanded, there are no civilian casualties (bacteria that are insensitive to the ABD and its cargo protein(s) are not inadvertently killed). Without amplifying the number of ABD particles (which are not re-packaged), the expression and release of the cargo gene's product dramatically extend the effective reach of the ABD. A cargo gene that encodes a secreted bactericidal protein also enables the treatment of a mixed bacterial infection in which one of the infecting organisms is insensitive to the ABD delivery system but is sensitive to the ABD's secreted cargo protein.202439072634
902870.9840Efflux Pumps in Chromobacterium Species Increase Antibiotic Resistance and Promote Survival in a Coculture Competition Model. Members of the Chromobacterium genus include opportunistic but often-fatal pathogens and soil saprophytes with highly versatile metabolic capabilities. In previous studies of Chromobacterium subtsugae (formerly C. violaceum) strain CV017, we identified a resistance nodulation division (RND)-family efflux pump (CdeAB-OprM) that confers resistance to several antibiotics, including the bactobolin antibiotic produced by the soil saprophyte Burkholderia thailandensis Here, we show the cdeAB-oprM genes increase C. subtsugae survival in a laboratory competition model with B. thailandensis We also demonstrate that adding sublethal bactobolin concentrations to the coculture increases C. subtsugae survival, but this effect is not through CdeAB-OprM. Instead, the increased survival requires a second, previously unreported pump we call CseAB-OprN. We show that in cells exposed to sublethal bactobolin concentrations, the cseAB-oprN genes are transcriptionally induced, and this corresponds to an increase in bactobolin resistance. Induction of this pump is highly specific and sensitive to bactobolin, while CdeAB-OprM appears to have a broader range of antibiotic recognition. We examine the distribution of cseAB-oprN and cdeAB-oprM gene clusters in members of the Chromobacterium genus and find the cseAB-oprN genes are limited to the nonpathogenic C. subtsugae strains, whereas the cdeAB-oprM genes are more widely distributed among members of the Chromobacterium genus. Our results provide new information on the antibiotic resistance mechanisms of Chromobacterium species and highlight the importance of efflux pumps for saprophytic bacteria existing in multispecies communities.IMPORTANCE Antibiotic efflux pumps are best known for increasing antibiotic resistance of pathogens; however, the role of these pumps in saprophytes is much less well defined. This study describes two predicted efflux pump gene clusters in the Chromobacterium genus, which is comprised of both nonpathogenic saprophytes and species that cause highly fatal human infections. One of the predicted efflux pump clusters is present in every member of the Chromobacterium genus and increases resistance to a broad range of antibiotics. The other gene cluster has more narrow antibiotic specificity and is found only in Chromobacterium subtsugae, a subset of entirely nonpathogenic species. We demonstrate the role of both pumps in increasing antibiotic resistance and demonstrate the importance of efflux-dependent resistance induction for C. subtsugae survival in a dual-species competition model. These results have implications for managing antibiotic-resistant Chromobacterium infections and for understanding the evolution of efflux pumps outside the host.201931324628
915980.9839Quorum sensing inhibitors (QSIs): a patent review (2019-2023). INTRODUCTION: The collective behavior of bacteria is regulated by Quorum Sensing (QS), in which bacteria release chemical signals and express virulence genes in a cell density-dependent manner. Quorum Sensing inhibitors (QSIs) are a large class of natural and synthetic compounds that have the potential to competitively inhibit the Quorum Sensing (QS) systems of several pathogens blocking their virulence mechanisms. They are considered promising compounds to deal with antimicrobial resistance, providing an opportunity to develop new drugs against these targets. AREAS COVERED: The present review represents a comprehensive analysis of patents and patent applications available on Espacenet and Google Patent, from 2019 to 2023 referring to the therapeutic use of Quorum Sensing inhibitors. EXPERT OPINION: Unlike classical antibiotics, which target the basic cellular metabolic processes, QSIs provide a promising alternative to attenuating virulence and pathogenicity without putting selective pressure on bacteria. The general belief is that QSIs pose no or little selective pressure on bacteria since these do not affect their growth. To date, QSIs are seen as the most promising alternative to traditional antibiotics. The next big step in this area of research is its succession to the clinical stage.202540219759
374590.9839Antimicrobial resistance in methicillin-resistant staphylococcus aureus. In the medical community, antibiotics are revered as a miracle because they stop diseases brought on by pathogenic bacteria. Antibiotics have become the cornerstone of contemporary medical advancements ever since penicillin was discovered. Antibiotic resistance developed among germs quickly, placing a strain in the medical field. Methicillin-resistant Staphylococcus aureus (MRSA), Since 1961, has emerged as the major general antimicrobial resistant bacteria (AMR) worldwide. MRSA can easily transmit across the hospital system and has mostly gained resistance to medications called beta-lactamases. This enzyme destroys the cell wall of beta-lactam antibiotics resulting in resistance against that respective antibiotic. Daptomycin, linezolid and vancomycin were previously used to treat MRSA infections. However, due to mutations and Single nucleotide polymorphisms (SNPs) in Open reading frames (ORFs) and SCCmec machinery of respective antibody, MRSA developed resistance against those antibiotics. The MRSA strains (USA300, CC398, CC130 etc.), when their pan-genomes were analyzed were found the genes involved in invoking resistance against the antibiotics as well as the epidemiology of that respective strain. PENC (penicillin plus potassium clavulanate) is the new antibiotic showing potential in treatment of MRSA though it is itself resistant against penicillin alone. In this review, our main focus is on mechanism of development of AMR in MRSA, how different ORFs are involved in evoking resistance in MRSA and what is the core-genome of different antimicrobial resistant MRSA.202336936699
9160100.9838Interference in Bacterial Quorum Sensing: A Biopharmaceutical Perspective. Numerous bacteria utilize molecular communication systems referred to as quorum sensing (QS) to synchronize the expression of certain genes regulating, among other aspects, the expression of virulence factors and the synthesis of biofilm. To achieve this process, bacteria use signaling molecules, known as autoinducers (AIs), as chemical messengers to share information. Naturally occurring strategies that interfere with bacterial signaling have been extensively studied in recent years, examining their potential to control bacteria. To interfere with QS, bacteria use quorum sensing inhibitors (QSIs) to block the action of AIs and quorum quenching (QQ) enzymes to degrade signaling molecules. Recent studies have shown that these strategies are promising routes to decrease bacterial pathogenicity and decrease biofilms, potentially enhancing bacterial susceptibility to antimicrobial agents including antibiotics and bacteriophages. The efficacy of QSIs and QQ enzymes has been demonstrated in various animal models and are now considered in the development of new medical devices against bacterial infections, including dressings, and catheters for enlarging the therapeutic arsenal against bacteria.201829563876
8472110.9836Genetic architecture of resistance to plant secondary metabolites in Photorhabdus entomopathogenic bacteria. BACKGROUND: Entomopathogenic nematodes of the genus Heterorhabditis establish a symbiotic association with Photorhabdus bacteria. Together, they colonize and rapidly kill insects, making them important biological control agents against agricultural pests. Improving their biocontrol traits by engineering resistance to plant secondary metabolites (benzoxazinoids) in Photorhabdus symbiotic bacteria through experimental evolution has been shown to increase their lethality towards benzoxazinoid-defended larvae of the western corn rootworm, a serious crop pest of maize, and it is therefore a promising approach to develop more efficient biocontrol agents to manage this pest. To enhance our understanding of the genetic bases of benzoxazinoid resistance in Photorhabdus bacteria, we conducted an experimental evolution experiment with a phylogenetically diverse collection of Photorhabdus strains from different geographic origins. We cultured 27 different strains in medium containing 6-methoxy-2-benzoxazolinone (MBOA), a highly active benzoxazinoid breakdown product, for 35 24 h-cycles to select for benzoxazinoid-resistant strains. Then, we carried out genome-wide sequence comparisons to uncover the genetic alterations associated with benzoxazinoid resistance. Lastly, we evaluated the resistance of the newly isolated resistant Photorhabdus strains to eight additional bioactive compounds, including 2-benzoxazolinone (BOA), nicotine, caffeine, 6-chloroacetyl-2-benzoxazolinone (CABOA), digitoxin, fenitrothion, ampicillin, and kanamycin. RESULTS: We found that benzoxazinoid resistance evolves rapidly in Photorhabdus in a strain-specific manner. Across the different Photorhabdus strains, a total of nineteen nonsynonymous point mutations, two stop codon gains, and one frameshift were associated with higher benzoxazinoid resistance. The different genetic alterations were polygenic and occurred in genes coding for the EnvZ/OmpR two-component regulatory system, the different subunits of the DNA-directed RNA polymerase, and the AcrABZ-TolC multidrug efflux pump. Apart from increasing MBOA resistance, the different mutations were also associated with cross-resistance to 2-benzoxazolinone (BOA), nicotine, caffeine, and 6-chloroacetyl-2-benzoxazolinone (CABOA) and with collateral sensitivity to fenitrothion, ampicillin, and kanamycin. Targeted mutagenesis will provide a deeper mechanistic understanding, including the relative contribution of the different mutation types. CONCLUSIONS: Our study reveals several genomic features that are associated with resistance to xenobiotics in this important group of biological control agents and enhances the availability of molecular tools to develop better biological control agents, which is essential for more sustainable and ecologically friendly agricultural practices.202541168779
780120.9836Gausemycin A-Resistant Staphylococcus aureus Demonstrates Affected Cell Membrane and Cell Wall Homeostasis. Antibiotic resistance is a significant and pressing issue in the medical field, as numerous strains of infectious bacteria have become resistant to commonly prescribed antibiotics. Staphylococcus aureus is a bacterium that poses a grave threat, as it is responsible for a large number of nosocomial infections and has high mortality rates worldwide. Gausemycin A is a new lipoglycopeptide antibiotic that has considerable efficacy against multidrug-resistant S. aureus strains. Although the cellular targets of gausemycin A have been previously identified, detailing the molecular processes of action is still needed. We performed gene expression analysis to identify molecular mechanisms that may be involved in bacterial resistance to gausemycin A. In the present study, we observed that gausemycin A-resistant S. aureus in the late-exponential phase showed an increased expression of genes involved in cell wall turnover (sceD), membrane charge (dltA), phospholipid metabolism (pgsA), the two-component stress-response system (vraS), and the Clp proteolytic system (clpX). The increased expression of these genes implies that changes in the cell wall and cell membrane are essential for the bacterial resistance to gausemycin A. In the stationary phase, we observed a decrease in the expression of genes involved in the phospholipid metabolism (mprF) and Clp proteolytic system (clpX).202337317304
736130.9836Resistance Is Not Futile: The Role of Quorum Sensing Plasticity in Pseudomonas aeruginosa Infections and Its Link to Intrinsic Mechanisms of Antibiotic Resistance. Bacteria use a cell-cell communication process called quorum sensing (QS) to orchestrate collective behaviors. QS relies on the group-wide detection of extracellular signal molecules called autoinducers (AI). Quorum sensing is required for virulence and biofilm formation in the human pathogen Pseudomonas aeruginosa. In P. aeruginosa, LasR and RhlR are homologous LuxR-type soluble transcription factor receptors that bind their cognate AIs and activate the expression of genes encoding functions required for virulence and biofilm formation. While some bacterial signal transduction pathways follow a linear circuit, as phosphoryl groups are passed from one carrier protein to another ultimately resulting in up- or down-regulation of target genes, the QS system in P. aeruginosa is a dense network of receptors and regulators with interconnecting regulatory systems and outputs. Once activated, it is not understood how LasR and RhlR establish their signaling hierarchy, nor is it clear how these pathway connections are regulated, resulting in chronic infection. Here, we reviewed the mechanisms of QS progression as it relates to bacterial pathogenesis and antimicrobial resistance and tolerance.202235744765
622140.9835Small-Molecule Antibiotics Inhibiting tRNA-Regulated Gene Expression Is a Viable Strategy for Targeting Gram-Positive Bacteria. Bacterial infections and the rise of antibiotic resistance, especially multidrug resistance, have generated a clear need for discovery of novel therapeutics. We demonstrated that a small-molecule drug, PKZ18, targets the T-box mechanism and inhibits bacterial growth. The T-box is a structurally conserved riboswitch-like gene regulator in the 5' untranslated region (UTR) of numerous essential genes of Gram-positive bacteria. T-boxes are stabilized by cognate, unacylated tRNA ligands, allowing the formation of an antiterminator hairpin in the mRNA that enables transcription of the gene. In the absence of an unacylated cognate tRNA, transcription is halted due to the formation of a thermodynamically more stable terminator hairpin. PKZ18 targets the site of the codon-anticodon interaction of the conserved stem I and reduces T-box-controlled gene expression. Here, we show that novel analogs of PKZ18 have improved MICs, bactericidal effects against methicillin-resistant Staphylococcus aureus (MRSA), and increased efficacy in nutrient-limiting conditions. The analogs have reduced cytotoxicity against eukaryotic cells compared to PKZ18. The PKZ18 analogs acted synergistically with aminoglycosides to significantly enhance the efficacy of the analogs and aminoglycosides, further increasing their therapeutic windows. RNA sequencing showed that the analog PKZ18-22 affects expression of 8 of 12 T-box controlled genes in a statistically significant manner, but not other 5'-UTR regulated genes in MRSA. Very low levels of resistance further support the existence of multiple T-box targets for PKZ18 analogs in the cell. Together, the multiple targets, low resistance, and synergy make PKZ18 analogs promising drugs for development and future clinical applications.202033077662
9167150.9835Bioactive proteins from Solanaceae as quorum sensing inhibitors against virulence in Pseudomonas aeruginosa. Cell-to-cell communication or quorum sensing (QS) is a generic event in bacteria that is used to coordinate gene expression among local populations. The phenomenon of QS depends on the fact that presence of sufficient bacteria ascertains a threshold level of autoinducer concentration that allows bacteria to sense a critical cell mass and to activate or repress target genes. Thus, QS has been an attractive target for the development of anti-infective strategies that are not based on the use of antibiotics. Several anti-QS approaches have been demonstrated including natural products from plant-based secondary metabolites. However, the role of plant bioactive proteins as an anti-QS peptide is yet to be deciphered. Against a backdrop of ever-increasing antibiotic resistant pathogens, there is a strong need for development of alternative therapeutic strategies. Thus, our hypothesis is that bioactive proteins from the plant family Solanaceae are quorum quenching molecules that can be exploited to develop a therapeutic strategy against virulence. We presume that bioactive proteins will inactivate or inhibit or degrade QS signals from bacteria to prevent cell-to-cell communication and thus inhibit development of virulence in Pseudomonas aeruginosa. Further, the use of proteins as quorum quenchers will delay the bacteria to develop resistance against these quenching molecules.201525777471
6175160.9835Phenotype microarray analysis of the drug efflux systems in Salmonella enterica serovar Typhimurium. A large number of drug efflux transporters have been identified in Salmonella enterica serovar Typhimurium, and increased expression of these transporters confers drug resistance in this organism. Here we compared the respiration activities of the wild-type strain and a mutant with nine deleted transporters by phenotype microarray analysis. The mutant was susceptible to 66 structurally unrelated compounds including many antibiotics, dyes, detergents, antihistamine agents, plant alkaloids, antidepressants, antipsychotic drugs, and antiprotozoal drugs. To investigate the effect of each transporter on the susceptibilities to these drugs, we used the single transporter mutants, several multiple deletion mutants, and the transporter overexpressor strains to determine minimum inhibitory concentrations of ampicillin, erythromycin, minocycline, ciprofloxacin, orphenadrine, amitriptyline, thioridazine, and chlorpromazine. The data indicate that the increased susceptibilities of the mutant lacking nine transporter genes are mainly dependent on the absence of the acrAB efflux genes as well as the tolC gene. In addition to the AcrAB-TolC efflux system, the results from the overexpressor strains show that AcrEF confers resistance to these compounds as well as AcrAB of Escherichia coli, MexAB-OprM and MexXY-OprM of Pseudomonas aeruginosa. The results highlight the importance of the efflux systems not only for resistance to antibiotics but also for resistance to antihistamine agents, plant alkaloids, antidepressants, antipsychotic drugs, and antiprotozoal drugs.201627210311
621170.9835Activation of ChvG-ChvI regulon by cell wall stress confers resistance to β-lactam antibiotics and initiates surface spreading in Agrobacterium tumefaciens. A core component of nearly all bacteria, the cell wall is an ideal target for broad spectrum antibiotics. Many bacteria have evolved strategies to sense and respond to antibiotics targeting cell wall synthesis, especially in the soil where antibiotic-producing bacteria compete with one another. Here we show that cell wall stress caused by both chemical and genetic inhibition of the essential, bifunctional penicillin-binding protein PBP1a prevents microcolony formation and activates the canonical host-invasion two-component system ChvG-ChvI in Agrobacterium tumefaciens. Using RNA-seq, we show that depletion of PBP1a for 6 hours results in a downregulation in transcription of flagellum-dependent motility genes and an upregulation in transcription of type VI secretion and succinoglycan biosynthesis genes, a hallmark of the ChvG-ChvI regulon. Depletion of PBP1a for 16 hours, results in differential expression of many additional genes and may promote a stress response, resembling those of sigma factors in other bacteria. Remarkably, the overproduction of succinoglycan causes cell spreading and deletion of the succinoglycan biosynthesis gene exoA restores microcolony formation. Treatment with cefsulodin phenocopies depletion of PBP1a and we correspondingly find that chvG and chvI mutants are hypersensitive to cefsulodin. This hypersensitivity only occurs in response to treatment with β-lactam antibiotics, suggesting that the ChvG-ChvI pathway may play a key role in resistance to antibiotics targeting cell wall synthesis. Finally, we provide evidence that ChvG-ChvI likely has a conserved role in conferring resistance to cell wall stress within the Alphaproteobacteria that is independent of the ChvG-ChvI repressor ExoR.202236480495
8799180.9834The membrane-active polyaminoisoprenyl compound NV716 re-sensitizes Pseudomonas aeruginosa to antibiotics and reduces bacterial virulence. Pseudomonas aeruginosa is intrinsically resistant to many antibiotics due to the impermeability of its outer membrane and to the constitutive expression of efflux pumps. Here, we show that the polyaminoisoprenyl compound NV716 at sub-MIC concentrations re-sensitizes P. aeruginosa to abandoned antibiotics by binding to the lipopolysaccharides (LPS) of the outer membrane, permeabilizing this membrane and increasing antibiotic accumulation inside the bacteria. It also prevents selection of resistance to antibiotics and increases their activity against biofilms. No stable resistance could be selected to NV716-itself after serial passages with subinhibitory concentrations, but the transcriptome of the resulting daughter cells shows an upregulation of genes involved in the synthesis of lipid A and LPS, and a downregulation of quorum sensing-related genes. Accordingly, NV716 also reduces motility, virulence factors production, and biofilm formation. NV716 shows a unique and highly promising profile of activity when used alone or in combination with antibiotics against P. aeruginosa, combining in a single molecule anti-virulence and potentiator effects. Additional work is required to more thoroughly understand the various functions of NV716.202236008485
8832190.9834Pharyngeal Pumping and Tissue-Specific Transgenic P-Glycoprotein Expression Influence Macrocyclic Lactone Susceptibility in Caenorhabditis elegans. Macrocyclic lactones (MLs) are widely used drugs to treat and prevent parasitic nematode infections. In many nematode species including a major pathogen of foals, Parascaris univalens, resistance against MLs is widespread, but the underlying resistance mechanisms and ML penetration routes into nematodes remain unknown. Here, we examined how the P-glycoprotein efflux pumps, candidate genes for ML resistance, can modulate drug susceptibility and investigated the role of active drug ingestion for ML susceptibility in the model nematode Caenorhabditis elegans. Wildtype or transgenic worms, modified to overexpress P. univalens PGP-9 (Pun-PGP-9) at the intestine or epidermis, were incubated with ivermectin or moxidectin in the presence (bacteria or serotonin) or absence (no specific stimulus) of pharyngeal pumping (PP). Active drug ingestion by PP was identified as an important factor for ivermectin susceptibility, while moxidectin susceptibility was only moderately affected. Intestinal Pun-PGP-9 expression elicited a protective effect against ivermectin and moxidectin only in the presence of PP stimulation. Conversely, epidermal Pun-PGP-9 expression protected against moxidectin regardless of PP and against ivermectin only in the absence of active drug ingestion. Our results demonstrate the role of active drug ingestion by nematodes for susceptibility and provide functional evidence for the contribution of P-glycoproteins to ML resistance in a tissue-specific manner.202133668460