MEDICALLY - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
260500.9929Satellite tracking of gulls and genomic characterization of faecal bacteria reveals environmentally mediated acquisition and dispersal of antimicrobial-resistant Escherichia coli on the Kenai Peninsula, Alaska. Gulls (Larus spp.) have frequently been reported to carry Escherichia coli exhibiting antimicrobial resistance (AMR E. coli); however, the pathways governing the acquisition and dispersal of such bacteria are not well described. We equipped 17 landfill-foraging gulls with satellite transmitters and collected gull faecal samples longitudinally from four locations on the Kenai Peninsula, Alaska to assess: (a) gull attendance and transitions between sites, (b) spatiotemporal prevalence of faecally shed AMR E. coli, and (c) genomic relatedness of AMR E. coli isolates among sites. We also sampled Pacific salmon (Oncorhynchus spp.) harvested as part of personal-use dipnet fisheries at two sites to assess potential contamination with AMR E. coli. Among our study sites, marked gulls most commonly occupied the lower Kenai River (61% of site locations) followed by the Soldotna landfill (11%), lower Kasilof River (5%) and upper Kenai River (<1%). Gulls primarily moved between the Soldotna landfill and the lower Kenai River (94% of transitions among sites), which were also the two locations with the highest prevalence of AMR E. coli. There was relatively high spatial and temporal variability in AMR E. coli prevalence in gull faeces and there was no evidence of contamination on salmon harvested in personal-use fisheries. We identified E. coli sequence types and AMR genes of clinical importance, with some isolates possessing genes associated with resistance to as many as eight antibiotic classes. Our findings suggest that gulls acquire AMR E. coli at habitats with anthropogenic inputs and subsequent movements may represent pathways through which AMR is dispersed.201930980689
260410.9927Acquisition and dissemination of cephalosporin-resistant E. coli in migratory birds sampled at an Alaska landfill as inferred through genomic analysis. Antimicrobial resistance (AMR) in bacterial pathogens threatens global health, though the spread of AMR bacteria and AMR genes between humans, animals, and the environment is still largely unknown. Here, we investigated the role of wild birds in the epidemiology of AMR Escherichia coli. Using next-generation sequencing, we characterized cephalosporin-resistant E. coli cultured from sympatric gulls and bald eagles inhabiting a landfill habitat in Alaska to identify genetic determinants conferring AMR, explore potential transmission pathways of AMR bacteria and genes at this site, and investigate how their genetic diversity compares to isolates reported in other taxa. We found genetically diverse E. coli isolates with sequence types previously associated with human infections and resistance genes of clinical importance, including bla(CTX-M) and bla(CMY). Identical resistance profiles were observed in genetically unrelated E. coli isolates from both gulls and bald eagles. Conversely, isolates with indistinguishable core-genomes were found to have different resistance profiles. Our findings support complex epidemiological interactions including bacterial strain sharing between gulls and bald eagles and horizontal gene transfer among E. coli harboured by birds. Results suggest that landfills may serve as a source for AMR acquisition and/or maintenance, including bacterial sequence types and AMR genes relevant to human health.201829743625
181120.9927Abundance of clinically relevant antimicrobial resistance genes in the golden jackal (Canis aureus) gut. The spread of antimicrobial resistance (AMR) is a critical One Health issue. Wildlife could act as reservoirs or vehicles of AMR bacteria (ARBs) and AMR genes (ARGs) but are relatively understudied. We sought to investigate clinically relevant ARGs in golden jackals (Canis aureus) thriving near human settlements in Israel. Fecal samples were collected from 111 jackals across four regions over a 10-month period. Various animal and spatio-temporal metadata were collected. Samples were analyzed by quantitative PCR (qPCR) for beta-lactamases (blaTEM, blaCTX-M15, and blaSHV), qnrS and int1. A subset of samples was subject to shotgun metagenomic sequencing followed by resistome and microbiome analyses. qPCR detected a high prevalence of ARGs, including beta-lactamases (blaTEM-1, 96.4%; blaCTX-M-15, 51.4%, blaSHV, 15.3%), fluoroquinolone resistance (qnrS, 87.4%), and class 1 integrons (Int1, 94.6%). The blaTEM-1 gene was found to be more prevalent in adult jackals compared to younger ones. Metagenomic analysis of a subset of samples revealed a diverse gut microbiome harboring a rich resistome with tetracycline resistance genes being the most prevalent. Metagenome-assembled genome analysis further identified several ARGs associated with clinically relevant bacteria. These findings highlight the potential role of golden jackals as reservoirs for AMR and emphasize the need for ongoing surveillance to better understand AMR transmission dynamics at the wildlife-human interface. IMPORTANCE: The research highlights the potential role of the golden jackals as reservoirs for antimicrobial resistance (AMR). The high prevalence of clinically relevant AMR genes in these jackals emphasizes the need for ongoing surveillance and monitoring to better understand AMR transmission dynamics at the wildlife-human interface.202539945541
181630.9926The Role of European Starlings (Sturnus vulgaris) in the Dissemination of Multidrug-Resistant Escherichia coli among Concentrated Animal Feeding Operations. Antimicrobial use in livestock production is a driver for the development and proliferation of antimicrobial resistance (AMR). Wildlife interactions with livestock, acquiring associated AMR bacteria and genes, and wildlife's subsequent dispersal across the landscape are hypothesized to play an important role in the ecology of AMR. Here, we examined priority AMR phenotypes and genotypes of Escherichia coli isolated from the gastrointestinal tracts of European starlings (Sturnus vulgaris) found on concentrated animal feeding operations (CAFOs). European starlings may be present in high numbers on CAFOs (>100,000 birds), interact with urban environments, and can migrate distances exceeding 1,500 km in North America. In this study, 1,477 European starlings from 31 feedlots in five U.S. states were sampled for E. coli resistant to third generation cephalosporins (3G-C) and fluoroquinolones. The prevalence of 3G-C and fluoroquinolone-resistant E. coli was 4% and 10%, respectively. Multidrug resistance in the E. coli isolates collected (n = 236) was common, with the majority of isolates displaying resistance to six or more classes of antibiotics. Genetic analyses of a subset of these isolates identified 94 genes putatively contributing to AMR, including seven class A and C β-lactamases as well as mutations in gyrA and parC recognized to confer resistance to quinolones. Phylogenetic and subtyping assessments showed that highly similar isolates (≥99.4% shared core genome, ≥99.6% shared coding sequence) with priority AMR were found in birds on feedlots separated by distances exceeding 150 km, suggesting that European starlings could be involved in the interstate dissemination of priority AMR bacteria.202032415136
312040.9924Bacterial communities and prevalence of antibiotic resistance genes carried within house flies (Diptera: Muscidae) associated with beef and dairy cattle farms. House flies (Musca domestica Linnaeus) are vectors of human and animal pathogens at livestock operations. Microbial communities in flies are acquired from, and correlate with, their local environment. However, variation among microbial communities carried by flies from farms in different geographical areas is not well understood. We characterized bacterial communities of female house flies collected from beef and dairy farms in Oklahoma, Kansas, and Nebraska using 16S rDNA amplicon sequencing and PCR. Bacterial community composition in house flies was affected by farm type and location. While the shared number of taxa between flies from beef or dairy farms was low, those taxa accounted >97% of the total bacterial community abundance. Bacterial species richness was 4% greater in flies collected from beef than in those collected from dairy farms and varied by farm type within states. Several potential pathogenic taxa were highly prevalent, comprising a core bacterial community in house flies from cattle farms. Prevalence of the pathogens Moraxella bovis and Moraxella bovoculi was greater in flies from beef farms relative to those collected on dairy cattle farms. House flies also carried bacteria with multiple tetracycline and florfenicol resistance genes. This study suggests that the house flies are significant reservoirs and disseminators of microbial threats to human and cattle health.202337612042
287450.9924Detection of multi-drug resistant Escherichia coli in the urban waterways of Milwaukee, WI. Urban waterways represent a natural reservoir of antibiotic resistance which may provide a source of transferable genetic elements to human commensal bacteria and pathogens. The objective of this study was to evaluate antibiotic resistance of Escherichia coli isolated from the urban waterways of Milwaukee, WI compared to those from Milwaukee sewage and a clinical setting in Milwaukee. Antibiotics covering 10 different families were utilized to determine the phenotypic antibiotic resistance for all 259 E. coli isolates. All obtained isolates were determined to be multi-drug resistant. The E. coli isolates were also screened for the presence of the genetic determinants of resistance including ermB (macrolide resistance), tet(M) (tetracycline resistance), and β-lactamases (bla OXA, bla SHV, and bla PSE). E. coli from urban waterways showed a greater incidence of antibiotic resistance to 8 of 17 antibiotics tested compared to human derived sources. These E. coli isolates also demonstrated a greater incidence of resistance to higher numbers of antibiotics compared to the human derived isolates. The urban waterways demonstrated a greater abundance of isolates with co-occurrence of antibiotic resistance than human derived sources. When screened for five different antibiotic resistance genes conferring macrolide, tetracycline, and β-lactam resistance, clinical E. coli isolates were more likely to harbor ermB and bla OXA than isolates from urban waterway. These results indicate that Milwaukee's urban waterways may select or allow for a greater incidence of multiple antibiotic resistance organisms and likely harbor a different antibiotic resistance gene pool than clinical sources. The implications of this study are significant to understanding the presence of resistance in urban freshwater environments by supporting the idea that sediment from urban waterways serves as a reservoir of antibiotic resistance.201525972844
259360.9924Meta-genomic analysis of toilet waste from long distance flights; a step towards global surveillance of infectious diseases and antimicrobial resistance. Human populations worldwide are increasingly confronted with infectious diseases and antimicrobial resistance spreading faster and appearing more frequently. Knowledge regarding their occurrence and worldwide transmission is important to control outbreaks and prevent epidemics. Here, we performed shotgun sequencing of toilet waste from 18 international airplanes arriving in Copenhagen, Denmark, from nine cities in three world regions. An average of 18.6 Gb (14.8 to 25.7 Gb) of raw Illumina paired end sequence data was generated, cleaned, trimmed and mapped against reference sequence databases for bacteria and antimicrobial resistance genes. An average of 106,839 (0.06%) reads were assigned to resistance genes with genes encoding resistance to tetracycline, macrolide and beta-lactam resistance genes as the most abundant in all samples. We found significantly higher abundance and diversity of genes encoding antimicrobial resistance, including critical important resistance (e.g. blaCTX-M) carried on airplanes from South Asia compared to North America. Presence of Salmonella enterica and norovirus were also detected in higher amounts from South Asia, whereas Clostridium difficile was most abundant in samples from North America. Our study provides a first step towards a potential novel strategy for global surveillance enabling simultaneous detection of multiple human health threatening genetic elements, infectious agents and resistance genes.201526161690
263170.9924Identification and genomic features of halotolerant extended-spectrum-β-lactamase (CTX-M)-producing Escherichia coli in urban-impacted coastal waters, Southeast Brazil. We report the occurrence and genomic analysis of extended-spectrum β-lactamase (CTX-M)-producing Escherichia coli in anthropogenically polluted coastal waters of Southeast Brazil. E. coli strains belonging to sequence types (STs) ST10, ST38, ST155 and ST1284 exhibited a wide resistome, with genes conferring resistance to medically relevant antimicrobials and heavy metals, and a halophilic behavior (tolerance to 9-10% NaCl). These findings suggest a heavy contamination in this area by critical priority bacteria adapted to marine environments, which might have negative impacts on human and ocean health.202031733900
570680.9923Comparative Genomic Analysis of Enterococci across Sectors of the One Health Continuum. Enterococci are Gram-positive bacteria that can be isolated from a variety of environments including soil, water, plants, and the intestinal tract of humans and animals. Although they are considered commensals in humans, Enterococcus spp. are important opportunistic pathogens. Due to their presence and persistence in diverse environments, Enterococcus spp. are ideal for studying antimicrobial resistance (AMR) from the One Health perspective. We undertook a comparative genomic analysis of the virulome, resistome, mobilome, and the association between the resistome and mobilome of 246 E. faecium and 376 E. faecalis recovered from livestock (swine, beef cattle, poultry, dairy cattle), human clinical samples, municipal wastewater, and environmental sources. Comparative genomics of E. faecium and E. faecalis identified 31 and 34 different antimicrobial resistance genes (ARGs), with 62% and 68% of the isolates having plasmid-associated ARGs, respectively. Across the One Health continuum, tetracycline (tetL and tetM) and macrolide resistance (ermB) were commonly identified in E. faecium and E. faecalis. These ARGs were frequently associated with mobile genetic elements along with other ARGs conferring resistance against aminoglycosides [ant(6)-la, aph(3')-IIIa], lincosamides [lnuG, lsaE], and streptogramins (sat4). Study of the core E. faecium genome identified two main clades, clade 'A' and 'B', with clade A isolates primarily originating from humans and municipal wastewater and carrying more virulence genes and ARGs related to category I antimicrobials. Overall, despite differences in antimicrobial usage across the continuum, tetracycline and macrolide resistance genes persisted in all sectors.202336985300
264590.9923High prevalence of a gene cluster conferring resistance to streptomycin, sulfonamide, and tetracycline in Escherichia coli isolated from indigenous wild birds. A total of 116 Escherichia coli isolates from cecal contents of 81 indigenous wild birds in Korea were tested for antimicrobial susceptibility. Seventy-one isolates from sparrows (Passer montanus) and one isolate from doves (Columba livia) were resistant to three antimicrobials, including streptomycin, sulfonamide, and tetracycline (SSuT). PCR and subsequent sequence analysis revealed the SSuT gene cluster region (approximately 13 kb) harboring genes encoding resistance to streptomycin (strA and strB), sulfonamide (sul2), and tetracycline (tetB, tetC, tetD, and tetR). In particular, tetracycline resistance genes were located on the transposon Tn10-like element. The SSuT element-harboring E. coli can be an important source of the transmission of antimicrobial resistance to other pathogenic bacteria. Therefore, strict sanitary measures in human and animal environments are necessary to prevent the spread of resistant bacteria through fecal residues of wild birds.202133487603
1806100.9923Seawater is a reservoir of multi-resistant Escherichia coli, including strains hosting plasmid-mediated quinolones resistance and extended-spectrum beta-lactamases genes. The aim of this study was to examine antibiotic resistance (AR) dissemination in coastal water, considering the contribution of different sources of fecal contamination. Samples were collected in Berlenga, an uninhabited island classified as Natural Reserve and visited by tourists for aquatic recreational activities. To achieve our aim, AR in Escherichia coli isolates from coastal water was compared to AR in isolates from two sources of fecal contamination: human-derived sewage and seagull feces. Isolation of E. coli was done on Chromocult agar. Based on genetic typing 414 strains were established. Distribution of E. coli phylogenetic groups was similar among isolates of all sources. Resistances to streptomycin, tetracycline, cephalothin, and amoxicillin were the most frequent. Higher rates of AR were found among seawater and feces isolates, except for last-line antibiotics used in human medicine. Multi-resistance rates in isolates from sewage and seagull feces (29 and 32%) were lower than in isolates from seawater (39%). Seawater AR profiles were similar to those from seagull feces and differed significantly from sewage AR profiles. Nucleotide sequences matching resistance genes bla TEM, sul1, sul2, tet(A), and tet(B), were present in isolates of all sources. Genes conferring resistance to 3rd generation cephalosporins were detected in seawater (bla CTX-M-1 and bla SHV-12) and seagull feces (bla CMY-2). Plasmid-mediated determinants of resistance to quinolones were found: qnrS1 in all sources and qnrB19 in seawater and seagull feces. Our results show that seawater is a relevant reservoir of AR and that seagulls are an efficient vehicle to spread human-associated bacteria and resistance genes. The E. coli resistome recaptured from Berlenga coastal water was mainly modulated by seagulls-derived fecal pollution. The repertoire of resistance genes covers antibiotics critically important for humans, a potential risk for human health.201425191308
1812110.9923Pathogen Detection and Resistome Analysis in Healthy Shelter Dogs Using Whole Metagenome Sequencing. According to the Humane Society, 25 to 40 percent of pet dogs in the United States are adopted from animal shelters. Shelter dogs can harbor bacterial, viral, fungal, and protozoal pathogens, posing risks to canine and human health. These bacterial pathogens may also carry antibiotic resistance genes (ARGs), serving as a reservoir for antimicrobial resistance (AMR) transmission. This study aimed to utilize whole metagenome sequencing (WMS) to screen for microbial pathogens and assess the resistome in healthy shelter dogs. Fecal samples from 58 healthy shelter dogs across 10 shelters in Kentucky, Tennessee, and Virginia were analyzed using WMS. Genomic DNA was extracted, and bioinformatics analyses were performed to identify pathogens and ARGs. The WMS detected 53 potentially zoonotic or known pathogens including thirty-eight bacterial species, two protozoa, five yeast species, one nematode, four molds, and three viruses. A total of 4560 ARGs signatures representing 182 unique genes across 14 antibiotic classes were detected. Tetracycline resistance genes were most abundant (49%), while β-lactam resistance genes showed the highest diversity with 75 unique ARGs. ARGs were predominantly detected in commensal bacteria; however, nearly half (18/38, 47.4%) of known bacterial pathogens detected in this study carried ARGs for resistance to one or more antibiotic classes. This study provides evidence that healthy shelter dogs carry a diverse range of zoonotic and antibiotic-resistant pathogens, posing a transmission risk through fecal shedding. These findings highlight the value of WMS for pathogen detection and AMR surveillance, informing therapeutic and prophylactic strategies to mitigate the transmission of pathogens among shelter dog populations and the risk associated with zoonoses.202539860994
1818120.9923Importance of anthropogenic sources at shaping the antimicrobial resistance profile of a peri-urban mesocarnivore. Anthropogenically derived antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARG) have been detected in wildlife. The likelihood of detecting ARB and ARG in wildlife increases with wildlife exposure to anthropogenic sources of antimicrobial resistance (AMR). Whether anthropogenic sources also increase the risk for AMR to spread in bacteria of wildlife is not well understood. The spread of AMR in bacteria of wildlife can be estimated by examining the richness of ARB and ARG, and the prevalence of ARB that have mobilizable ARG (i.e., ARG that can be transferred across bacteria via plasmids). Here, we investigated whether raccoons (Procyon lotor), with different exposures to anthropogenic sources, differed in prevalence and richness of extended-spectrum cephalosporin-resistant (ESC-R) Escherichia coli, richness of ARG present in ESC-R E. coli, and prevalence of ESC-R E. coli with plasmid-associated ARG. Sampling took place over the course of 10 months at seven sites in Chicago, USA. ESC-R E. coli were isolated from over half of the 211 raccoons sampled and were more likely to be isolated from urban than suburban raccoons. When examining the whole-genome sequences of ESC-R E. coli, 56 sequence types were identified, most of which were associated with the ARG bla(CMY) and bla(CTX-M). A greater richness of ESC-R E. coli sequence types was found at sites with a wastewater treatment plant (WWTP) than without, but no difference was detected based on urban context. ARG richness in ESC-R E. coli did not significantly vary by urban context nor with presence of a WWTP. Importantly, ESC-R E. coli carrying plasmid-associated bla(CTX-M) and bla(CMY) ARG were more likely to be isolated from raccoons sampled at sites with a WWTP than without. Our findings indicate that anthropogenic sources may shape the AMR profile of wildlife, reinforcing the need to prevent dissemination of AMR into the environment.202133401044
1590130.9923Molecular characterization of highly prevalent Escherichia coli and Escherichia marmotae resistant to extended-spectrum cephalosporins in European starlings (Sturnus vulgaris) in Tunisia. European starlings are widespread migratory birds that have already been described as carrying bacteria resistant to extended-spectrum cephalosporins (ESC-R). These birds are well known in Tunisia because they spend the wintertime in this country and are hunted for human consumption. The goal of our study was to estimate the proportion of ESC-R in these birds and to characterize the collected isolates using whole-genome sequencing. Results showed that 21.5% (42/200) of the birds carried either an extended-spectrum beta-lactamase (ESBL) or an acquired AmpC gene. Diverse bla (CTX-M) genes were responsible for the ESBL phenotype, bla (CTX-M-14) being the most prevalent, while only bla (CMY-2) and one bla (CMY-62) were found in AmpC-positive isolates. Likewise, different genetic determinants carried these resistance genes, including IncHI2, and IncF plasmids for bla (CTX-M) genes and IncI1 plasmids for bla (CMY-2) genes. Three chromosomally encoded bla (CTX-M-15) genes were also identified. Surprisingly, species identification revealed a large proportion (32.7%) of Escherichia marmotae isolates. This species is phenotypically indistinguishable from Escherichia coli and has obviously the same capacity to acquire ESC-R genes. Our data also strongly suggest that at least the IncHI2/pST3 plasmid can spread equally between E. coli and E. marmotae. Given the potential transmission routes between humans and animals, either by direct contact with dejections or through meat preparation, it is important to closely monitor antimicrobial resistance in European starlings in Tunisia and to set up further studies to identify the sources of contamination of these birds. IMPORTANCE The One Health concept highlighted knowledge gaps in the understanding of the transmission routes of resistant bacteria. A major interest was shown in wild migratory birds since they might spread resistant bacteria over long distances. Our study brings further evidence that wild birds, even though they are not directly submitted to antibiotic treatments, can be heavily contaminated by resistant bacteria. Our results identified numerous combinations of resistance genes, genetic supports, and bacterial clones that can spread vertically or horizontally and maintain a high level of resistance in the bird population. Some of these determinants are widespread in humans or animals (IncHI2/pST3 plasmids and pandemic clones), while some others are less frequent (atypical IncI1 plasmid and minor clones). Consequently, it is essential to be aware of the risks of transmission and to take all necessary measures to prevent the proportions of resistant isolates from increasing uncontrollably.202337772831
1747140.9923Multidrug-Resistant Salmonella Serotype Anatum in Travelers and Seafood from Asia, United States. A multidrug-resistant Salmonella enterica serotype Anatum strain reported in Taiwan was isolated in the United States from patients and from seafood imported from Asia. Isolates harbored 11 resistance determinants, including quinolone and inducible cephalosporin resistance genes. Most patients had traveled to Asia. These findings underscore the need for global One Health resistance surveillance.202032310060
5320150.9923Antimicrobial resistance genes in microbiota associated with sediments and water from the Akaki river in Ethiopia. The spread of antimicrobial-resistant pathogens is a global health concern. Most studies report high levels of antimicrobial resistance genes (ARGs) in the aquatic environment; however, levels associated with sediments are limited. This study aimed to investigate the distribution of ARGs in the sediments and water of the Akaki river in Addis Ababa, Ethiopia. The diversity and abundance of 84 ARGs and 116 clinically important bacteria were evaluated from the sediments and water collected from five sites in the Akaki river. Most of the ARGs were found in the city close to anthropogenic activities. Water samples collected in the middle catchment of the river contained 71-75% of targeted ARGs, with genes encoding aminoglycoside acetyltransferase (aac(6)-Ib-cr), aminoglycoside adenylyl transferase (aadA1), β-lactamase (bla(OXA-10))(,) quinolone resistance S (qnrS), macrolide efflux protein A (mefA), and tetracycline resistance (tetA), were detected at all sampling sites. Much fewer ARGs were detected in all sediments, and those near the hospitals had the highest diversity and level. Despite the lower levels and diversity, there were no unique ARGs detected in the sediments that were also not detected in the waters. A wide range of clinically relevant pathogens were also detected in the Akaki river. The findings suggest that the water phase, rather than the sediments in the Akaki river, is a potential conduit for the spread of ARGs and antibiotic-resistant bacteria.202235583762
1863160.9923Genomic surveillance of extended-spectrum cephalosporin-resistant Escherichia coli isolated from poultry in the UK from 2016 to 2020. INTRODUCTION: Surveillance is vital for monitoring the increasing risk of antimicrobial resistance (AMR) in bacteria leading to failures in humans and animals to treat infections. In a One Health context, AMR bacteria from livestock and food can transfer through the food chain to humans, and vice versa, which can be characterized in detail through genomics. We investigated the critical aspects of AMR and the dynamics of AMR in poultry in the UK. METHODS: In this study, we performed whole genome sequencing for genomic characterization of 761 extended-spectrum cephalosporinases (ESCs) harboring Escherichia coli isolated from poultry caeca and meat through EU harmonized monitoring of AMR in zoonotic and commensal bacteria from 2016 and 2018 and UK national monitoring in 2020. RESULTS: The most common ESC in 2016 and 2018 was blaCTX-M-1; however, 2020 had a greater diversity of ESCs with blaCTX-M-55 dominant in chickens and blaCTX-M-15 more prevalent in turkeys. Co-resistance to sulphonamides, tetracycline, and trimethoprim was widespread, and there were several positive correlations between the sequence types (STs) and ESC genes. We identified certain AMR genotypes and STs that were frequent each year but not as successful in subsequent years, e.g., ST350 harboring blaCTX-M-1, sul2, and tetA-v4.Phylogenetic comparison of isolates prevalent in our panel with global ones from the same STs available in public databases showed that isolates from the UK generally clustered together, suggesting greater within-country than between-country transmission. DISCUSSION: We conclude that future genomic surveillance of indicator organisms will be invaluable as it will enable detailed comparisons of AMR between and within neighboring countries, potentially identifying the most successful sequence types, plasmids, or emerging threats.202338352060
3073170.9923A watershed impacted by anthropogenic activities: Microbial community alterations and reservoir of antimicrobial resistance genes. Water is the main resource for maintaining life. Anthropic activities influence the microbial epidemiological chain in watersheds, which can act as ways of disseminating microorganisms resistant to antimicrobial drugs, with impacts on human, animal, and environmental health. Here, we characterized aquatic microbial communities and their resistomes in samples collected along Rio das Ostras watershed during two seasons. Surface water samples were collected at eleven sites from the Jundiá, Iriry, and Rio das Ostras rivers in two seasons (dry and wet season). Microbial DNA was extracted, high-throughput sequenced and screened for antimicrobial resistance genetic (ARG) markers. The physicochemical characteristics and the microbiota data confirmed that Rio das Ostras watershed can be divided into three well defined portions: rural, urban, and marine. Rural areas were enriched by bacteria typically found in limnic environments and Patescibacteria phyla. The urban portion was characterized by sites with low pH and groups associated with iron oxidation. Some genera of clinical relevance were also identified, though in relatively low abundance. The marine site was enriched mainly by Cyanobacteria and bacteria that showed strong correlation with conductivity, salinity, and chloride. Twenty-six ARG markers were identified on the resistome, being found most frequently in the urban area, despite being present in rural sites. Among them were some related to classes of great clinical concern, such as genes coding for extended-spectrum beta-lactamase (bla(CTX-M) and bla(TEM)), resistance to carbapenems (bla(KPC)) and to methicillin by Staphylococcus aureus (mecA). These results broaden our understanding of the microbial community of a watershed impacted by anthropogenic actions. The large number of ARGs detected along the Rio das Ostras watershed contrasts with the small number of microorganisms of clinical relevance observed, suggesting that antimicrobial resistance has arisen from non-clinical environments and microbes. Our results corroborate that freshwater acts as a reservoir of antimicrobial resistance genes.202134328962
5709180.9922Canine Saliva as a Possible Source of Antimicrobial Resistance Genes. While the One Health issues of intensive animal farming are commonly discussed, keeping companion animals is less associated with the interspecies headway of antimicrobial resistance. With the constant advance in veterinary standards, antibiotics are regularly applied in companion animal medicine. Due to the close coexistence of dogs and humans, dog bites and other casual encounters with dog saliva (e.g., licking the owner) are common. According to our metagenome study, based on 26 new generation sequencing canine saliva datasets from 2020 and 2021 reposited in NCBI SRA by The 10,000 Dog Genome Consortium and the Broad Institute within Darwin's Ark project, canine saliva is rich in bacteria with predictably transferable antimicrobial resistance genes (ARGs). In the genome of potentially pathogenic Bacteroides, Capnocytophaga, Corynebacterium, Fusobacterium, Pasteurella, Porphyromonas, Staphylococcus and Streptococcus species, which are some of the most relevant bacteria in dog bite infections, ARGs against aminoglycosides, carbapenems, cephalosporins, glycylcyclines, lincosamides, macrolides, oxazolidinone, penams, phenicols, pleuromutilins, streptogramins, sulfonamides and tetracyclines could be identified. Several ARGs, including ones against amoxicillin-clavulanate, the most commonly applied antimicrobial agent for dog bites, were predicted to be potentially transferable based on their association with mobile genetic elements (e.g., plasmids, prophages and integrated mobile genetic elements). According to our findings, canine saliva may be a source of transfer for ARG-rich bacteria that can either colonize the human body or transport ARGs to the host bacteriota, and thus can be considered as a risk in the spread of antimicrobial resistance.202236358144
5720190.9922Exploring the Bacteriome and Resistome of Humans and Food-Producing Animals in Brazil. The epidemiology of antimicrobial resistance (AMR) is complex, with multiple interfaces (human-animal-environment). In this context, One Health surveillance is essential for understanding the distribution of microorganisms and antimicrobial resistance genes (ARGs). This report describes a multicentric study undertaken to evaluate the bacterial communities and resistomes of food-producing animals (cattle, poultry, and swine) and healthy humans sampled simultaneously from five Brazilian regions. Metagenomic analysis showed that a total of 21,029 unique species were identified in 107 rectal swabs collected from distinct hosts, the highest numbers of which belonged to the domain Bacteria, mainly Ruminiclostridium spp. and Bacteroides spp., and the order Enterobacterales. We detected 405 ARGs for 12 distinct antimicrobial classes. Genes encoding antibiotic-modifying enzymes were the most frequent, followed by genes related to target alteration and efflux systems. Interestingly, carbapenemase-encoding genes such as bla(AIM-1), bla(CAM-1), bla(GIM-2), and bla(HMB-1) were identified in distinct hosts. Our results revealed that, in general, the bacterial communities from humans were present in isolated clusters, except for the Northeastern region, where an overlap of the bacterial species from humans and food-producing animals was observed. Additionally, a large resistome was observed among all analyzed hosts, with emphasis on the presence of carbapenemase-encoding genes not previously reported in Latin America. IMPORTANCE Humans and food production animals have been reported to be important reservoirs of antimicrobial resistance (AMR) genes (ARGs). The frequency of these multidrug-resistant (MDR) bacteria tends to be higher in low- and middle-income countries (LMICs), due mainly to a lack of public health policies. Although studies on AMR in humans or animals have been carried out in Brazil, this is the first multicenter study that simultaneously collected rectal swabs from humans and food-producing animals for metagenomics. Our results indicate high microbial diversity among all analyzed hosts, and several ARGs for different antimicrobial classes were also found. As far as we know, we have detected for the first time ARGs encoding carbapenemases, such as bla(AIM-1), bla(CAM-1), bla(GIM-2), and bla(HMB-1), in Latin America. Thus, our results support the importance of metagenomics as a tool to track the colonization of food-producing animals and humans by antimicrobial-resistant bacteria. In addition, a network surveillance system called GUARANI, created for this study, is ready to be expanded and to collect additional data.202235993730