MEDIAN - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
82800.9925Screening for Resistant Bacteria, Antimicrobial Resistance Genes, Sexually Transmitted Infections and Schistosoma spp. in Tissue Samples from Predominantly Vaginally Delivered Placentae in Ivory Coast and Ghana. Medical complications during pregnancy have been frequently reported from Western Africa with a particular importance of infectious complications. Placental tissue can either become the target of infectious agents itself, such as, e.g., in the case of urogenital schistosomiasis, or be subjected to contamination with colonizing or infection-associated microorganisms of the cervix or the vagina during vaginal delivery. In the retrospective cross-sectional assessment presented here, the quantitative dimension of infection or colonization with selected resistant or pathogenic bacteria and parasites was regionally assessed. To do so, 274 collected placental tissues from Ivory Coastal and Ghanaian women were subjected to selective growth of resistant bacteria, as well as to molecular screening for beta-lactamase genes, Schistosoma spp. and selected bacterial causative agents of sexually transmitted infections (STI). Panton-Valentine-negative methicillin-resistant Staphylococcus aureus (MRSA) was grown from 1.8% of the tissue samples, comprising the spa types t008 and t688, as well as the newly detected ones, t12101 (n = 2) and t12102. While the culture-based recovery of resistant Enterobacterales and nonfermentative rod-shaped Gram-negative bacteria failed, molecular assessments confirmed beta-lactamase genes in 31.0% of the samples with multiple detections of up to four resistance genes per sample and bla(CTX-M), bla(IMP), bla(GES), bla(VIM), bla(OXA-58)-like, bla(NDM), bla(OXA-23)-like, bla(OXA-48)-like and bla(KPC) occurring in descending order of frequency. The beta-lactamase genes bla(OXA-40/24)-like, bla(NMC_A/IMI), bla(BIC), bla(SME), bla(GIM) and bla(DIM) were not detected. DNA of the urogenital schistosomiasis-associated Schistosoma haematobium complex was recorded in 18.6% of the samples, but only a single positive signal for S. mansoni with a high cycle-threshold value in real-time PCR was found. Of note, higher rates of schistosomiasis were observed in Ghana (54.9% vs. 10.3% in Ivory Coast) and Cesarean section was much more frequent in schistosomiasis patients (61.9% vs. 14.8% in women without Schistosoma spp. DNA in the placenta). Nucleic acid sequences of nonlymphogranuloma-venereum-associated Chlamydia trachomatis and of Neisseria gonorrhoeae were recorded in 1.1% and 1.9% of the samples, respectively, while molecular attempts to diagnose Treponema pallidum and Mycoplasma genitalium did not lead to positive results. Molecular detection of Schistosoma spp. or STI-associated pathogens was only exceptionally associated with multiple resistance gene detections in the same sample, suggesting epidemiological distinctness. In conclusion, the assessment confirmed considerable prevalence of urogenital schistosomiasis and resistant bacterial colonization, as well as a regionally expected abundance of STI-associated pathogens. Continuous screening offers seem advisable to minimize the risks for the pregnant women and their newborns.202337623959
147510.9921Evaluation of the FilmArray(®) Pneumonia Plus Panel for Rapid Diagnosis of Hospital-Acquired Pneumonia in Intensive Care Unit Patients. The FilmArray(®) Pneumonia plus Panel (FAPP) is a new multiplex molecular test for hospital-acquired pneumonia (HAP), which can rapidly detect 18 bacteria, 9 viruses, and 7 resistance genes. We aimed to compare the diagnosis performance of FAPP with conventional testing in 100 intensive care unit (ICU) patients who required mechanical ventilation, with clinically suspected HAP. A total of 237 samples [76 bronchoalveolar lavages (BAL(DS)) and 82 endotracheal aspirates (ETA(DS)) obtained at HAP diagnosis, and 79 ETA obtained during follow-up (ETA(TT))], were analyzed independently by routine microbiology testing and FAPP. 58 patients had paired BAL(DS) and ETA(DS). The positivity thresholds of semi-quantified bacteria were 10(3)-10(4) CFUs/mL or 10(4) copies/mL for BAL, and 10(5) CFUs/mL or copies/mL for ETA. Respiratory commensals (H. influenzae, S. aureus, E. coli, S. pneumoniae) were the most common pathogens. Discordant results for bacterial identification were observed in 33/76 (43.4%) BAL(DS) and 36/82 (43.9%) ETA(DS), and in most cases, FAPP identified one supplemental bacteria (23/33 BAL(DS) and 21/36 ETA(DS)). An absence of growth, or polybacterial cultures, explained almost equally the majority of the non-detections in culture. No linear relationship was observed between bin and CFUs/mL variables. Concordant results between paired BAL(DS) and ETA(DS) were obtained in 46/58 (79.3%) patients with FAPP. One of the 17 resistance genes detected with FAPP (mecA/C and MREJ) was not confirmed by conventional testing. Overall, FAPP enhanced the positivity rate of diagnostic testing, with increased recognition of coinfections. Implementing this strategy may allow clinicians to make more timely and informed decisions.202032983057
125220.9919Fluoroquinolone resistance in bacterial isolates from ocular infections: Trend in antibiotic susceptibility patterns between 2005-2020. PURPOSE: To assess the fluoroquinolone resistance pattern and trends among bacterial isolates from ocular infections over a 16-year period and explore alternative antibiotics in fluoroquinolone-resistant strains. METHODS: In this retrospective, longitudinal study, the microbiology laboratory records of patients with different ocular infections diagnosed at an eye institute in central India from 2005-2020 were reviewed to determine the pattern of fluoroquinolone (ciprofloxacin, ofloxacin, gatifloxacin, and moxifloxacin) resistance. Antibiotic susceptibility testing was done using the Kirby-Bauer disc diffusion method. RESULTS: In 725 Gram-positive bacteria, the resistance of ciprofloxacin, ofloxacin, gatifloxacin, and moxifloxacin was 55.9% (95% confidence interval [CI]: 52.2 - 59.6), 42.7% (95% CI: 39.0 - 46.4), 47.6% (95% CI: 43.9 - 51.3), and 45.6% (95% CI: 41.7-49.5), respectively. In 266 Gram-negative bacteria, the resistance of ciprofloxacin, ofloxacin, gatifloxacin, and moxifloxacin was 57.9% (95% CI: 51.9 - 63.9), 56.0% (95% CI: 49.7 - 62.1), 59.9% (95% CI: 53.8 - 66.0), and 74.3% (95% CI: 68.3 - 80.2), respectively. A declining trend in resistance to ciprofloxacin (P < 0.001), ofloxacin (P < 0.001), and moxifloxacin (P < 0.001) was seen in Gram-positive bacteria, whereas a reduction in resistance to only moxifloxacin (P = 0.04) was seen in Gram-negative bacteria. In fluoroquinolone-resistant Gram-positive bacteria, cefuroxime exhibited the highest susceptibility, whereas in fluoroquinolone-resistant Gram-negative bacteria, colistin exhibited the highest susceptibility. CONCLUSION: Fluoroquinolone resistance was high among bacteria from ocular infections in central India, but a declining trend in resistance to some of the fluoroquinolones was observed in recent times. Cefuroxime and colistin emerged as alternatives in fluoroquinolone-resistant Gram-positive and Gram-negative bacterial infections, respectively.202236453351
125130.9918Biofilm Formation and Plasmid-Mediated Quinolone Resistance Genes at Varying Quinolone Inhibitory Concentrations in Quinolone-Resistant Bacteria Superinfecting COVID-19 Inpatients. The likelihood of antimicrobial failure in COVID-19 patients with bacterial superinfection arises from both phenotypic (biofilms) and genotypic mechanisms. This cross-sectional study aimed to determine the inhibitory concentrations of quinolones-nalidixic acid, norfloxacin, ciprofloxacin, ofloxacin, and levofloxacin-in biofilm formers (minimum biofilm inhibitory concentration [MBIC]) and nonformers (minimum inhibitory concentration [MIC]) and correlate inhibitory concentrations with plasmid-mediated quinolone resistance (PMQR) genes in quinolone-resistant bacteria isolated from COVID-19 inpatients. Quinolone-resistant bacteria (n = 193), verified through disc diffusion, were tested for quinolone inhibitory concentrations using broth microdilution and biofilm formation using microtiter plate methods. The polymerase chain reaction was used to detect PMQR genes. Study variables were analyzed using SPSS v.17.0, with a significance level set at P <0.05. MIC-to-MBIC median fold increases for ciprofloxacin, ofloxacin, and levofloxacin were 128 (2-8,192), 64 (4-1,024), and 32 (4-512) in gram-positive cocci (GPC, n = 43), respectively, whereas they were 32 (4-8,192), 32 (4-2,048), and 16 (2-1,024) in fermentative gram-negative bacilli (F-GNB, n = 126) and 16 (4-4,096), 64 (2-64), and 16 (8-512) in nonfermentative gram-negative bacilli (NF-GNB, n = 24). In biofilm-forming F-GNB and NF-GNB, qnrB (10/32 versus 3/10), aac(6')-Ib-cr (10/32 versus 4/10), and qnrS (9/32 versus 0/10) genes were detected. A 32-fold median increase in the MIC-to-MBIC of ciprofloxacin was significantly (P <0.05) associated with qnrA in F-GNB and qnrS in NF-GNB. Biofilms formed by F-GNB and NF-GNB were significantly associated with the aac(6')-Ib-cr and qnrS genes, respectively. Nearly one-third of the superinfecting bacteria in COVID-19 patients formed biofilms and had at least one PMQR gene, thus increasing the need for quinolones at higher inhibitory concentrations.202539561392
148740.9917Potential impact of a microarray-based nucleic acid assay for rapid detection of Gram-negative bacteria and resistance markers in positive blood cultures. We evaluated the Verigene Gram-negative blood culture (BC-GN) test, a microarray that detects Gram-negative bacteria and several resistance genes. A total of 102 positive blood cultures were tested, and the BC-GN test correctly identified 97.9% of the isolates within its panel. Resistance genes (CTX-M, KPC, VIM, and OXA genes) were detected in 29.8% of the isolates, with positive predictive values of 95.8% (95% confidence interval [CI], 87.7% to 98.9%) in Enterobacteriaceae and 100% (95% CI, 75.9% to 100%) in Pseudomonas aeruginosa and negative predictive values of 100% (95% CI, 93.9% to 100%) and 78.6% (95% CI, 51.0% to 93.6%), respectively.201424478405
125350.9916Phenotypic and Genotypic Assessment of Antibiotic Resistance and Genotyping of vacA, cagA, iceA, oipA, cagE, and babA2 Alleles of Helicobacter pylori Bacteria Isolated from Raw Meat. BACKGROUND: Foodstuffs with animal origins, particularly meat, are likely reservoirs of Helicobacter pylori. PURPOSE: An existing survey was accompanied to assess phenotypic and genotypic profiles of antibiotic resistance and genotyping of vacA, cagA, cagE, iceA, oipA, and babA2 alleles amongst the H. pylori bacteria recovered from raw meat. METHODS: Six-hundred raw meat samples were collected and cultured. H. pylori isolates were tested using disk diffusion and PCR identification of antibiotic resistance genes and genotyping. RESULTS: Fifty-two out of 600 (8.66%) raw meat samples were contaminated with H. pylori. Raw ovine meat (13.07%) had the uppermost contamination. H. pylori bacteria displayed the uppermost incidence of resistance toward tetracycline (82.69%), erythromycin (80.76%), trimethoprim (65.38%), levofloxacin (63.46%), and amoxicillin (63.46%). All H. pylori bacteria had at least resistance toward one antibiotic, even though incidence of resistance toward more than eight antibiotics was 28.84%. Total distribution of rdxA, pbp1A, gyrA, and cla antibiotic resistance genes were 59.61%, 51.92%, 69.23%, and 65.38%, respectively. VacA s1a (84.61%), s2 (76.92%), m1a (50%), m2 (39.13%), iceA1 (38.46%), and cagA (55.76%) were the most generally perceived alleles. S1am1a (63.46%), s2m1a (53.84%), s1am2 (51.92%), and s2m2 (42.30%) were the most generally perceived genotyping patterns. Frequency of cagA-, oipA-, and babA2- genotypes were 44.23%, 73.07%, and 80.76%, respectively. A total of 196 combined genotyping patterns were also perceived. CONCLUSION: The role of raw meat, particularly ovine meat, in transmission of virulent and resistant H. pylori bacteria was determined. VacA and cagA genotypes had the higher incidence. CagE-, babA2-, and oipA- H. pylori bacteria had the higher distribution. Supplementary surveys are compulsory to originate momentous relations between distribution of genotypes, antibiotic resistance, and antibiotic resistance genes.202032099418
142160.9916Predominance of Acinetobacter spp., Harboring the bla(IMP) Gene, Contaminating the Hospital Environment in a Tertiary Hospital in Mwanza, Tanzania: A Cross-Sectional Laboratory-Based Study. Data on colonization and hospital contamination of carbapenem-resistant Gram-negative bacteria (CR-GNB) are limited in low- and middle-income countries. We designed this study to determine the prevalence and co-existence of carbapenemase genes among CR-GNB isolated from clinical, colonization, and hospital environmental samples at a tertiary hospital in Mwanza, Tanzania. The modified Hodge test (MHT), the combined disk test (CDT), and the double-disk synergy test (DDST) were used for the phenotypic detection of carbapenemases. A multiplex PCR assay was used to detect bla(IMP) and bla(KPC), and a singleplex PCR assay was used to detect bla(OXA-48). Data were analyzed by STATA version 13.0. Overall, 68.8% (44/64) of the CR-GNB had at least one phenotype by phenotypic methods, whereby 60.9% (39/64) were both CDT and DDST positive and 31.3% (20/64) were MHT positive. A total of 23/64 (35.9%) had at least one of the genes tested with the predominance of bla(IMP) (91.3%; 21/23). In addition, 47.7% (21/44) of the CR-GNB phenotypes had at least one gene. Around 47.8% (11/23) of the CR-GNB carried multiple genes encoding for carbapenem resistance, with the maximum co-existence of bla(IMP)/bla(KPC)/bla(OXA-48) (45.5%; 5/11). The majority of carbapenem-resistant genes were detected in Acinetobacter spp. (82.6%; 19/23) and isolated from bed swabs (69.6%; 16/23). Acinetobacter spp. carrying the bla(IMP) gene predominantly contaminated the hospital environment. Therefore, we recommend routine decontamination of inanimate hospital surfaces, including patient beds.202235056011
140770.9915World Health Organization priority antimicrobial resistance in Enterobacterales, Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus faecium healthcare-associated bloodstream infections in Brazil (ASCENSION): a prospective, multicentre, observational study. BACKGROUND: Carbapenem-resistant Enterobacterales (CRE), Acinetobacter baumannii (CRAB), Pseudomonas aeruginosa (CRPA), methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE) are listed by World Health Organization (WHO) as priority antimicrobial-resistant bacteria. Data on WHO Priority Antimicrobial resistance Phenotype (WPAP) bacteria from low- and middle-income countries are scarce. In this study, we investigated the occurrence of WPAP in healthcare-associated bloodstream infections (BSI) in Brazil, an upper-middle-income country in South America. METHODS: ASCENSION was a prospective, multicentre, observational study conducted in 14 hospitals from four of five Brazilian regions. Enterobacterales, A. baumannii, P. aeruginosa, S. aureus and E. faecium BSIs in hospitalised patients were analysed. The primary outcome was the frequency of WPAP among all bacteria of interest. Secondary outcomes were incidence-density of bacteria isolates in hospitalised patients, WPAP proportions within bacterial species, and 28-day mortality. PCR for carbapenemase genes was performed in carbapenem-resistant Gram-negative bacteria. FINDINGS: Between August 15, 2022, and August 14, 2023, 1350 isolates (1220 BSI episodes) were included. WPAP accounted for 38.8% (n = 524; 95% Confidence Interval 32.0-46.1) of all isolates, with CRE (19.3%) as the most frequent, followed by CRAB (9.6%), MRSA (4.9%), VRE (2.7%), and CRPA (2.4%). Incidence-density of all and WPAP isolates were 1.91 and 0.77/1000 patients-day, respectively. Carbapenem-resistant Klebsiella pneumoniae (CRKP) was the most common CRE, corresponding to 14.2% of all BSIs. A. baumannii isolates presented the highest proportion of WPAP (87.8%). Mortality rates were higher in patients with BSIs by WPAP than non-WPAP isolates. KPC (64.4%) was the predominant carbapenemase in CRE, followed by NDM (28.4%) and KPC + NDM co-production (7.1%). OXA-23 was the most frequent in CRAB. INTERPRETATION: A high frequency of WPAP bacteria, particularly CRKP and CRAB, were found in healthcare-associated BSIs in Brazil, posing them as a major public health problem in this country. FUNDING: National Council for Scientific and Technological Development, Brazil.202539957800
141080.9915A high prevalence of multi-drug resistant Gram-negative bacilli in a Nepali tertiary care hospital and associated widespread distribution of Extended-Spectrum Beta-Lactamase (ESBL) and carbapenemase-encoding genes. BACKGROUND: Multi-drug resistance (MDR) and extensive-drug resistance (XDR) associated with extended-spectrum beta-lactamases (ESBLs) and carbapenemases in Gram-negative bacteria are global public health concerns. Data on circulating antimicrobial resistance (AMR) genes in Gram-negative bacteria and their correlation with MDR and ESBL phenotypes from Nepal is scarce. METHODS: A retrospective study was performed investigating the distribution of ESBL and carbapenemase genes and their potential association with ESBL and MDR phenotypes in E. coli, Klebsiella spp., Enterobacter spp. and Acinetobacter spp. isolated in a major tertiary hospital in Kathmandu, Nepal, between 2012 and 2018. RESULTS: During this period, the hospital isolated 719 E. coli, 532 Klebsiella spp., 520 Enterobacter spp. and 382 Acinetobacter spp.; 1955/2153 (90.1%) of isolates were MDR and half (1080/2153) were ESBL producers. Upon PCR amplification, bla(TEM) (1281/1771; 72%), bla(CTXM-1) (930/1771; 53%) and bla(CTXM-8) (419/1771; 24%) were the most prevalent ESBL genes in the enteric bacilli. Bla(OXA) and bla(OXA-51) were the most common bla(OXA) family genes in the enteric bacilli (918/1771; 25%) and Acinetobacter spp. (218/382; 57%) respectively. Sixteen percent (342/2153) of all isolates and 20% (357/1771) of enteric bacilli harboured bla(NDM-1) and bla(KPC) carbapenemase genes respectively. Of enteric bacilli, Enterobacter spp. was the most frequently positive for bla(KPC) gene (201/337; 60%). The presence of each bla(CTX-M) and bla(OXA) were significantly associated with non-susceptibility to third generation cephalosporins (OR 14.7, p < 0.001 and OR 2.3, p < 0.05, respectively).The presence of each bla(TEM), bla(CTXM) and bla(OXA) family genes were significantly associated with ESBL positivity (OR 2.96, p < 0.001; OR 14.2, p < 0.001 and OR 1.3, p < 0.05 respectively) and being MDR (OR 1.96, p < 0.001; OR 5.9, p < 0.001 and OR 2.3, p < 0.001 respectively). CONCLUSIONS: This study documents an alarming level of AMR with high prevalence of MDR ESBL- and carbapenemase-positive ESKAPE microorganisms in our clinical setting. These data suggest a scenario where the clinical management of infected patients is increasingly difficult and requires the use of last-resort antimicrobials, which in turn is likely to intensify the magnitude of global AMR crisis.202033087115
147990.9915BioFire FilmArray BCID2 versus VITEK-2 System in Determining Microbial Etiology and Antibiotic-Resistant Genes of Pathogens Recovered from Central Line-Associated Bloodstream Infections. Central line-associated bloodstream infection (CLABSI) is among the most serious hospital acquired infections. Therefore, the rapid detection of the causative microorganism is of crucial importance to allow for the appropriate antimicrobial therapy. In the present study, we analyzed the clinical performance of the BioFire FilmArray Blood Culture Identification 2 (BCID2) panel in the identification of 33 microbial species and 10 antibiotic resistance genes in comparison to the VITEK-2 system. A total of 104 blood specimens were included. The FilmArray BCID2 results were concordant with the VITEK-2 system in 69/97 specimens (71.1%). Non-concordance was either due to the detection of more pathogens by the FilmArray BCID2 23/28 (82%) or microbial species were misidentified 5/28 (18%). Hence, in comparison to the VITEK-2 system, the FilmArray BCID2 panel showed an overall sensitivity of 75.8% (95% CI, 66-83%) and an overall specificity of 98% (95% CI, 97-98.8%) in detecting microbial species. For the resistance genes, the FilmArray BCID was able to detect the presence of blaCTX-M gene in 23 Gram-negative isolates, blaNDM and blaOXA-48- like genes in 14 and 13 isolates, respectively. The mecA and mecC genes were found in 23 Staphylococcus species, while mecA, mecC and MREJ genes were found in 4 Staphylococcus aureus isolates. The sensitivity and specificity for detecting resistance genes by the FilmArray BCID2 was 90% (95% CI, 81.4-95%) and 99.6% (95% CI, 99-100%), respectively. As concluded, the present study emphasizes the high sensitivity and specificity of the FilmArray BCID2 in the rapid and reliable detection of different bacteria and fungi from positive blood culture bottles, as well as the accurate detection of various antibiotic resistance markers.202236358274
1411100.9915Detection and characterization of carbapenem resistant Gram-negative bacilli isolates recovered from hospitalized patients at Soba University Hospital, Sudan. BACKGROUND: Antimicrobial resistance (AMR) poses a complex threat to global health security and universal health coverage. Recently, nosocomial infections with carbapenemase-producing Gram-negative bacilli (GNB) is increasing worldwide. We report the molecular characterization and detection of genes associated with carbapenemase producing Gram negative bacteria isolated from hospitalized patients at Soba University Hospital (SUH) in Khartoum State, Sudan. RESULTS: Between October 2016 and February 2017, a total of 206 GNB clinical specimens were collected from hospitalized patients in SUH. Of 206 carbapenem resistance isolates, 171 (83 %) were confirmed as phenotypically resistant and 121 (58.7 %) isolates harboured one or more carbapenemase genes. New Delhi metallo-β-lactamase (NDM) types were the most predominant genes, blaNDM 107(52 %), followed by blaIMP 7 (3.4 %), blaOXA-48 5(2.4 %) and blaVIM 2 (0.9 %). Co-resistance genes with NDM producing GNB were detected in 87 (81.3 %) of all blaNDM producing isolates. NDM-1 was the most frequent subtype observed in 75 (70 %) blaNDM producing isolates. The highest percentage of resistance was recorded in ampicillin (98 %), cephalexin (93.5 %) amoxicillin clavulanic acid (90 %), cefotaxime (89.7 %), ceftriaxone (88.4 %), ceftazidime (84.2 %), sulfamethoxazole-trimethoprim (78.4 %) and nitrofurantoin (75.2 %), aztreonam (66 %) and temocillin (64 %). A close correlation between phenotypic and carbapenemase genes detection in all GNB was observed. CONCLUSIONS: The frequency of carbapenemase producing bacilli was found to be high in SUH. NDM was found to be the most prevalent carbapenemase gene among clinical isolates. Close surveillance across all hospitals in Sudan is required. The relative distribution of carbapenemase genes among GNB in nosocomial infections in Africa needs to be defined.202133947325
1412110.9914A highly multiplexed melt-curve assay for detecting the most prevalent carbapenemase, ESBL, and AmpC genes. Resistance to third-generation cephalosporins and carbapenems in Gram-negative bacteria is chiefly mediated by beta-lactamases including extended-spectrum beta-lactamase (ESBL), AmpC, and carbapenemase enzymes. Routine phenotypic detection methods do not provide timely results, and there is a lack of comprehensive molecular panels covering all important markers. An ESBL/carbapenemase high-resolution melt analysis (HRM) assay (SHV, TEM, CTX-M ESBL families, and NDM, IMP, KPC, VIM and OXA-48-like carbapenemases) and an AmpC HRM assay (16S rDNA control, FOX, MOX, ACC, EBC, CIT, and DHA) were designed and evaluated on 111 Gram-negative isolates with mixed resistance patterns. The sensitivity for carbapenemase, ESBL, and AmpC genes was 96.7% (95% confidence interval [CI]: 82.8-99.9%), 93.6% (95% CI: 85.7-97.9%), and 93.8% (95% CI: 82.8-98.7%), respectively, with a specificity of 100% (95% CI: 95.6-100%), 93.9% (95% CI: 79.8-99.3%), and 93.7% (95% CI: 84.5-98.2%). The HRM assays enable the simultaneous detection of the 14 most important ESBL, carbapenemase, and AmpC genes and could be used as a molecular surveillance tool or to hasten detection of antimicrobial resistance for treatment management.202032521424
1476120.9914Evaluation of the BioFire FilmArray Pneumonia Panel for rapid detection of respiratory bacterial pathogens and antibiotic resistance genes in sputum and endotracheal aspirate specimens. OBJECTIVES: The performance of the investigational-use-only version of the BioFire FilmArray Pneumonia Panel (FA-Pneumo), a high-order nested multiplex PCR, was evaluated for the detection of typical respiratory bacterial pathogens and antibiotic resistance genes in sputa and endotracheal aspirate (ETA) specimens. METHODS: Thirty-one sputa and 69 ETA specimens were analyzed. The diagnostic performance of FA-Pneumo was assessed using routine microbiological methods as the reference standard. RESULTS: Overall sensitivity and specificity for organism detection using FA-Pneumo were 98.5% and 76.5%, respectively. The sensitivity for each pathogen was 100%, except for Klebsiella aerogenes, and the range of specificity was 83.3-99.0%. FA-Pneumo detected antimicrobial resistance genes in 17 out of 18 specimens (94.4%) that were resistant by antimicrobial susceptibility testing. FA-Pneumo additionally detected 25 resistance genes in 22 specimens, and sequencing for the presence of resistance genes confirmed the majority of these results (20/25, 80%). Semi-quantitative analysis of bacterial nucleic acid amounts by FA-Pneumo revealed that 88.2% of the identified bacteria (67/76) with ≥10(6) copies/ml also gave culture-positive results with significant amounts of bacteria. CONCLUSIONS: FA-Pneumo is a rapid test with high sensitivity for the detection of bacteria and antimicrobial resistance genes in sputum and ETA specimens and could aid in determining antibiotic therapy.202032179139
1428130.9913Carbapenem-resistant Gram-negative bacteria associated with catheter-related bloodstream infections in three intensive care units in Egypt. We aimed to identify the carbapenem-resistant Gram-negative bacteria (GNB) causing catheter-related bloodstream infections (CRBSI) in intensive care units (ICU) in a tertiary care Egyptian hospital, to study their resistance mechanisms by phenotypic and genetic tests, and to use ERIC-PCR for assessing their relatedness. The study was conducted over 2 years in three ICUs in a tertiary care hospital in Egypt during 2015-2016. We identified 194 bloodstream infections (BSIs); 130 (67.01%) were caused by GNB, of which 57 were isolated from CRBSI patients (73.84%). Identification of isolates was performed using conventional methods and MALDI-TOF MS. Antimicrobial susceptibility testing (AST) was done by disc diffusion following CLSI guidelines. Phenotypic detection of carbapenemases enzymes activity was by modified Hodge test and the Carba-NP method. Isolates were investigated for the most common carbapenemases encoding genes bla(KPC), bla(NDM), and bla(OXA-48) using multiplex PCR. Molecular typing of carbapenem-resistant isolates was done by ERIC-PCR followed by sequencing of common resistance genes. The overall rate of CRBSI in our study was 3.6 per 1000 central venous catheter (CVC) days. Among 57 Gram-negative CRBSI isolates, Klebsiella pneumoniae (K. pneumoniae) was the most frequently isolated (27/57; 47.4%), of which more than 70% were resistant to Meropenem. Phenotypic tests for carbapenemases showed that 37.9% of isolates were positive by modified Hodge test and 63.8% by Carba-NP detection. Multiplex PCR assay detected the bla(NDM) in 28.6% of the isolates and bla(KPC) in 26.8%, bla(NDM) and bla(KPC) were detected together in the same isolate in 5.6%, while bla(OXA-48)-like were not detected. ERIC-PCR detected limited genetic relatedness between K. pneumoniae isolates. Elevated resistance rates were observed to all antibiotics including carbapenems among K. pneumoniae isolates causing CRBSI. ERIC-PCR showed that the resistant isolates were mainly polyclonal. Our results call for reinforcement of antimicrobial stewardship and measures to prevent CRBSI.201829936619
1455140.9913Resistance to bacterial infection, complication occurring after cardiac surgery. To analyze the occurrence of resistant bacterial infection in patients undergoing cardiac surgery hospitalized in the surgical specialty hospital, in Erbil city, Iraq. A prospective study was done on a total of 138 patients operated and hospitalized in an intensive care unit and surgical wards. Bacterial isolates identification was done according to cultural characteristics, microscopic examination, some biochemical tests, analytic Profile Index 20E& API Staph, confirmed with VITEK® 2 compact system (BioMérieux). Antimicrobial susceptibility for disc diffusion tested to 17 antimicrobial agents. Resistance isolates were confirmed phenotypically for carbapenemase by Rapidec Carba NP Test (bioMe´rieux SA, Marcy-l'E´toile, France) for ESBLs producers by ESBL screening test VITEK 2 system. Molecularly blaIMP blaTEM, blaKPC, AmpC and blaCTX-M were detected by PCR. In 134 patients, 28.3% of patients got infected post-operatively. The most frequent source of isolation was from ICU patients (75%). Isolated bacteria included gram-positive 29 (54.7%) and gram-negative bacteria 24 (45.3%). Most frequently:  Staphylococcus aureus (24.4%), each of pseudomonas aeroginosa, Klebsiella pneumonia (15.1%), Streptococcus spp. (11.3%), Escherichia coli (9.4%). Whereas included Coagulase Negative Staphylococci species (CoNS) (13.2%) and Enterococci species (5.7) Statistical analysis showed significantly higher sensitive isolates as compared with resistance isolates. Resistance to Carbapenems calss was 18.9% and Cephalosporins class 41.5% of isolates. The antimicrobial resistance pattern indicated that MDR bacterial isolates (81.1%) were widespread. Of the 34 phenotypically ESBL positive isolates, the ESBL genes (AmpC, blaCTX-M, and blaTEM) were amplified in 7(20.6), 6(17.6) and 6(17.6) isolates respectively. Out of 8 K. pneumonia (37.5%) harboring both blaAmpC and bla-CTX-M genes, while 6(75%) carries blaTEM. The blaCTX-M gene was found in only 1 (12.5%) out of 8 isolates of P. aeruginosa. While blaAmpC genotyping revealed that 1(7.7%) out of 13 Staph. aureus isolates were harboring it. Finally, 3(60%) out of 5 E. coli isolates harboring both AmpC and bla-CTX-M genes. Cardiac surgery patients wound show increasingly emerging strains of ESBL-producing gram-negative bacteria K. pneumonia, P. aeruginosa and E. coli especially patients prolonged in the intensive care unit.202034174972
1480150.9913Prospective observational pilot study of the T2Resistance panel in the T2Dx system for detection of resistance genes in bacterial bloodstream infections. Early initiation of antimicrobial therapy targeting resistant bacterial pathogens causing sepsis and bloodstream infections (BSIs) is critical for a successful outcome. The T2Resistance Panel (T2R) detects the following resistance genes within organisms that commonly cause BSIs directly from patient blood samples: bla(KPC), bla(CTXM-14/15), bla(NDM)/bla(/IMP)/bla(VIM), bla(AmpC), bla(OXA), vanA, vanB, and mecA/mecC. We conducted a prospective study in two major medical centers for the detection of circulating resistance genes by T2R in patients with BSIs. T2R reports were compared to antimicrobial susceptibility testing (AST), phenotypic identification, and standard molecular detection assays. Among 59 enrolled patients, 25 resistance genes were identified: bla(KPC) (n = 10), bla(NDM)/bla(/IMP)/bla(VIM) (n = 5), bla(CTXM-14/15) (n = 4), bla(AmpC) (n = 2), and mecA/mecC (n = 4). Median time-to-positive-T2R in both hospitals was 4.4 hours [interquartile range (IQR): 3.65-4.97 hours] in comparison to that for positive blood cultures with final reporting of AST of 58.34 h (IQR: 45.51-111.2 hours; P < 0.0001). The sensitivity of T2R to detect the following genes in comparison to AST was 100% for bla(CTXM-14/15), bla(NDM)/bla(/)(IMP)/bla(VIM), bla(AmpC), mecA/mecC and 87.5% for bla(KPC). When monitored for the impact of significant antimicrobial changes, there were 32 events of discontinuation of unnecessary antibiotics and 17 events of escalation of antibiotics, including initiation of ceftazidime/avibactam in six patients in response to positive T2R results for bla(KPC). In summary, T2R markers were highly sensitive for the detection of drug resistance genes in patients with bacterial BSIs, when compared with standard molecular resistance detection systems and phenotypic identification assays while significantly reducing by approximately 90% the time to detection of resistance compared to standard methodology and impacting clinical decisions for antimicrobial therapy. IMPORTANCE: This is the first reported study to our knowledge to identify key bacterial resistance genes directly from the bloodstream within 3 to 5 hours in patients with bloodstream infections and sepsis. The study further demonstrated a direct effect in modifying initial empirical antibacterial therapy in response to T2R signal to treat resistant bacteria causing bloodstream infections and sepsis.202438456690
1454160.9913OCCURRENCE OF AMINOGLYCOSIDES RESISTANCE GENES ACC(6)-IB AND ACC(3)-II AMONG GRAM-NEGATIVE ISOLATES CAUSING URINARY TRACT INFECTION IN PEDIATRIC PATIENTS, NAJAF, IRAQ. OBJECTIVE: The aim: The aim of the study was to detect the antimicrobial susceptibility patterns and frequency of aminoglycosides resistance genes of Gram-negative bacteria isolated from pediatric patient with UTI. PATIENTS AND METHODS: Materials and methods: The study has been performed with a total of 500 urine specimens collected from pediatric patients under the age of 18 year suspected with UTI, admitted to hospitals in Al-Najaf province/Iraq during the period from November 2018 to March 2019. RESULTS: Results: A total of 500 urine specimens had been tested, 120 (24%) had signifficant bacteriuria, while there 380 (76%) had non-signi!cant bacteriuria. Escherichia coli represent about 70 (68.2%) followed by followed by 23 (22.5%) K. pneumoniae, 5 (4.9%) P. aeruginosa, 2 (1.9%) Proteus spp., 1 (0.9%) Enterobacter spp. and 1 (0.9%) Oligella uratolytic. The antimicrobial susceptibility profile of 102 Gram-negative isolates, revealed that 59 (58%) were multidrug resistant (MDR) and 38(37%) were extensive drug resistant (XDR). The PCR results of aminoglycosides resistance showing that 23 (74.1%) Gram-negative isolates had acc(6')-Ib gene and 12 (38.7%) Gram-negative isolates acc(3')-II gene. CONCLUSION: Conclusions: A high frequency of multi-drug resistance and extensive-drug resistance of isolates were recognized, and an alarming percentage of amino-glycosides resistance to acc(6')-Ib and acc(3')-II.202337010165
1233170.9912Prevalence, Antibiogram, and Resistance Profile of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates from Pig Farms in Luzon, Philippines. This cross-sectional study was conducted to determine the prevalence, antibiogram, and resistance profile of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) isolates from healthy pigs and pig farms in Luzon, Philippines. A total of 162 rectal samples from healthy finisher and breeder pigs and boot swab samples from pig houses were collected from 54 randomly selected pig farms. Bacteria were isolated and screened using MacConkey agar plate supplemented with 1 mg/L cefotaxime. Identification of bacteria and antimicrobial susceptibility test were carried out through Vitek(®) 2 and combined disk test. PCR amplifications were carried out in all isolates targeting bla(CTX-M) and its five major groupings, bla(TEM), and bla(SHV). The farm prevalence of ESBL-EC was 57.41% (95% confidence interval [CI] = 43.21-70.77). A total of 48 (29.63%) ESBL-EC isolates were isolated from samples that showed 14 different phenotypic multidrug resistance patterns. The prevalence of bla(CTX-M) gene was 91.67% (95% CI = 80.02-97.68). All major bla(CTX-M-groups) except bla(CTX-M-25group) were detected. The bla(CTX-M-1) was the most prevalent bla(CTX-M) gene, 75.0% (95% CI = 60.40-86.36). The prevalence of bla(TEM) and bla(SHV) genes was 91.67% (95% CI = 80.02-97.68) and 60.42% (95% CI = 45.27-74.23), respectively. Coexistence of different bla(CTX-M), bla(TEM), and bla(SHV) genes was observed in 44 isolates with 20 different genotypic patterns. High prevalence, diverse antibiogram profile, and genotypic resistance pattern of ESBL-EC isolates from healthy pigs and pig farms were observed in this study that could result in possible transmission to farm workers, susceptible bacteria, and the environment.202031532307
1441180.9912Molecular characterisation of carbapenem-resistant Klebsiella pneumoniae clinical isolates: preliminary experience from a tertiary care teaching hospital in the Himalayas. BACKGROUND: There is a lack of whole-genome sequencing (WGS) data on multidrug-resistant (MDR) bacteria from the Uttarakhand region of India. The aim of this study was to generate WGS data of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates recovered from patients in Uttarakhand's tertiary care centre. METHODS: A cross-sectional study included 29 MDR K. pneumoniae test isolates obtained from various clinical samples submitted to the bacteriology laboratory for culture and sensitivity testing from July 2018 to August 2019. After preliminary identification and antibiotic susceptibility testing, these isolates were subjected to WGS. RESULTS: A total of 27 of 29 isolates were CRKP. ST14 was the most common sequence type (n=8 [29.6%]). Carbapenem resistance was mainly encoded by OXA-48-like genes (21/27 [77.8%]). All isolates had a varied arsenal of resistance genes to different antibiotic classes. KL2 (9/27 [33.3%]) and KL51 (8/27 [29.6%]) were dominant K loci types. O1 and O2 together accounted for 88.9% (n=27) of CRKP isolates. Genes encoding yersiniabactin (ybt) and aerobactin (iuc) were identified in 88.9% (24/27) and 29.6% (8/27) of isolates. The predominant plasmid replicons present were ColKP3 (55.5%), IncFII(K) (51.8%) and IncFIB(pQil) (44.4%). CONCLUSIONS: This study emphasises the need for continued genomic surveillance of MDR bacteria that could be instrumental in developing treatment guidelines based on integrating phenotypic and molecular methods.202235029688
1402190.9912Detection of β-lactam resistance genes in Gram-negative bacteria from positive blood cultures using a microchip-based molecular assay. BACKGROUND: Accurate detection of β-lactam resistance genes in bloodstream infections is critical for guiding antimicrobial therapy. This study evaluates the Alifax Gram-negative resistance (GNR) microchip assay for detecting β-lactam resistance genes directly from positive blood cultures (PBCs) for Gram-negative (GN) bacteria, including Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii. METHODS: Simulated (n=146) and clinical (n=106) GN-PBC samples were tested for bla (KPC), bla (VIM), bla (NDM), bla (IMP), bla (OXA-23)-like, bla (OXA-48)-like, bla (SHV)-ESBL, bla (CTX-M-1/9) group, and bla (CMY-2)-like genes using the GNR microchip assay. Whole-genome sequencing (WGS) served as the reference assay for simulated samples and, selectively, for clinical samples. The bioMérieux BioFire Blood Culture Identification 2 (BCID2) panel assay was used as a comparator for clinical samples. RESULTS: The GNR microchip assay correctly identified 203 (99.5%) of 204 β-lactam resistance genes in simulated samples. One sample tested false negative for a bla (SHV)-ESBL gene but true positive for a bla (KPC) gene. In clinical samples, GNR results were concordant with BCID2 for 113 (100%) of 113 genes included in both assays. Additionally, the GNR assay detected bla (CMY-2) -like (n=6), bla (OXA-23)-like (n=5), and bla (SHV)-ESBL (n=2), which are not targeted by BCID2, all confirmed by WGS. In two β-lactam-resistant P. aeruginosa samples but negative by the GNR assay, WGS confirmed the absence of acquired β-lactam resistance genes, suggesting alternative resistance mechanisms. CONCLUSION: The GNR microchip assay demonstrated high concordance and broader β-lactam resistance gene coverage compared to BCID2, supporting its potential role in routine diagnostics. Further validation in larger, prospective studies is warranted.202540529307