MDR - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
141300.9951Occurrence of Carbapenemases, Extended-Spectrum Beta-Lactamases and AmpCs among Beta-Lactamase-Producing Gram-Negative Bacteria from Clinical Sources in Accra, Ghana. Beta-lactamase (β-lactamase)-producing Gram-negative bacteria (GNB) are of public health concern due to their resistance to routine antimicrobials. We investigated the antimicrobial resistance and occurrence of carbapenemases, extended-spectrum β-lactamases (ESBLs) and AmpCs among GNB from clinical sources. GNB were identified using matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDITOF-MS). Antimicrobial susceptibility testing was performed via Kirby-Bauer disk diffusion and a microscan autoSCAN system. β-lactamase genes were determined via multiplex polymerase chain reactions. Of the 181 archived GNB analyzed, Escherichia coli and Klebsiella pneumoniae constituted 46% (n = 83) and 17% (n = 30), respectively. Resistance to ampicillin (51%), third-generation cephalosporins (21%), and ertapenem (21%) was observed among the isolates, with 44% being multi-drug resistant (MDR). β-lactamase genes such as AmpCs ((bla(FOX-M) (64%) and bla(DHA-M) and bla(EDC-M) (27%)), ESBLs ((bla(CTX-M) (81%), other β-lactamase genes bla(TEM) (73%) and bla(SHV) (27%)) and carbapenemase ((bla(OXA-)(48) (60%) and bla(NDM) and bla(KPC) (40%)) were also detected. One K. pneumoniae co-harbored AmpC (bla(FOX-M) and bla(EBC-M)) and carbapenemase (bla(KPC) and bla(OXA-)(48)) genes. bla(OXA-)(48) gene was detected in one carbapenem-resistant Acinetobacter baumannii. Overall, isolates were resistant to a wide range of antimicrobials including last-line treatment options. This underpins the need for continuous surveillance for effective management of infections caused by these pathogens in our settings.202337370334
124110.9945Spectrum of Bacterial Colonization in Patients Hospitalized for Treatment of Multidrug-Resistant Tuberculosis. This study investigated the bacterial colonization in patients admitted for treatment of drug-resistant tuberculosis in a specialized TB hospital. Identification and antimicrobial susceptibility testing of bacterial isolates (n = 62) from nasal, groin, and rectal swabs [patient cohort (n = 37)] were determined by the VITEK-MS system. Resistance gene analysis was by PCR and DNA sequencing. Molecular typing of Klebsiella pneumoniae isolates was by Multilocus Sequencing Typing (MLST). Patients (n = 13/37; 35%) were colonized by multidrug-resistant (MDR) bacteria (ESBL and MRSA) on admission. Of the 24 patients who were not colonized by MDR bacteria on admission, 46% (17/37) became colonized by MDR bacteria within 1 month of admission, mostly with ESBL-producing Enterobacteriales and resistance to aminoglycosides and fluoroquinolones. ESBL Escherichia coli (41/62; 66%) and K. pneumoniae (14/62; 23%) predominated. Genes encoding for ESBLs (bla(CTX-M-14), bla(CTX-M-15), bla(SHV-28), bla(OXA-1), and bla(OXY-2)) and plasmid-mediated quinolone resistant genes (qnrB1, qnrB4, and qnrB10) were detected. MLST revealed genetic diversity among the K. pneumoniae isolates from hospitalized patients. This study provides insight into bacterial pathogen colonization in hospitalized TB patients with the first occurrence of the qnrB4 and qnrB10 genes and co-expression of genes: qnrB4+aac(6')-lb-cr, qnrB10+aac(6')-lb-cr, qnrB4+qnrS1, and qnrB10+qnrS1 in fluoroquinolone-resistant E. coli isolates within South Africa. However, the source and colonization routes of these isolates could not be determined.202133074767
145120.9945Molecular Epidemiology of Extensively Drug-Resistant mcr Encoded Colistin-Resistant Bacterial Strains Co-Expressing Multifarious β-Lactamases. Plasmid-mediated colistin resistance (Col-R) conferred by mcr genes endangers the last therapeutic option for multifarious β-lactamase-producing bacteria. The current study aimed to explore the mcr gene molecular epidemiology in extensively drug-resistant (XDR) bacteria. Col-R gram-negative bacterial strains were screened using a minimum inhibitory concentration (MIC) breakpoint ≥4 µg/mL. Resistant isolates were examined for mcr variants, extended-spectrum β-lactamase, AmpC, and carbapenemase genes using polymerase chain reaction (PCR). The MIC breakpoints for mcr-positive strains were determined using broth microdilution and E-test strips. Overall, 19/718 (2.6%) gram-negative rods (GNRs) harboring mcr were identified, particularly in pus (p = 0.01) and tracheal secretions (p = 0.03). Molecular epidemiology data confirmed 18/19 (95%) mcr-1 and 1/19 (5%) mcr-2 genes. Integron detection revealed 15/17 (88%) Int-1 and 2/17 (12%) Int-2. Common co-expressing drug-resistant β-lactamase genes included 8/16 (50%) bla(CTM-1), 3/16 (19%) bla(CTM-15), 3/3 (100%) bla(CMY-2), 2/8 (25%) bla(NDM-1), and 2/8 (25%) bla(NDM-5). The MIC(50) and MIC(90) values (µg/mL) were as follows: Escherichia coli, 12 and 24; Klebsiella pneumoniae, 12 and 32; Acinetobacter baumannii, 8 and 12; and Pseudomonas aeruginosa, 32 and 64, respectively. Treatment of XDR strains has become challenging owing to the co-expression of mcr-1, mcr-2, multifarious β-lactamase genes, and integrons.202133923991
140930.9944Detection of diverse carbapenem and multidrug resistance genes and high-risk strain types among carbapenem non-susceptible clinical isolates of target gram-negative bacteria in Kenya. Carbapenem-resistant gram-negative bacteria are an increasingly significant clinical threat globally. This risk may be underestimated in Kenya as only four carbapenemase genes in three bacterial species have been described. The study aimed to understand the antibiotic resistance profiles, genes, sequence types, and distribution of carbapenem-resistant gram-negative bacteria from patients in six hospitals across five Kenyan counties by bacterial culture, antibiotic susceptibility testing, and whole-genome sequence analysis. Forty-eight, non-duplicate, carbapenem non-susceptible, clinical isolates were identified across the five counties (predominantly in Nairobi and Kisii): twenty-seven Acinetobacter baumannii, fourteen Pseudomonas aeruginosa, three Escherichia coli, two Enterobacter cloacae, and two Klebsiella pneumoniae. All isolates were non-susceptible to β-lactam drugs with variable susceptibility to tigecycline (66%), minocycline (52.9%), tetracycline (29.4%), and levofloxacin (22.9%). Thirteen P. aeruginosa isolates were resistant to all antibiotics tested. Eleven carbapenemase genes were identified: blaNDM-1, blaOXA-23, -58, -66, -69, and -91 in A. baumannii (STs 1, 2, 164 and a novel ST1475), blaNDM-1 in E. cloacae (STs 25,182), blaNDM-1, blaVIM-1and -6, blaOXA-50 in P. aeruginosa (STs 316, 357, 654, and1203), blaOXA-181, blaNDM-1 in K. pneumoniae (STs 147 and 219), and blaNDM-5 in E. coli (ST164). Five A. baumannii isolates had two carbapenemases, blaNDM-1, and either blaOXA-23 (4) or blaOXA-58 (1). AmpC genes were detected in A. baumannii (blaADC-25), E. cloacae (blaDHA-1 and blaACT-6, 16), and K. pneumoniae (blaCMY). Significant multiple-drug resistant genes were the pan-aminoglycoside resistance16srRNA methyltransferase armA, rmtB, rmtC, and rmtF genes. This study is the first to report blaOXA-420, -58, -181, VIM-6, and blaNDM-5 in Kenyan isolates. High-risk STs of A. baumannii (ST1475, ST2), E. cloacae ST182, K. pneumoniae ST147, P. aeruginosa (ST357, 654), and E. coli ST167, ST648 were identified which present considerable therapeutic danger. The study recommends urgent carbapenem use regulation and containment of high-risk carbapenem-resistant bacteria.202133617559
144140.9944Molecular characterisation of carbapenem-resistant Klebsiella pneumoniae clinical isolates: preliminary experience from a tertiary care teaching hospital in the Himalayas. BACKGROUND: There is a lack of whole-genome sequencing (WGS) data on multidrug-resistant (MDR) bacteria from the Uttarakhand region of India. The aim of this study was to generate WGS data of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates recovered from patients in Uttarakhand's tertiary care centre. METHODS: A cross-sectional study included 29 MDR K. pneumoniae test isolates obtained from various clinical samples submitted to the bacteriology laboratory for culture and sensitivity testing from July 2018 to August 2019. After preliminary identification and antibiotic susceptibility testing, these isolates were subjected to WGS. RESULTS: A total of 27 of 29 isolates were CRKP. ST14 was the most common sequence type (n=8 [29.6%]). Carbapenem resistance was mainly encoded by OXA-48-like genes (21/27 [77.8%]). All isolates had a varied arsenal of resistance genes to different antibiotic classes. KL2 (9/27 [33.3%]) and KL51 (8/27 [29.6%]) were dominant K loci types. O1 and O2 together accounted for 88.9% (n=27) of CRKP isolates. Genes encoding yersiniabactin (ybt) and aerobactin (iuc) were identified in 88.9% (24/27) and 29.6% (8/27) of isolates. The predominant plasmid replicons present were ColKP3 (55.5%), IncFII(K) (51.8%) and IncFIB(pQil) (44.4%). CONCLUSIONS: This study emphasises the need for continued genomic surveillance of MDR bacteria that could be instrumental in developing treatment guidelines based on integrating phenotypic and molecular methods.202235029688
141750.9942Prevalence and Phenotypic and Molecular Characterization of Carbapenemase-Producing Gram-Negative Bacteria in Gabon. Data collection and monitoring of carbapenemase-producing (CP) Gram-negative bacteria (GNB) are often limited. This study determined CP-GNB prevalence in Gabon and the genetic origins of the resistance genes. From January 2016 to March 2018, 869 clinically significant GNB isolates from inpatients and outpatients, and 19 fecal samples (inpatients) were analyzed in the main hospitals of Gabon. Fecal samples were screened using ChromID® CARBA SMART selective chromogenic medium biplates. Species were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Antibiotic susceptibility was tested using the disk diffusion method on Müller-Hinton agar, and resistance genes were assessed by multiplex polymerase chain reaction and sequencing. Overall, 1.61% of clinical isolates (14 of 869) and 5.26% of fecal samples (1 of 19) were CP-GNB. The CP-GNB rate was higher among inpatients (2.98%) than outpatients (0.33%), in intensive care units (28.57%, 4 of 14), and in urine samples (35.71%, 5 of 14). The most common CP-GNB were Klebsiella pneumoniae (53.33%) and Acinetobacter baumannii (26.67%). blaOXA-48 was the predominant carbapenemase-encoding gene (40%), followed by blaNDM-5 (33.33%). The A. baumannii multilocus sequence types ST2 and ST78, Enterobacter cloacae ST78, Escherichia coli ST2, and K. pneumonia ST48 and ST147 were found. These data indicate that CP bacteria are present in clinical and carriage samples. Preventive measures are needed to avoid the spread of resistance genes.202336535247
138960.9942Whole-Genome Sequencing of Gram-Negative Bacteria Isolated From Bovine Mastitis and Raw Milk: The First Emergence of Colistin mcr-10 and Fosfomycin fosA5 Resistance Genes in Klebsiella pneumoniae in Middle East. Antimicrobial resistance is a major concern in the dairy industry. This study investigated the prevalence, antimicrobial resistance phenotypes, and genome sequencing of Gram-negative bacteria isolated from clinical (n = 350) and subclinical (n = 95) bovine mastitis, and raw unpasteurized milk (n = 125). Klebsiella pneumoniae, Aeromonas hydrophila, Enterobacter cloacae (100% each), Escherichia coli (87.78%), and Proteus mirabilis (69.7%) were the most prevalent multidrug-resistant (MDR) species. Extensive drug-resistance (XDR) phenotype was found in P. mirabilis (30.30%) and E. coli (3.33%) isolates. Ten isolates (four E. coli, three Klebsiella species and three P. mirabilis) that displayed the highest multiple antibiotic resistance (MAR) indices (0.54-0.83), were exposed to whole-genome sequencing (WGS). Two multilocus sequence types (MLST): ST2165 and ST7624 were identified among the sequenced E. coli isolates. Three E. coli isolates (two from clinical mastitis and one from raw milk) belonging to ST2165 showed similar profile of plasmid replicon types: IncFIA, IncFIB, IncFII, and IncQ1 with an exception to an isolate that contained IncR, whereas E. coli ST7624 showed a different plasmid profile including IncHI2, IncHI2A, IncI1α, and IncFII replicon types. ResFinder findings revealed the presence of plasmid-mediated colistin mcr-10 and fosfomycin fosA5 resistance genes in a K. pneumoniae (K1) isolate from bovine milk. Sequence analysis of the reconstructed mcr-10 plasmid from WGS of K1 isolate, showed that mcr-10 gene was bracketed by xerC and insertion sequence IS26 on an IncFIB plasmid. Phylogenetic analysis revealed that K1 isolate existed in a clade including mcr-10-harboring isolates from human and environment with different STs and countries [United Kingdom (ST788), Australia (ST323), Malawi (ST2144), Myanmar (ST705), and Laos (ST2355)]. This study reports the first emergence of K. pneumoniae co-harboring mcr-10 and fosA5 genes from bovine milk in the Middle East, which constitutes a public health threat and heralds the penetration of the last-resort antibiotics. Hence, prudent use of antibiotics in both humans and animals and antimicrobial surveillance plans are urgently required.202134956131
141870.9942Nosocomial infections and antimicrobial susceptibility patterns among patients admitted to intensive care unit of Imam Khomeini hospital in Ilam, Iran. INTRODUCTION: Nosocomial infections (NIs) are a major challenge worldwide. Identification of antibiotic resistance pattern extended spectrum beta-lactamases (ESBLs) and carbapenem-resistant Enterobacteriaceae (CRE) were the objectives of this study. METHODS: In this cross-sectional study, the antimicrobial susceptibility pattern of bacterial isolates collected from patients with NIs in ICU was determined. Overall, 42 Escherichia coli and Klebsiella pneumoniae isolates from different infection sites were used to determine phenotypic tests of ESBLs, Metallo-β-lactamases (MBLs) and CRE. Detection of ESBLs, MBLs and CRE genes were performed by the polymerase chain reaction (PCR) method. RESULTS: From 71 patients with NIs, 103 different bacterial strains were isolated. The most frequently isolated bacteria were E. coli (n = 29; 28.16%), Acinetobacter baumannii (n = 15; 14.56%), and K. pneumoniae (n = 13; 12.26%). Also, the rate of multidrug-resistant (MDR) isolates was 58.25% (60/103). Based on phenotypic confirmation tests, 32 (76.19%) isolates of E. coli and K. pneumoniae produced ESBLs, and 6 (14.28%) isolates were identified as CRE producers. PCR showed the high prevalence of the bla(CTX-M) (n = 29; 90.62%) in ESBL genes. In addition, bla(NDM) was detected in 4 (66.66%), bla(OXA-23) in 3 (50%), and bla(OXA-48) gene in 1 (16.66%) isolates. The bla(VIM), bla(KPC), and bla(IMP) genes were not detected in any of the isolates. CONCLUSION: The Gram-negative bacteria E. coli, A. baumannii, and K. pneumoniae with high resistance levels were the most common bacteria causing NIs in the ICU. This study for the first time identified bla(OXA-11), bla(OXA-23), and bla(NDM-1) genes in E. coli and K. pneumoniae in Ilam city of Iran.202337155016
95080.9942Incidence of Extended Spectrum β-Lactamase Genes (ESBLs) among community and health care infection in Mansoura University Hospital, Egypt. BACKGROUND: Multidrug-resistant (MDR) Gram-negative bacteria pose a significant challenge due to their limited treatment options. The production of extended-spectrum β-lactamases (ESBLs) is an important mechanism of resistance. This study aimed to identify the incidence and characteristics of ESBL-encoding genes (bla(CTX-M), bla(TEM), bla(SHV), and bla(OXA)) in MDR isolates. MATERIALS AND METHODS: A cross-sectional study was conducted from September 2022 to May 2023. ESBL-producing isolates (n = 105) out of 412 were recovered from hospitalized and outpatient settings and analyzed. Standard microbiological methods were used for isolates identification, susceptibility testing, and phenotypic ESBL detection. Additionally, bla(CTX-M), bla(TEM), bla(SHV), and bla(OXA) genes were identified using conventional PCR. RESULTS: Molecular profiling of β-lactamase determinants was conducted via PCR targeting bla(CTX-M), bla(TEM), bla(SHV), and bla(OXA) genes. Among phenotypically confirmed (100%) ESBL producers, 98% harbored one or more target genes, with bla(CTX-M) predominant (81%), followed by bla(SHV) (70.4%), bla(TEM) (62%), and bla(OXA) (30.4%). Carbapenem resistance was higher in ESBL-producing strains compared to non-ESBL strains. Extensively drug-resistant (XDR) isolates were the most common across hospital departments and outpatients. DISCUSSION: This study highlights the significant prevalence of ESBL genes and multidrug resistance among Gram-negative bacteria. The dominance of bla(CTX-M) and the existence of multiple resistance genes raise concerns about limited treatment options. The findings emphasize the need for stricter antibiotic stewardship and infection control measures to curb the spread of MDR pathogens. CONCLUSION: This study provides valuable insights into the alarming incidence of ESBL genes and MDR in Mansoura, Egypt. Continuous surveillance and implementation of effective control strategies are crucial to combat this growing public health threat.202540405086
142290.9942Identification of bla(OXA-51-23-58), bla(VIM), bla(NDM), and bla(IMP) carbapenemase genes in Acinetobacter baumannii isolates from hospitalized patients. OBJECTIVE: The increase of multidrug-resistant (MDR) strains of Acinetobacter baumannii (A. baumannii), especially carbapenem-resistant strains, is challenging for treating infections. This study investigated the antibiotic resistance pattern and frequency of carbapenem resistance genes (oxacillinase and metallo-beta-lactamase) in A. baumannii. RESULTS: In this study, 100 bacterial isolates were collected from clinical samples from different hospitals in Isfahan, central of Iran. Of 100 samples of bloodstream, urine, cerebrospinal fluid (CSF), wound, and trachea, 60 bacteria were identified as A. baumannii. The results showed that 100% of the selected isolates were resistant to cefotaxime, ceftazidime, ciprofloxacin, piperacillin-tazobactam, and meropenem. Based on the antibiotic resistance pattern, 25 isolates were chosen for PCR analysis targeting bla(OXA-51), bla(OXA-23), bla(OXA-58), bla(NDM), bla(IMP), and bla(VIM) genes PCR results revealed that among the selected isolates, 15 (60.0%) harbored the bla(OXA-23) gene, 23 (92.0%) contained the bla(OXA-51) gene, and 1 (4.0%) isolate carried the bla(NDM) gene. Based on MLST analysis, two colistin-resistant Acinetobacter baumannii isolates were categorized as ST2. The ST2 clone represents the predominant sequence type within the CC2 or international clone two. The results showed that the best antibiotic against isolates was colistin. bla(OXA-51) and bla(OXA-23) genes (oxacillinase genes) were dominant genes, but bla(IMP) and bla(OXA-58) were not local carbapenem resistant genes in Isfahan.202439736661
952100.9942Molecular Surveillance of ESBL and Carbapenemase Genes in Gram-Negative Bacterial Pathogens Isolated from Various Clinical Samples Collected from Northern Region of United Arab Emirates. The aim of this study was to explore the prevalence of ESBL and carbapenemase genes in Gram-negative bacteria isolated from various clinical samples collected from northern regions of UAE. In total 3670 clinical samples were obtained from patients attending various hospitals and clinics in the northern regions of the UAE. All the samples underwent routine bacterial culture examination, and their antibiotic sensitivity patterns mainly on beta-lactam and carbapenem resistance in Gram-negative bacteria. Molecular detection of ESBL and carbapenemase genes (bla(CTX-M), bla(TEM), bla(SHV), bla(NDM), bla(IMP), and bla(OXA-48)) was performed on them. A total of 249 MDR Gram-negative bacteria (E. coli, K. pneumoniae, P. aeruginosa, P. mirabilis and A. baumannii) were isolated. The genes bla(CTX-M), bla(TEM), and bla(SHV) were detected in all the MDR isolates. Among them, the bla(CTX-M) was predominant especially in E. coli. The bla(NDM) and bla(IMP) were detected in a few K. pneumoniae and A. baumannii. The genes combination bla(CTX-M+TEM) and bla(CTX-M+SHV), bla(CTX-M+SHV), bla(TEM+SHV), and bla(TEM+NDM) were detected mostly in K. pneumoniae and E. coli, and few A. baumannii. The gene combination bla(CTX-M+TEM+SHV) and bla(CTX-M+TEM+SHV+IMP) were also detected in few E. coli, P. aeruginosa, and A. baumannii. The current findings highlight the importance of molecular detection of ESBL and carbapenemase genes to emphasize monitoring and controlling the development of MDR bacterial pathogens.202540871384
1419110.9942Dissemination of carbapenem resistance and plasmids encoding carbapenemases in Gram-negative bacteria isolated in India. BACKGROUND: Carbapenem resistance in Gram-negative bacteria is an ongoing public health problem of global dimensions leaving very few treatment options for infected patients. OBJECTIVES: To study the dissemination of plasmid-borne carbapenemase genes in Gram-negative bacteria from a diagnostic centre in Tamil Nadu, India. METHODS: A total of 151 non-repetitive isolates belonging to 10 genera were collected between January 2015 and December 2016 from a diagnostic centre in Tamil Nadu. The isolates included Escherichia coli (n = 57), Klebsiella pneumoniae (n = 45), Pseudomonas aeruginosa (n = 10), Salmonella Typhi (n = 8), Enterobacter cloacae (n = 8), Acinetobacter baumannii (n = 7), Serratia marcescens (n = 5), Achromobacter xylosoxidans (n = 5), Proteus mirabilis (n = 5), Klebsiella oxytoca (n = 5) and Elizabethkingia meningoseptica (n = 1). RESULTS: Of the 151 isolates, 71% (n = 107) and 68% (n = 103) were found to be resistant to meropenem and imipenem, respectively. The most prevalent β-lactamase gene was bla (NDM-1) (n = 22), followed by bla (OXA-181) (n = 21), bla (GES-1) (n = 11), bla (OXA-51) (n = 9), bla (GES-9) (n = 8), bla (OXA-23) (n = 7) and bla (IMP-1) (n = 3). We also observed bla (OXA-23) in E. coli (n = 4), and three K. pneumoniae were positive for both, bla (OXA-23) and bla (OXA-51). Plasmid incompatibility (inc/rep) typing results showed that the resistance genes (n = 11) were present in the isolates carrying plasmid-types IncX, IncA/C, IncFIA-FIB and IncFIIA. The plasmid-borne resistance genes in E. coli and K. pneumoniae were transferred to susceptible E. coli AB1157. CONCLUSIONS: This study highlights the prevalence of carbapenem resistance and the acquisition of plasmid-borne carbapenemase genes in Gram-negative bacteria isolated at this centre.202134223092
1421120.9941Predominance of Acinetobacter spp., Harboring the bla(IMP) Gene, Contaminating the Hospital Environment in a Tertiary Hospital in Mwanza, Tanzania: A Cross-Sectional Laboratory-Based Study. Data on colonization and hospital contamination of carbapenem-resistant Gram-negative bacteria (CR-GNB) are limited in low- and middle-income countries. We designed this study to determine the prevalence and co-existence of carbapenemase genes among CR-GNB isolated from clinical, colonization, and hospital environmental samples at a tertiary hospital in Mwanza, Tanzania. The modified Hodge test (MHT), the combined disk test (CDT), and the double-disk synergy test (DDST) were used for the phenotypic detection of carbapenemases. A multiplex PCR assay was used to detect bla(IMP) and bla(KPC), and a singleplex PCR assay was used to detect bla(OXA-48). Data were analyzed by STATA version 13.0. Overall, 68.8% (44/64) of the CR-GNB had at least one phenotype by phenotypic methods, whereby 60.9% (39/64) were both CDT and DDST positive and 31.3% (20/64) were MHT positive. A total of 23/64 (35.9%) had at least one of the genes tested with the predominance of bla(IMP) (91.3%; 21/23). In addition, 47.7% (21/44) of the CR-GNB phenotypes had at least one gene. Around 47.8% (11/23) of the CR-GNB carried multiple genes encoding for carbapenem resistance, with the maximum co-existence of bla(IMP)/bla(KPC)/bla(OXA-48) (45.5%; 5/11). The majority of carbapenem-resistant genes were detected in Acinetobacter spp. (82.6%; 19/23) and isolated from bed swabs (69.6%; 16/23). Acinetobacter spp. carrying the bla(IMP) gene predominantly contaminated the hospital environment. Therefore, we recommend routine decontamination of inanimate hospital surfaces, including patient beds.202235056011
2110130.9941First report of carbapenems encoding multidrug-resistant gram-negative bacteria from a pediatric hospital in Gaza Strip, Palestine. BACKGROUND: The worldwide prevalence of multi-drug resistance (MDR) in Gram-negative bacteria (GNB), particularly related to extended-spectrum beta-lactamases (ESBLs) and carbapenemases, poses significant global public health and clinical challenges. OBJECTIVES: To characterize ESBL-producing Gram-negative bacilli, within a pediatric hospital in Gaza using whole genome sequencing (WGS). METHODS: A total of 158 clinical isolates of Gram-negative bacilli were collected from Al-Nasser Pediatric Hospital. These isolates were tested for ESBL production using the double disk synergy test. The antibiotic susceptibility profile was determined using the Kirby Bauer method following the Clinical and Laboratory Standard Institute guidelines. Selected 15 phenotypically MDR isolates were whole-genome sequenced and characterized for their genome-based species identity and antibiotic resistance gene profile. RESULTS: Of the 158 isolates, 93 (58.9%) were positive for ESBL production. The frequency of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Proteus mirabilis, and Serratia marcescens was 50%, 22.7%, 22.7%, 1.8%, 1.2%, and 1.2% respectively. The prevalence of ESBL among urine, pus, blood, and sputum was 64%, 44%, 23%, and 63.6%, respectively. Chloramphenicol, Imipenem, and Meropenem were the most effective antibiotics against ESBL producers. In sequenced isolates,  an average of six anti-microbial resistance (AMR) genes were noted per isolate, where one of them carried up to 13 antibiotic resistance genes. Carbapenem resistance genes such as bla(KPC-2)(6.6%), bla(PDC-36/12) (6.6%), and bla(POM-1) (6.6%) were detected. All the sequenced E. coli isolates (n = 8) showed multiple resistance genes, mainly against β-lactamase (25.0%), aminoglycosides (37.5%), sulfonamides (37.5%), and genes conferring resistance to tetracyclines (25.0). CONCLUSION: Our results showed a high prevalence of ESBL-producing GNB isolated from a pediatric hospital in the Gaza Strip. Various antibiotic resistance genes were identified, including those encoding ESBL and carbapenems. The results highlight the significant challenge posed by MDR in GNB and emphasize the need for effective antibiotic strategies. Given the high endemicity observed in various studies from Palestine, it is important to conduct clinical and molecular epidemiology research to identify risk factors, transmission patterns, and clinical outcomes associated with GNB strains that carry ESBL and carbapenem resistance genes.202439379824
1426140.9941Phenotypic and genotypic detection of carbapenemase production among gram negative bacteria isolated from hospital acquired infections. OBJECTIVES: To identify the carbapenemase producing Gram-negative bacteria (GNB) by phenotypic methods and to confirm the presence of resistant genes using real-time polymerase chain reaction (PCR). METHODS: This was a prospective study carried out at the Department of Microbiology, Sri Venkata Sai Medical College and Hospital, Mahabubnagar, India, from March 2018-2021. All samples were screened for carbapenem resistance by disc diffusion method and the VITEK(®)2 compact system (bioMérieux, France). Detection of carbapenemase was carried out using RAPIDEC(®)CARBA NP test (Biomeriux Private Limited, South Delhi, India), screening for metallo-β-lactamases (MBL) was carried out by double disk synergy test (DDST), and genotypic characterization by real-time PCR. RESULTS: Among the 1093 Gram-negative bacilli identified, 220 (17.0%) were resistant to carbapenems by both tested methods. Carbapenemase detection using the RAPIDEC(®)CARBA NP test indicated that 207 (94.0%) were carbapenemase producers, of which 189 (91.2%) were MBL producers. The most common carbapenemase genes identified were New Delhi metallo-β-lactamase (NDM; 47.3%), followed by the co-existence of genes in combination of NDM, with Verona integron-mediated metallo-β-lactamase (VIM; 39.6%), VIM and oxacillin hydrolyzing enzymes-48 (OXA-48; 4.3%), and OXA-48 (1.4%).No gene of active on imipenem, Klebsiella pneumonia carbapenemase, VIM, or OXA-48 alone was detected. CONCLUSION: This study suggests routine carbapenem resistance testing among multi-drug resistant-GNBs, as most of these infections occur in hospitals. In addition, there is a possibility that these highly antibiotic-resistant genes could spread to other bacteria resulting in further dissemination.202235256490
1240150.9941Prevalence and characterization of quinolone resistance and integrons in clinical Gram-negative isolates from Gaza strip, Palestine. BACKGROUND: Gram-negative bacteria with quinolone resistance and extended-spectrum beta-lactamases (ESBLs) present significant treatment challenges. This study evaluated the prevalence and characteristics of quinolone resistance in Gram-negative strains, investigating the relationship between plasmid-mediated quinolone resistance (PMQR), ESBLs, and integrons. METHODS AND RESULTS: We collected 146 Gram-negative isolates from patients in three Palestinian hospitals. For quinolone resistance isolates, the presence and characterization of PMQR, β-lactamase genes and integrons were studied by PCR and sequencing. Out of 146 clinical isolates, 64 (43.8%) were resistant to quinolones, with 62 (97%) being multidrug-resistant (MDR) and 33 (51.5%) ESBL-producers. PMQR-encoding genes were present in 45 (70.3%) isolates, including aac(6')-Ib-cr (26.6%), qnrA (18.8%), qnrS1 (20.8%), and qnrB (6.4%). Bla(CTX-M) genes were detected in 50% (32/64) of isolates, with bla(CTX-M-15) being the most common. Bla(TEM-1), bla(SHV-1) and bla(VIM) genes were found in 13, 6, and 4 isolates, respectively. Class I integrons were found in 31/64 (48%) of isolates, with 14 containing gene cassettes conferring resistance to trimethoprim (dhfr17, dfrA12, dfrA1) and aminoglycosides resistance genes (aadA1, aadA2, aadA5, and aadA6). CONCLUSIONS: This study found a high rate of quinolone resistance, ESBL and integrons in clinical Gram-negative isolates from our hospitals. Urgent measures are crucial, including implementing an antimicrobial resistance surveillance system, to control and continuously monitor the development of antimicrobial resistance.202439066817
1420160.9941Metallo-β-lactamase and AmpC genes in Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa isolates from abattoir and poultry origin in Nigeria. BACKGROUND: Gram-negative bacteria (GNB) including Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae represent the most relevant reservoir of resistance genes such as metallo-β-lactamase (MBL) and AmpC genes that give them the undue advantage to resist antimicrobial onslaught. This study aimed to investigate the occurrence of MBL (bla(IMP-1), bla(IMP-2), bla(VIM-1), bla(VIM-2)) and AmpC (bla(FOX), bla(DHA), bla(CMY), bla(ACC)) resistance genes in aforementioned GNB collected from abattoir and poultry sources in Nigeria. RESULTS: In total, 370 isolates were collected from abattoir tables (n = 130), anal region of cows (n = 120), and the cloacae of poultry birds (n = 120). The test isolates showed high rate of resistance to cephalosporins and carbapenems. The MBLs were phenotypically detected in 22 E. coli, 22 P. aeruginosa, and 18 K. pneumoniae isolates using combined disc test (CDT). However, only 11 E. coli, 24 P. aeruginosa, and 18 Klebsiella pneumoniae isolates were phenotypically confirmed to be AmpC producers using cefoxitin-cloxacillin double disk synergy test (CC-DDST). MBL encoding genes (particularly the bla(IMP-1) genes and bla(IMP-2) genes) were detected by polymerase chain reaction (PCR) in 12 (54.6%) E. coli, 15 (83.3%) K. pneumoniae, and 16 (72.7%) P. aeruginosa isolates. AmpC genes (particularly the bla(CMY) genes and bla(FOX) genes) were found in a total of 5 (29.4%) E. coli isolates, 5 (27.8%) isolates of K. pneumoniae, and 10 (41.7%) isolates of P. aeruginosa. CONCLUSIONS: Our study showed the circulation of MBL and AmpC genes in GNB from abattoir and poultry origin in Nigeria. Adoption of regular control policies is necessary to reduce the spread of these species as soon as possible, especially in poultry and slaughterhouses.202133882823
1458170.9941Molecular characterization of extended spectrum β -lactamases enterobacteriaceae causing lower urinary tract infection among pediatric population. BACKGROUND: The β-lactam antibiotics have traditionally been the main treatment of Enterobacteriaceae infections, nonetheless, the emergence of species producing β- Lactamases has rendered this class of antibiotics largely ineffective. There are no published data on etiology of urinary tract infections (UTI) and antimicrobial resistance profile of uropathogens among children in Qatar. The aim of this study is to determine the phenotypic and genotypic profiles of antimicrobial resistant Enterobacteriaceae among children with UTI in Qatar. METHODS: Bacteria were isolated from 727 urine positive cultures, collected from children with UTI between February and June 2017 at the Pediatric Emergency Center, Doha, Qatar. Isolated bacteria were tested for antibiotic susceptibility against sixteen clinically relevant antibiotics using phoenix and Double Disc Synergy Test (DDST) for confirmation of extended-spectrum beta-lactamase (ESBL) production. Existence of genes encoding ESBL production were identified using polymerase chain reaction (PCR). Statistical analysis was done using non-parametric Kappa statistics, Pearson chi-square test and Jacquard's coefficient. RESULTS: 201 (31.7%) of samples were confirmed as Extended Spectrum β -Lactamases (ESBL) Producing Enterobacteriaceae. The most dominant pathogen was E. coli 166 (83%) followed by K. pneumoniae 22 (11%). Resistance was mostly encoded by (bla) CTX-M (59%) genes, primarily (bla) CTX-MG1 (89.2%) followed by (bla) CTX-MG9 (7.7%). 37% of isolated bacteria were harboring multiple (bla) genes (2 genes or more). E. coli isolates were categorized into 11 clusters, while K. pneoumoniae were grouped into five clonal clusters according to the presence and absence of seven genes namely (bla) TEM, (bla) SHV, (bla) CTX-MG1, (bla) CTX-MG2, (bla) CTX-MG8 (bla) CTX-MG9,(bla) CTX-MG25. CONCLUSIONS: Our data indicates an escalated problem of ESBL in pediatrics with UTI, which mandates implementation of regulatory programs to reduce the spread of ESBL producing Enterobacteriaceae in the community. The use of cephalosporins, aminoglycosides (gentamicin) and trimethoprim/sulfamethoxazole is compromised in Qatar among pediatric population with UTI, leaving carbapenems and amikacin as the therapeutic option for severe infections caused by ESBL producers.201830069306
1233180.9941Prevalence, Antibiogram, and Resistance Profile of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates from Pig Farms in Luzon, Philippines. This cross-sectional study was conducted to determine the prevalence, antibiogram, and resistance profile of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) isolates from healthy pigs and pig farms in Luzon, Philippines. A total of 162 rectal samples from healthy finisher and breeder pigs and boot swab samples from pig houses were collected from 54 randomly selected pig farms. Bacteria were isolated and screened using MacConkey agar plate supplemented with 1 mg/L cefotaxime. Identification of bacteria and antimicrobial susceptibility test were carried out through Vitek(®) 2 and combined disk test. PCR amplifications were carried out in all isolates targeting bla(CTX-M) and its five major groupings, bla(TEM), and bla(SHV). The farm prevalence of ESBL-EC was 57.41% (95% confidence interval [CI] = 43.21-70.77). A total of 48 (29.63%) ESBL-EC isolates were isolated from samples that showed 14 different phenotypic multidrug resistance patterns. The prevalence of bla(CTX-M) gene was 91.67% (95% CI = 80.02-97.68). All major bla(CTX-M-groups) except bla(CTX-M-25group) were detected. The bla(CTX-M-1) was the most prevalent bla(CTX-M) gene, 75.0% (95% CI = 60.40-86.36). The prevalence of bla(TEM) and bla(SHV) genes was 91.67% (95% CI = 80.02-97.68) and 60.42% (95% CI = 45.27-74.23), respectively. Coexistence of different bla(CTX-M), bla(TEM), and bla(SHV) genes was observed in 44 isolates with 20 different genotypic patterns. High prevalence, diverse antibiogram profile, and genotypic resistance pattern of ESBL-EC isolates from healthy pigs and pig farms were observed in this study that could result in possible transmission to farm workers, susceptible bacteria, and the environment.202031532307
1457190.9940Detection of TEM and CTX-M Genes in Escherichia coli Isolated from Clinical Specimens at Tertiary Care Heart Hospital, Kathmandu, Nepal. BACKGROUND: Antimicrobial resistance (AMR) among Gram-negative pathogens, predominantly ESBL-producing clinical isolates, are increasing worldwide. The main aim of this study was to determine the prevalence of ESBL-producing clinical isolates, their antibiogram, and the frequency of ESBL genes (bla(TEM) and bla(CTX-M)) in the clinical samples from patients. METHODS: A total of 1065 clinical specimens from patients suspected of heart infections were collected between February and August 2019. Bacterial isolates were identified on colony morphology and biochemical properties. Thus, obtained clinical isolates were screened for antimicrobial susceptibility testing (AST) using modified Kirby-Bauer disk diffusion method, while ESBL producers were identified by using a combination disk diffusion method. ESBL positive isolates were further assessed using conventional polymerase chain reaction (PCR) to detect the ESBL genes bla(TEM) and bla(CTX-M). RESULTS: Out of 1065 clinical specimens, 17.8% (190/1065) showed bacterial growth. Among 190 bacterial isolates, 57.4% (109/190) were Gram-negative bacteria. Among 109 Gram-negative bacteria, 40.3% (44/109) were E. coli, and 30.2% (33/109) were K. pneumoniae. In AST, 57.7% (n = 63) Gram-negative bacterial isolates were resistant to ampicillin and 47.7% (n = 52) were resistant to nalidixic acid. Over half of the isolates (51.3%; 56/109) were multidrug resistant (MDR). Of 44 E. coli, 27.3% (12/44) were ESBL producers. Among ESBL producer E. coli isolates, 58.4% (7/12) tested positive for the bla(CTX-M) gene and 41.6% (5/12) tested positive for the bla(TEM) gene. CONCLUSION: Half of the Gram-negative bacteria in our study were MDR. Routine identification of an infectious agent followed by AST is critical to optimize the treatment and prevent antimicrobial resistance.202133562276