MEASURE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
476100.9957Antimicrobial resistance and biofilm formation of penile prosthesis isolates: insights from in-vitro analysis. BACKGROUND: Inflatable penile prostheses (IPPs) have been shown to harbor biofilms in the presence and absence of infection despite exposure to various antimicrobials. Microbes persisting on IPPs following antibiotic exposure have not been adequately studied to assess biofilm formation capacity and antibiotic resistance. AIM: In this study, we aimed to assess these properties of microbes obtained from explanted infected and non-infected IPPS using an in vitro model. METHODS: 35 bacterial isolates were grown and tested against various single-agent or multiple agent antibiotic regimens including: bacitracin, cefaclor, cefazolin, gentamicin, levofloxacin, trimethoprim-sulfamethoxazole, tobramycin, vancomycin, piperacillin/tazobactam, gentamicin + piperacillin/tazobactam, gentamicin + cefazolin, and gentamicin + vancomycin. Zones of inhibition were averaged for each sample site and species. Statistics were analyzed with Holm's corrected, one-sample t-tests against a null hypothesis of 0. Isolates were also allowed to form biofilms in a 96-well polyvinyl plate and absorbance was tested at 570 nm using a microplate reader. OUTCOMES: Resistance was determined via clinical guidelines or previously established literature, and the mean and standard deviation of biofilm absorbance values were calculated and normalized to the optical density600 of the bacterial inoculum. RESULTS: Every species tested was able to form robust biofilms with the exception of Staphylococcus warneri. As expected, most bacteria were resistant to common perioperative antimicrobial prophylaxis. Gentamicin dual therapy demonstrated somewhat greater efficacy. STRENGTHS AND LIMITATIONS: This study examines a broad range of antimicrobials against clinically obtained bacterial isolates. However, not all species and antibiotics tested had standardized breakpoints, requiring the use of surrogate values from the literature. The microbes included in this study and their resistance genes are expectedly biased towards those that survived antibiotic exposure, and thus reflect the types of microbes which might "survive" in vivo exposure following revisional surgery. CLINICAL TRANSLATION: Despite exposure to antimicrobials, bacteria isolated during penile prosthesis revision for both infected and non-infected cases exhibit biofilm forming capacity and extensive antibiotic resistance patterns in vitro. These microbes merit further investigation to understand when simple colonization vs re-infection might occur. CONCLUSIONS: Although increasing evidence supports the concept that all IPPs harbor biofilms, even in the absence of infection, a deeper understanding of the characteristics of bacteria that survive revisional surgery is warranted. This study demonstrated extensive biofilm forming capabilities, and resistance patterns among bacteria isolated from both non-infected and infected IPP revision surgeries. Further investigation is warranted to determine why some devices become infected while others remain colonized but non-infected.202540062463
580310.9957Face mask sampling reveals antimicrobial resistance genes in exhaled aerosols from patients with chronic obstructive pulmonary disease and healthy volunteers. INTRODUCTION: The degree to which bacteria in the human respiratory tract are aerosolised by individuals is not established. Building on our experience sampling bacteria exhaled by individuals with pulmonary tuberculosis using face masks, we hypothesised that patients with conditions frequently treated with antimicrobials, such as chronic obstructive pulmonary disease (COPD), might exhale significant numbers of bacteria carrying antimicrobial resistance (AMR) genes and that this may constitute a previously undefined risk for the transmission of AMR. METHODS: Fifteen-minute mask samples were taken from 13 patients with COPD (five paired with contemporaneous sputum samples) and 10 healthy controls. DNA was extracted from cell pellets derived from gelatine filters mounted within the mask. Quantitative PCR analyses directed to the AMR encoding genes: blaTEM (β-lactamase), ErmB (target methylation), mefA (macrolide efflux pump) and tetM (tetracycline ribosomal protection protein) and six additional targets were investigated. Positive signals above control samples were obtained for all the listed genes; however, background signals from the gelatine precluded analysis of the additional targets. RESULTS: 9 patients with COPD (69%), aerosolised cells containing, in order of prevalence, mefA, tetM, ErmB and blaTEM, while three healthy controls (30%) gave weak positive signals including all targets except blaTEM. Maximum estimated copy numbers of AMR genes aerosolised per minute were mefA: 3010, tetM: 486, ErmB: 92 and blaTEM: 24. The profile of positive signals found in sputum was not concordant with that in aerosol in multiple instances. DISCUSSION: We identified aerosolised AMR genes in patients repeatedly exposed to antimicrobials and in healthy volunteers at lower frequencies and levels. The discrepancies between paired samples add weight to the view that sputum content does not define aerosol content. Mask sampling is a simple approach yielding samples from all subjects and information distinct from sputum analysis. Our results raise the possibility that patient-generated aerosols may be a significant means of AMR dissemination that should be assessed further and that consideration be given to related control measures.201830271606
247220.9956A 'Tuba Drain' incorporated in sink drains reduces counts of antibiotic-resistant bacterial species at the plughole: a blinded, randomized trial in 36 sinks in a hospital outpatient department with a low prevalence of sink colonization by antibiotic-resistant species. BACKGROUND: Multi-resistant Gram-negative bacteria (GNB) survive in hospital drains in traps that contain water and may ascend into the sink because of splashes, or biofilm growth. AIM: To investigate whether the 'Tuba Drain' (TD) a long, bent, continually descending copper tube between the sink outlet and the trap prevents the ascent of bacteria. METHODS: After initial laboratory tests confirmed that the TD prevented bacteria in the U-bend from splashing upwards into the sink outlet, TDs were assessed in a randomized, blinded trial in a hospital outpatient department built in 2019. Sinks were paired into those with a similar clinical exposure and each member of each pair was randomized to receive either new, standard plumbing up to and including the trap (18 sinks) or the same new standard plumbing but including the TD inserted between the sink outlet and trap. Bacterial counts in swabs from the sink outlets were determined blindly before and monthly after the plumbing change for a year. GNB that are associated with clinical infection and carriage of resistance genes, Pseudomonas aeruginosa, Acinetobacter baumanii, Stenotrophomonas maltophilia and all Enterobacterales were the organisms of primary interest and termed target bacteria. FINDINGS: The TDs fitted into the required spaces and functioned without problems. The geometric means (over months) of the counts of target bacteria in TD-plumbed sinks was lower than those in their paired controls, P=0.012 (sign test, two-tailed). Prevalence of target bacteria in sinks was low. CONCLUSION: TDs were effective for reducing target bacteria in sinks.202539515476
476330.9955Epigenetic and Drug Response Modulation of Epigalocaten-In-3-Gallate in Staphylococcus aureus with Divergent Resistance Phenotypes. Healthcare-associated methicillin-resistant Staphylococcus aureus infections represent extremely high morbidity and mortality rates worldwide. We aimed to assess the antimicrobial potential and synergistic effect between Epigalocatenin-3-gallate (EGCG) and different antibiotics in S. aureus strains with divergent resistance phenotypes. EGCG exposure effects in epigenetic and drug resistance key modulators were also evaluated. S. aureus strains (n = 32) were isolated from infected patients in a Lisbon hospital. The identification of the S. aureus resistance phenotype was performed through automatized methods. The antibiotic synergistic assay was performed through disk diffusion according to EUCAST guidelines with co-exposure to EGCG (250, 100, 50 and 25 µg/mL). The bacteria's molecular profile was assessed through FTIR spectroscopy. The transcriptional expression of OrfX, SpdC and WalKR was performed by using qRT-PCR. FTIR-spectroscopy analysis enabled the clear discrimination of MRSA/MSSA strains and the EGCG exposure effect in the bacteria's molecular profiles. Divergent resistant phenotypes were associated with divergent transcriptional expression of the epigenetic modulator OrfX, particularly in MRSA strains, as well as the key drug response modulators SpdC and WalKR. These results clearly demonstrate that EGCG exposure alters the expression patterns of key epigenetic and drug response genes with associated divergent-resistant profiles, which supports its potential for antimicrobial treatment and/or therapeutic adjuvant against antibiotic-resistant microorganisms.202336978386
568740.9954The effect of short-course antibiotics on the resistance profile of colonizing gut bacteria in the ICU: a prospective cohort study. BACKGROUND: The need for early antibiotics in the intensive care unit (ICU) is often balanced against the goal of antibiotic stewardship. Long-course antibiotics increase the burden of antimicrobial resistance within colonizing gut bacteria, but the dynamics of this process are not fully understood. We sought to determine how short-course antibiotics affect the antimicrobial resistance phenotype and genotype of colonizing gut bacteria in the ICU by performing a prospective cohort study with assessments of resistance at ICU admission and exactly 72 h later. METHODS: Deep rectal swabs were performed on 48 adults at the time of ICU admission and exactly 72 h later, including patients who did and did not receive antibiotics. To determine resistance phenotype, rectal swabs were cultured for methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). In addition, Gram-negative bacterial isolates were cultured against relevant antibiotics. To determine resistance genotype, quantitative PCR (qPCR) was performed from rectal swabs for 87 established resistance genes. Within-individual changes in antimicrobial resistance were calculated based on culture and qPCR results and correlated with exposure to relevant antibiotics (e.g., did β-lactam antibiotic exposure associate with a detectable change in β-lactam resistance over this 72-h period?). RESULTS: Of 48 ICU patients, 41 (85%) received antibiotics. Overall, there was no increase in the antimicrobial resistance profile of colonizing gut bacteria during the 72-h study period. There was also no increase in antimicrobial resistance after stratification by receipt of antibiotics (i.e., no detectable increase in β-lactam, vancomycin, or macrolide resistance regardless of whether patients received those same antibiotics). This was true for both culture and PCR. Antimicrobial resistance pattern at ICU admission strongly predicted resistance pattern after 72 h. CONCLUSIONS: Short-course ICU antibiotics made little detectable difference in the antimicrobial resistance pattern of colonizing gut bacteria over 72 h in the ICU. This provides an improved understanding of the dynamics of antimicrobial resistance in the ICU and some reassurance that short-course antibiotics may not adversely impact the stewardship goal of reducing antimicrobial resistance.202032646458
516950.9954Genetic Adaptation and Acquisition of Macrolide Resistance in Haemophilus spp. during Persistent Respiratory Tract Colonization in Chronic Obstructive Pulmonary Disease (COPD) Patients Receiving Long-Term Azithromycin Treatment. Patients with chronic obstructive pulmonary disease (COPD) benefit from the immunomodulatory effect of azithromycin, but long-term administration may alter colonizing bacteria. Our goal was to identify changes in Haemophilus influenzae and Haemophilus parainfluenzae during azithromycin treatment. Fifteen patients were followed while receiving prolonged azithromycin treatment (Hospital Universitari de Bellvitge, Spain). Four patients (P02, P08, P11, and P13) were persistently colonized by H. influenzae for at least 3 months and two (P04 and P11) by H. parainfluenzae. Isolates from these patients (53 H. influenzae and 18 H. parainfluenzae) were included to identify, by whole-genome sequencing, antimicrobial resistance changes and genetic variation accumulated during persistent colonization. All persistent lineages isolated before treatment were azithromycin-susceptible but developed resistance within the first months, apart from those belonging to P02, who discontinued the treatment. H. influenzae isolates from P08-ST107 acquired mutations in 23S rRNA, and those from P11-ST2480 and P13-ST165 had changes in L4 and L22. In H. parainfluenzae, P04 persistent isolates acquired changes in rlmC, and P11 carried genes encoding MefE/MsrD efflux pumps in an integrative conjugative element, which was also identified in H. influenzae P11-ST147. Other genetic variation occurred in genes associated with cell wall and inorganic ion metabolism. Persistent H. influenzae strains all showed changes in licA and hgpB genes. Other genes (lex1, lic3A, hgpC, and fadL) had variation in multiple lineages. Furthermore, persistent strains showed loss, acquisition, or genetic changes in prophage-associated regions. Long-term azithromycin therapy results in macrolide resistance, as well as genetic changes that likely favor bacterial adaptation during persistent respiratory colonization. IMPORTANCE The immunomodulatory properties of azithromycin reduce the frequency of exacerbations and improve the quality of life of COPD patients. However, long-term administration may alter the respiratory microbiota, such as Haemophilus influenzae, an opportunistic respiratory colonizing bacteria that play an important role in exacerbations. This study contributes to a better understanding of COPD progression by characterizing the clinical evolution of H. influenzae in a cohort of patients with prolonged azithromycin treatment. The emergence of macrolide resistance during the first months, combined with the role of Haemophilus parainfluenzae as a reservoir and source of resistance dissemination, is a cause for concern that may lead to therapeutic failure. Furthermore, genetic variations in cell wall and inorganic ion metabolism coding genes likely favor bacterial adaptation to host selective pressures. Therefore, the bacterial pathoadaptive evolution in these severe COPD patients raise our awareness of the possible spread of macrolide resistance and selection of host-adapted clones.202336475849
476660.9954Evaluation of ethanol and EDTA concentrations in the expression of biofilm-producing smf-1, rpfF genes in XDR clinical isolates of Stenotrophomonas maltophilia. BACKGROUND: Stenotrophomonas maltophilia is able to cause infections in immunocompromised patients, and the treatment of this opportunistic pathogen is complicated due to its virulence factors, antibiotic resistance, and the ability of the bacteria to produce biofilm. The main goals of this study were to assess the susceptibility of extensively drug-resistant (XDR) isolates to ethanol and EDTA, and evaluating the synergistic effect of these disinfectants, and also survey the effect of exposure to sub-inhibitory concentrations of ethanol and EDTA on the expression of biofilm-producing smf-1, rpfF genes. RESULTS: The results showed that EDTA significantly increased the effectiveness of the ethanol and have a synergistic effect. All of the 10 XDR isolates included in the current study harbored smf-1 and rpfF genes and produced biofilm. After exposure to MIC, sub-MIC, synergism, and sub-synergism of ethanol and EDTA, the expression of smf-1 and rpfF genes was repressed significantly. CONCLUSION: In the current study, it was indicated that the expression of biofilm-producing genes was repressed when bacteria are exposed to different concentrations of ethanol and EDTA. Future studies should include more complex microbial communities residing in the hospitals, and more disinfectants use in hospitals. Expression of other virulence genes in different conditions is suggested.202337775770
234270.9953Correlation Analysis of Staphylococcus aureus Drug Resistance and Virulence Factors with Blood Cell Counts and Coagulation Indexes. OBJECTIVE: The influence of different Staphylococcus aureus variants on blood cells and coagulation system was evaluated by investigating the carrying status of drug resistance genes and virulence genes of methicillin-resistantStaphylococcus aureus (MRSA) and methicillin-sensitiveStaphylococcus aureus (MSSA). METHODS: A total of 105 blood culture-derivedStaphylococcus aureus strains were collected. The carrying status of drug resistance genes mecA and three virulence genes tst, pvl, and sasX was analyzed by polymerase chain reaction (PCR). The changes in routine blood routine counts and coagulation indexes of patients infected with different strains were analyzed. RESULTS: The results showed that the positive rate of mecA was consistent with that of MRSA. Virulence genes tst and sasX were detected only in MRSA. Compared with MSSA, patients infected with MRSA or MSSA patients infected with virulence factor, leukocyte count and neutrophil count in peripheral blood were significantly increased, and the platelet count decreased to a higher degree. Part thromboplastin time increased, D-dimer increased, but fibrinogen content decreased more. The changes of erythrocyte and hemoglobin had no significant correlation with whether Staphylococcus aureus carried virulence genes. CONCLUSION: The detection rate of MRSA in patients with positive Staphylococcus aureus in blood culture had exceeded 20%. The detected MRSA bacteria carried three virulence genes, tst, pvl, and sasX, which were more likely than MSSA. MRSA, which carries two virulence genes, is more likely to cause clotting disorders.202336846497
491780.9953Rapid Changes in Nasopharyngeal Antibiotic Resistance Gene Profiles After Short Courses of Antibiotics in a Pilot Study of Ambulatory Young Children. We quantified antibiotic resistance genes before and after short antibiotic courses in nasopharyngeal specimens from ambulatory children. Carriage of certain bacteria and resistance genes was common before antibiotics. After antibiotics, we observed substantial reductions in pneumococcal and Staphylococcus aureus carriage and rapid expansion in the abundance of certain resistance genes.202135350815
464790.9953Development of Antibiotic Resistance during Simulated Treatment of Pseudomonas aeruginosa in Chemostats. During treatment of infections with antibiotics in critically ill patients in the intensive care resistance often develops. This study aims to establish whether under those conditions this resistance can develop de novo or that genetic exchange between bacteria is by necessity involved. Chemostat cultures of Pseudomonas aeruginosa were exposed to treatment regimes with ceftazidime and meropenem that simulated conditions expected in patient plasma. Development of antibiotic resistance was monitored and mutations in resistance genes were searched for by sequencing PCR products. Even at the highest concentrations that can be expected in patients, sufficient bacteria survived in clumps of filamentous cells to recover and grow out after 3 to 5 days. At the end of a 7 days simulated treatment, the minimal inhibitory concentration (MIC) had increased by a factor between 10 and 10,000 depending on the antibiotic and the treatment protocol. The fitness costs of resistance were minimal. In the resistant strains, only three mutations were observed in genes associated with beta-lactam resistance. The development of resistance often observed during patient treatment can be explained by de novo acquisition of resistance and genetic exchange of resistance genes is not by necessity involved. As far as conclusions based on an in vitro study using P. aeruginosa and only two antibiotics can be generalized, it seems that development of resistance can be minimized by treating with antibiotics in the highest concentration the patient can endure for the shortest time needed to eliminate the infection.201626872140
3524100.9952Evaluating the effects of chlortetracycline on the proliferation of antibiotic-resistant bacteria in a simulated river water ecosystem. Antibiotics and antibiotic metabolites have been found in the environment, but the biological activities of these compounds are uncertain, especially given the low levels that are typically detected in the environment. The objective of this study was to estimate the selection potential of chlortetracycline (CTC) on the antibiotic resistance of aerobic bacterial populations in a simulated river water ecosystem. Six replicates of a 10-day experiment using river water in continuous flow chemostat systems were conducted. Each replicate used three chemostats, one serving as a control to which no antibiotic was added and the other two receiving low and high doses of CTC (8 microg/liter and 800 microg/liter, respectively). The addition of CTC to the chemostats did not impact the overall level of cultivable aerobic bacteria (P = 0.51). The high-CTC chemostat had significantly higher tetracycline-resistant bacterial colony counts than both the low-CTC and the control chemostats (P < 0.035). The differences in resistance between the low-CTC and control chemostats were highly nonsignificant (P = 0.779). In general a greater diversity of tet resistance genes was detected in the high-CTC chemostat and with a greater frequency than in the low-CTC and control chemostats. Low levels of CTC in this in vitro experiment did not select for increased levels of tetracycline resistance among cultivable aerobic bacteria. This finding should not be equated with the absence of environmental risk, however. Low concentrations of antibiotics in the environment may select for resistant bacterial populations once they are concentrated in sediments or other locations.200717616621
2540110.9952Equine sinusitis aetiology is linked to sinus microbiome by amplicon sequencing. BACKGROUND: Information regarding the microbiome in sinusitis using genetic sequencing is lacking and more-in-depth understanding of the microbiome could improve antimicrobial selection and treatment outcomes for cases of primary sinusitis. OBJECTIVES: To describe sinus microbiota in samples from horses with sinusitis and compare microbiota and the presence of antimicrobial resistance genes between primary, dental-related and other secondary causes of sinusitis. STUDY DESIGN: Retrospective case series. METHODS: Records of equine sinusitis from 2017 to 2021 were reviewed and historical microbial amplicon sequence data were obtained from clinical diagnostic testing of sinus secretions. Following bioinformatic processing of bacterial and fungal sequence data, the sinus microbiota and importance of sinusitis aetiology among other factors were investigated from the perspectives of alpha diversity (e.g., number of operational taxonomic units [OTUs], Hill1 Diversity), beta diversity, and differentially abundant taxa. Quantitative PCR allowed for comparisons of estimated bacterial abundance and detection rate of common antibiotic resistance-associated genes. In a smaller subset, longitudinal analysis was performed to evaluate similarity in samples over time. RESULTS: Of 81 samples analysed from 70 horses, the bacterial microbiome was characterised in 66, and fungal in five. Only sinusitis aetiology was shown to significantly influence microbiome diversity and composition (p < 0.05). Dental-related sinusitis (n = 44) was associated with a significantly higher proportion of obligate anaerobic bacteria, whereas primary sinusitis (n = 12) and other (n = 10) groups were associated with fewer bacteria and higher proportions of facultative anaerobic and aerobic genera. Antimicrobial resistance genes and fungal components were exclusively identified in dental-related sinusitis. MAIN LIMITATIONS: Retrospective nature, incomplete prior antimicrobial administration data. CONCLUSIONS: Molecular characterisation in sinusitis identifies microbial species which may be difficult to isolate via culture, and microbiome profiling can differentiate sinusitis aetiology, which may inform further treatment, including antimicrobial therapy.202336199163
5074120.9952Cas14VIDet: A visual instant method free from PAM restriction for antibiotic resistance bacteria detection. A personalized treatment strategy that selects sensitive antibiotics based on Helicobacter pylori (H. pylori) resistance genes is currently the most effective approach to address the challenge of H. pylori eradication. However, the widespread adoption of this strategy is hindered by the long processing times and high costs associated with traditional resistance gene detection methods. In this study, we combined ultra-fast PCR with CRISPR/Cas14 into a single reaction system, establishing a rapid, one-pot visual platform named Cas14VIDet (Cas14-based Visual Instant Detection) for detecting H. pylori resistance genes. Cas14VIDet does not require a PAM sequence and excels in identifying single nucleotide polymorphisms, with the detection sensitivity approaching the level of a single bacterial colony (10(0) CFU/mL). The entire detection process can be completed within 10 min, and results are directly observable with the naked eye. We validated Cas14VIDet by testing 50 clinical samples and compared it with Sanger sequencing. The results showed that Cas14VIDet achieved 100% sensitivity, 100% specificity, and 100% accuracy in detecting H. pylori resistance genes to levofloxacin. Therefore, we believe this method holds great potential for rapid detection of H. pylori resistance, potentially supporting personalized treatment of H. pylori infections in the future.202539527901
6289130.9952Pseudomonas aeruginosa is oxygen-deprived during infection in cystic fibrosis lungs, reducing the effectiveness of antibiotics. Pseudomonas aeruginosa infects the lungs of patients with cystic fibrosis. Sputum expectorated from the lungs of patients contains low levels of oxygen, indicating that P. aeruginosa may be oxygen-deprived during infection. During in vitro growth under oxygen-limiting conditions, a P. aeruginosa reference strain increases expression of a cytochrome oxidase with a high affinity for oxygen, and of nitrate and nitrite reductases that enable it to use nitrate instead of oxygen during respiration. Here, we quantified transcription of the genes encoding these three enzymes in sputum samples from 18 infected patients, and in bacteria isolated from the sputum samples and grown in aerobic and anaerobic culture. In culture, expression of all three genes was increased by averages of 20- to 500-fold in anaerobically grown bacteria compared with those grown aerobically, although expression levels varied greatly between isolates. Expression of the same genes in sputum was similar to that of the corresponding bacteria in anaerobic culture. The isolated bacteria were less susceptible to tobramycin and ciprofloxacin, two widely used anti-pseudomonal antibiotics, when grown anaerobically than when grown aerobically. Our findings show that P. aeruginosa experiences oxygen starvation during infection in cystic fibrosis, reducing the effectiveness of antibiotic treatment.202337516450
5761140.9952The Effects of Sub-inhibitory Antibiotic Concentrations on Pseudomonas aeruginosa: Reduced Susceptibility Due to Mutations. Pseudomonas aeruginosa chronically infects in the lungs of people with cystic fibrosis and other forms of lung disease. Infections are treated with antibiotics, but over time, the bacteria acquire mutations that reduce their antibiotic susceptibility. The effects of inhibitory amounts of antibiotics in selecting for antibiotic-resistant mutants have been well studied. However, the concentrations of antibiotics that reach infecting bacteria can be sub-inhibitory and but may nonetheless promote emergence of antibiotic-resistant bacteria. Therefore, the aim of this research was to investigate the effects of sub-inhibitory concentrations of antibiotics on the antibiotic susceptibility of P. aeruginosa. Two P. aeruginosa reference strains, PAO1 and PA14, and six isolates from individuals with cystic fibrosis were studied. The bacteria were passaged in the presence of antibiotics (ceftazidime, ciprofloxacin, meropenem or tobramycin) at sub-inhibitory amounts. Fifteen populations of bacteria (up to five per strain) were exposed to each of the four antibiotics. Antibiotic susceptibility was determined following 10 passages on agar supplemented with antibiotic and compared with susceptibility prior to antibiotic exposure. Antibiotic exposure resulted in susceptibility being significantly (>2-fold) reduced for 13 of the 60 populations. Seven samples had reduced susceptibility to ciprofloxacin, three to tobramycin, two to ceftazidime and one to meropenem. Whole-genome sequencing revealed the mutations arising following antibiotic exposure. Mutants with reduced antibiotic susceptibility had mutations in genes known to affect antibiotic resistance, including regulators of efflux pumps (mexR, mexS, mexZ and nalC) and the fusA1 gene that is associated with aminoglycoside resistance. Genes not previously associated with resistance, including gacS, sigX and crfX and two genes with no known function, were also mutated in some isolates with reduced antibiotic susceptibility. Our results show that exposure to sub-inhibitory amounts of antibiotics can select for mutations that reduce the susceptibility of P. aeruginosa to antibiotics and that the profile of mutations is different from that arising during selection with inhibitory antibiotic concentrations. It is likely that exposure to sub-inhibitory amounts of antibiotics during infection contributes to P. aeruginosa becoming antibiotic-resistant.202134987489
5830150.9952Antibody-free detection of infectious bacteria using quantum dots-based barcode assay. Staphylococcus aureus, methicillin-resistant Staphylococcus aureus and Klebsiella pneumoniae are the most representative bacteria causing infectious diseases. Due to the increased application of antibiotics, the bacterial resistance is growing causing severe complications. Therefore, a sensitive determination of these pathogens is crucial for effective treatment. The aim of this study was to design an effective method for multiplex detection of Staphylococcus aureus, methicillin-resistant Staphylococcus aureus and Klebsiella pneumoniae taking advantage from properties of magnetic particles as well as fluorescent nanoparticles (quantum dots). The method was able to detect as low concentrations of bacteria as 10(2) CFU/mL using the bacteria-specific genes (fnbA, mecA and wcaG).201727894780
6560160.9952Translating antibiotic prescribing into antibiotic resistance in the environment: A hazard characterisation case study. The environment receives antibiotics through a combination of direct application (e.g., aquaculture and fruit production), as well as indirect release through pharmaceutical manufacturing, sewage and animal manure. Antibiotic concentrations in many sewage-impacted rivers are thought to be sufficient to select for antibiotic resistance genes. Yet, because antibiotics are nearly always found associated with antibiotic-resistant faecal bacteria in wastewater, it is difficult to distinguish the selective role of effluent antibiotics within a 'sea' of gut-derived resistance genes. Here we examine the potential for macrolide and fluoroquinolone prescribing in England to select for resistance in the River Thames catchment, England. We show that 64% and 74% of the length of the modelled catchment is chronically exposed to putative resistance-selecting concentrations (PNEC) of macrolides and fluoroquinolones, respectively. Under current macrolide usage, 115 km of the modelled River Thames catchment (8% of total length) exceeds the PNEC by 5-fold. Similarly, under current fluoroquinolone usage, 223 km of the modelled River Thames catchment (16% of total length) exceeds the PNEC by 5-fold. Our results reveal that if reduced prescribing was the sole mitigating measure, that macrolide and fluoroquinolone prescribing would need to decline by 77% and 85%, respectively, to limit resistance selection in the catchment. Significant reductions in antibiotic prescribing are feasible, but innovation in sewage-treatment will be necessary for achieving substantially-reduced antibiotic loads and inactivation of DNA-pollution from resistant bacteria. Greater confidence is needed in current risk-based targets for antibiotics, particularly in mixtures, to better inform environmental risk assessments and mitigation.201931483803
4649170.9952Factors affecting the measurement of antibiotic resistance in bacteria isolated from lake water. It is more difficult to obtain a reliable assessment of antibiotic resistance in populations of aquatic bacteria than in those populations which are well characterized (e.g. bacteria of medical and veterinary significance). Factors which influence the results include the bacterial taxa involved, their site of origin and the methods and media used to isolate and subculture the bacteria, and to perform the sensitivity tests. Examples of these effects are provided. The resistance profiles obtained with populations of aquatic pseudomonads depend on the species composition of the population. Resistance patterns in aquatic bacteria varied with the site from which they were isolated; a higher incidence of resistance was recorded along shorelines and in sheltered bays than in the open water. The inclusion of antibiotics in the media employed for primary isolation increased the number of individual and multiple resistances recorded. A similar effect was observed with increased inoculum size in the sensitivity disc method but this could be reversed by raising the incubation temperature. The medium used to conduct the test also affected the results and many aquatic bacteria failed to grow on media such as Iso-Sensitest Agar. It is recommended that the sensitivity disc method is adopted for aquatic bacteria because it permits interpretation of a wider range of response. Comparison of the incidence of antibiotic resistance in different habitats will remain meaningless, however, until comprehensive methods for the identification of bacteria are developed and the techniques used for sensitivity testing are standardized.19863636321
3419180.9952Assessment of Selected Antibiotic Resistances in Ungrazed Native Nebraska Prairie Soils. The inherent spatial heterogeneity and complexity of antibiotic-resistant bacteria and antibiotic resistance (AR) genes in manure-affected soils makes it difficult to sort out resistance that can be attributed to human antibiotic use from resistance that occurs naturally in the soil. This study characterizes native Nebraska prairie soils that have not been affected by human or food-animal waste products to provide data on background levels of resistance in southeastern Nebraskan soils. Soil samples were collected from 20 sites enumerated on tetracycline and cefotaxime media; screened for tetracycline-, sulfonamide-, β-lactamase-, and macrolide-resistance genes; and characterized for soil physical and chemical parameters. All prairies contained tetracycline- and cefotaxime-resistant bacteria, and 48% of isolates collected were resistant to two or more antibiotics. Most (98%) of the soil samples and all 20 prairies had at least one tetracycline gene. Most frequently detected were (D), (A) (O), (L), and (B). Sulfonamide genes, which are considered a marker of human or animal activity, were detected in 91% of the samples, despite the lack of human inputs at these sites. No correlations were found between either phenotypic or genotypic resistance and soil physical or chemical parameters. Heterogeneity was observed in AR within and between prairies. Therefore, multiple samples are necessary to overcome heterogeneity and to accurately assess AR. Conclusions regarding AR depend on the gene target measured. To determine the impacts of food-animal antibiotic use on resistance, it is essential that background and/or baseline levels be considered, and where appropriate subtracted out, when evaluating AR in agroecosystems.201627065391
8860190.9952Antibiotic in myrrh from Commiphora molmol preferentially kills nongrowing bacteria. AIM: To demonstrate that myrrh oil preferentially kills nongrowing bacteria and causes no resistance development. METHOD: Growth inhibition was determined on regular plates or plates without nutrients, which were later overlaid with soft agar containing nutrients to continue growth. Killing experiments were done in broth and in buffer without nutrients. RESULTS: Bacterial cells were inhibited preferentially in the absence of nutrients or when growth was halted by a bacteriostatic antibiotic. After five passages in myrrh oil, surviving colonies showed no resistance to the antibiotic. CONCLUSION: Myrrh oil has the potential to be a commercially viable antibiotic that kills persister cells and causes no resistance development. This is a rare example of an antibiotic that can preferentially kill nongrowing bacteria.202032257371