MDEA - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
637200.9570Sensitizing multi drug resistant Staphylococcus aureus isolated from surgical site infections to antimicrobials by efflux pump inhibitors. BACKGROUND: Staphylococcus aureus is a common hospital acquired infections pathogen. Multidrug-resistant Methicillin-resistant Staphylococcus aureus represents a major problem in Egyptian hospitals. The over-expression of efflux pumps is a main cause of multidrug resistance. The discovery of efflux pump inhibitors may help fight multidrug resistance by sensitizing bacteria to antibiotics. This study aimed to investigate the role of efflux pumps in multidrug resistance. METHODS: Twenty multidrug resistant S. aureus isolates were selected. Efflux pumps were screened by ethidium bromide agar cartwheel method and polymerase chain reaction. The efflux pump inhibition by seven agents was tested by ethidium bromide agar cartwheel method and the effect on sensitivity to selected antimicrobials was investigated by broth microdilution method. RESULTS: Seventy percent of isolates showed strong efflux activity, while 30% showed intermediate activity. The efflux genes mdeA, norB, norC, norA and sepA were found to play the major role in efflux, while genes mepA, smr and qacA/B had a minor role. Verapamil and metformin showed significant efflux inhibition and increased the sensitivity to tested antimicrobials, while vildagliptin, atorvastatin, domperidone, mebeverine and nifuroxazide showed no effect. CONCLUSION: Efflux pumps are involved in multidrug resistance in Staphylococcus aureus. Efflux pump inhibitors could increase the sensitivity to antimicrobials.202034394224
537510.9561Mechanism of Eravacycline Resistance in Clinical Enterococcus faecalis Isolates From China. Opportunistic infections caused by multidrug-resistant Enterococcus faecalis strains are a significant clinical challenge. Eravacycline (Erava) is a synthetic fluorocycline structurally similar to tigecycline (Tige) that exhibits robust antimicrobial activity against Gram-positive bacteria. This study investigated the in vitro antimicrobial activity and heteroresistance risk of Eravacycline (Erava) in clinical E. faecalis isolates from China along with the mechanism of Erava resistance. A total of 276 non-duplicate E. faecalis isolates were retrospectively collected from a tertiary care hospital in China. Heteroresistance to Erava and the influence of tetracycline (Tet) resistance genes on Erava susceptibility were examined. To clarify the molecular basis for Erava resistance, E. faecalis variants exhibiting Erava-induced resistance were selected under Erava pressure. The relative transcript levels of six candidate genes linked to Erava susceptibility were determined by quantitative reverse-transcription PCR, and their role in Erava resistance and heteroresistance was evaluated by in vitro overexpression experiments. We found that Erava minimum inhibitory concentrations (MICs) against clinical E. faecalis isolates ranged from ≤0.015 to 0.25 mg/l even in strains harboring Tet resistance genes. The detection frequency of Erava heteroresistance in isolates with MICs ≤ 0.06, 0.125, and 0.25 mg/l were 0.43% (1/231), 7.5% (3/40), and 0 (0/5), respectively. No mutations were detected in the 30S ribosomal subunit gene in Erava heteroresistance-derived clones, although mutations in this subunit conferred cross resistance to Tige in Erava-induced resistant E. faecalis. Overexpressing RS00630 (encoding a bone morphogenetic protein family ATP-binding cassette transporter substrate-binding protein) in E. faecalis increased the frequency of Erava and Tige heteroresistance, whereas RS12140, RS06145, and RS06880 overexpression conferred heteroresistance to Tige only. These results indicate that Erava has potent in vitro antimicrobial activity against clinical E. faecalis isolates from China and that Erava heteroresistance can be induced by RS00630 overexpression.202032523563
637120.9558Bioactive compounds from the African medicinal plant Cleistochlamys kirkii as resistance modifiers in bacteria. Cleistochlamys kirkii (Benth) Oliv. (Annonaceae) is a medicinal plant traditionally used in Mozambique to treat infectious diseases. The aim of this study was to find resistance modifiers in C. kirkii for Gram-positive and Gram-negative model bacterial strains. One of the most important resistance mechanisms in bacteria is the efflux pump-related multidrug resistance. Therefore, polycarpol (1), three C-benzylated flavanones (2-4), and acetylmelodorinol (5) were evaluated for their multidrug resistance-reverting activity on methicillin-susceptible and methicillin-resistant Staphylococcus aureus and Escherichia coli AG100 and AG100 A strains overexpressing and lacking the AcrAB-TolC efflux pump system. The combined effects of antibiotics and compounds (2 and 4) were also assessed by using the checkerboard microdilution method in both S. aureus strains. The relative gene expression of the efflux pump genes was determined by real-time reverse transcriptase quantitative polymerase chain reaction. The inhibition of quorum sensing was also investigated. The combined effect of the antibiotics and compound 2 or 4 on the methicillin-sensitive S. aureus resulted in synergism. The most active compounds 2 and 4 increased the expression of the efflux pump genes. These results suggested that C. kirkii constituents could be effective adjuvants in the antibiotic treatment of infections.201829464798
574830.9546Nosocomial Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus: Sensitivity to Chlorhexidine-Based Biocides and Prevalence of Efflux Pump Genes. The widespread use of disinfectants and antiseptics has led to the emergence of nosocomial pathogens that are less sensitive to these agents, which in combination with multidrug resistance (MDR) can pose a significant epidemiologic risk. We investigated the susceptibility of nosocomial Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus to a 0.05% chlorhexidine (CHX) solution and a biocidal S7 composite solution based on CHX (0.07%) and benzalkonium chloride (BAC, 0.055%). The prevalence of efflux pump genes associated with biocide resistance and their relationship to antibiotic resistance was also determined. Both biocides were more effective against Gram-positive S. aureus than Gram-negative bacteria. The most resistant strains were P. aeruginosa strains, which were mainly killed by 0.0016% CHX and by 0.0000084% (CHX)/0.0000066% (BAC) S7. The S7 bactericidal effect was observed on P. aeruginosa and S. aureus after 10 min, while the bactericidal effect of CHX was only observed after 30 min. qacEΔ1 and qacE efflux pump genes were prevalent among E. coli and K. pneumoniae, while mexB was more often detected in P. aeruginosa. norA, norB, mepA, mdeA, and sepA were prevalent in S. aureus. The observed prevalence of efflux pump genes highlights the potential problem whereby the sensitivity of bacteria to biocides could decline rapidly in the future.202539796210
635940.9544Drug resistance of oral bacteria to new antibacterial dental monomer dimethylaminohexadecyl methacrylate. Only two reports exist on drug-resistance of quaternary ammonium monomers against oral bacteria; both studies tested planktonic bacteria for 10 passages, and neither study tested biofilms or resins. The objectives of this study were to investigate the drug-resistance of Streptococcus mutans, Streptococcus sanguinis and Streptococcus gordonii against dimethylaminohexadecyl methacrylate (DMAHDM), and to evaluate biofilms on resins with repeated exposures for 20 passages for the first time. DMAHDM, dimethylaminododecyl methacrylate (DMADDM) and chlorhexidine (CHX) were tested with planktonic bacteria. Biofilms were grown on a resin containing 3% DMAHDM. Minimum-inhibitory concentrations were measured. To detect drug-resistance, the survived bacteria from the previous passage were used as inoculum for the next passage for repeated exposures. S. gordonii developed drug-resistance against DMADDM and CHX, but not against DMAHDM. Biofilm colony-forming units (CFU) on DMAHDM-resin was reduced by 3-4 log; there was no difference from passages 1 to 20 (p > 0.1). No drug-resistance to DMAHDM was detected for all three bacterial species. In conclusion, this study showed that DMAHDM induced no drug-resistance, and DMAHDM-resin reduced biofilm CFU by 3-4 log, with no significant change from 1 to 20 passages. DMAHDM with potent antibacterial activities and no drug-resistance is promising for dental applications.201829615732
228650.9541Association of Antibacterial Susceptibility Profile with the Prevalence of Genes Encoding Efflux Proteins in the Bangladeshi Clinical Isolates of Staphylococcus aureus. Expelling antibiotic molecules out of the cell wall through multiple efflux pumps is one of the potential mechanisms of developing resistance against a wide number of antibiotics in Staphylococcus aureus. The aim of this study was to investigate the association between the antibiotic susceptibility profile and the prevalence of different efflux pump genes i.e., norA, norB, norC, mepA, sepA, mdeA, qacA/B, and smr in the clinical isolates of S. aureus. Sixty clinical isolates were collected from a tertiary level hospital in Bangladesh. The disc diffusion method using ten antibiotics of different classes was used to discern the susceptibility profile. polymerase chain reaction (PCR) was employed to observe the resistance patterns and to detect the presence of plasmid and chromosomal encoded genes. Among the clinical isolates, 60% (36 out of 60) of the samples were Methicillin-resistant Staphylococcus aureus (MRSA), whereas 55% (33 out of 60) of the bacterial samples were found to be multi-drug resistant. The bacteria showed higher resistance to vancomycin (73.33%), followed by ciprofloxacin (60%), cefixime (53.33%), azithromycin (43.33%), and amoxicillin (31.67%). The prevalence of the chromosomally-encoded efflux genes norA (91.67%), norB (90%), norC (93.33%), mepA (93.33%), sepA (98.33%), and mdeA (93.33%) were extremely high with a minor portion of them carrying the plasmid-encoded genes qacA/B (20%) and smr (8.33%). Several genetic combinations of efflux pump genes were revealed, among which norA + norB + norC + mepA + sepA + mdeA was the most widely distributed combination among MRSA and MSSA bacteria that conferred resistance against ciprofloxacin and probably vancomycin. Based on the present study, it is evident that the presence of multiple efflux genes potentiated the drug extrusion activity and may play a pivotal role in the development of multidrug resistance in S. aureus.202336830216
228560.9541Efflux genes and active efflux activity detection in Malaysian clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). Efflux-mediated resistance has been recognized as an important contributor of antibiotic resistance in bacteria, especially in methicillin-resistant Staphylococcus aureus (MRSA) isolates. This study was carried out to detect and analyze efflux genes (norA and mdeA) and active efflux activity in a collection of Malaysian MRSA and methicillin-sensitive S. aureus (MSSA) clinical isolates. Nineteen isolates including three ATCC S. aureus reference strains were subjected to PCR detection and DNA sequence analysis for norA and mdeA and active efflux detection using modified minimum inhibitory concentration (MIC) assay. From the 19 isolates, 18 isolates harboured the mdeA gene while 16 isolates contained norA gene. DNA sequence analysis reveals 98-100% correlation between the PCR product and the published DNA sequences in GenBank. In addition, 16 isolates exhibited active efflux activity using the ethidium bromide (EtBr)-reserpine combination MIC assay. To our knowledge, this is the first report on the detection of efflux genes and active efflux activity amongst Malaysian clinical isolates of MRSA/MSSA. Detection of active efflux activity may explain the previous report on efflux-mediated drug resistance profile amongst the local clinical isolates.200818720500
228770.9540Expression of norA, norB and norC efflux pump genes mediating fluoroquinolones resistance in MRSA isolates. INTRODUCTION: Although fluoroquinolones are used to treat methicillin-resistant Staphylococcus aureus (MRSA)-induced infections, acquisition of antibiotic resistance by bacteria has impaired their clinical relevance. We aimed to evaluate the frequency of norA, norB, and norC efflux pump genes-mediating fluoroquinolones resistance and measure their expression levels in MRSA isolates. METHODOLOGY: 126 S. aureus isolates were collected from different clinical samples of adult hospitalized patients and identified by conventional microbiological methods. MRSA was diagnosed by cefoxitin disc diffusion method and minimum inhibitory concentration (MIC) of ciprofloxacin by broth microdilution method. The expression levels of efflux pump genes were measured by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: 80 (63.5%) MRSA isolates were identified and showed high level of resistance to erythromycin (80%), gentamicin (75%), clindamycin (65%) and ciprofloxacin (60 %). norA, norB and norC were detected in 75%, 35% and 55% of the MRSA isolates respectively. norC was the most commonly overexpressed gene measured by qRT-PCR, occurring in 40% of MRSA isolates, followed by norA (35%) and norB (30%). The expression of these genes was significantly higher in ciprofloxacin-resistant than quantitative real-time PCR ciprofloxacin-sensitive MRSA isolates. CONCLUSIONS: This study showed high prevalence and overexpression of efflux pump genes among MRSA isolates which indicates the significant role of these genes in the development of multidrug resistance against antibiotics including fluoroquinolones.202438635612
574980.9538Antibiotic resistance as an indicator of bacterial chlorhexidine susceptibility. The antibiotic and chlorhexidine (CHX) susceptibility of 70 distinct clinical isolates: Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Staphylococcus aureus (not MRSA), Streptococcus pyogenes and Enterococcus faecalis (10 of each) were tested using minimal bactericidal (MBC) and/or minimal inhibitory (MIC) concentrations. Non-fermentative bacteria tolerated CHX at high concentrations; Gram-positive cocci, especially S. pyogenes, were the most susceptible. We found a good correlation between CHX and antibiotic susceptibility in both MIC and MBC among Gram-negative bacteria, and mainly in MBC among Gram-positive bacteria. Resistance to ciprofloxacin, imipenem, cefotaxime, ceftazidime, gentamicin and aztreonam appeared to indicate increased CHX resistance among Gram-negative bacteria. This finding gives clinicians the ability to predict CHX susceptibility according to routine antibiotic resistance testing.200212090797
637090.9537Inhibitory effects of silybin on the efflux pump of methicillin‑resistant Staphylococcus aureus. Bacterial multidrug resistance efflux systems serve an important role in antimicrobial resistance. Thus, identifying novel and effective efflux pump inhibitors that are safe with no adverse side effects is urgently required. Silybin is a flavonolignan component of the extract from the milk thistle seed. To order to investigate the mechanism by which silybin inhibits the efflux system of methicillin‑resistant Staphylococcus aureus (MRSA), antimicrobial susceptibility testing and the double‑plate method were used to evaluate the effect of silybin on MRSA41577. The ability of silybin to inhibit the efflux of ciprofloxacin from MRSA was evaluated by performing a fluorescence assay. Reverse transcription‑quantitative polymerase chain reaction analysis revealed that silybin reduced the expression of the quinolone resistance protein NorA (norA) and quaternary ammonium resistance proteins A/B (qacA/B) efflux genes in MRSA. This suggested that silybin may effectively inhibit the efflux system of MRSA41577. Compared with the control, MRSA41577 treated with silybin for 16 h exhibited a 36 and 49% reduction in the expression of norA and qacA/B, respectively. Inhibition of the expression of these genes by silybin restored the sensitivity of MRSA41577 to antibiotics, indicating that efflux pump inhibitors, which act by inhibiting the efflux system of MRSA, may disrupt the MRSA resistance to antibiotics, rendering the bacteria sensitive to these drugs.201829845191
6373100.9535Antibiotic resistance and multidrug-resistant efflux pumps expression in lactic acid bacteria isolated from pozol, a nonalcoholic Mayan maize fermented beverage. Pozol is a handcrafted nonalcoholic Mayan beverage produced by the spontaneous fermentation of maize dough by lactic acid bacteria. Lactic acid bacteria (LAB) are carriers of chromosomal encoded multidrug-resistant efflux pumps genes that can be transferred to pathogens and/or confer resistance to compounds released during the fermentation process causing food spoiling. The aim of this study was to evaluate the antibiotic sensibility and the transcriptional expression of ABC-type efflux pumps in LAB isolated from pozol that contributes to multidrug resistance. Analysis of LAB and Staphylococcus (S.) aureus ATCC 29213 and ATCC 6538 control strains to antibiotic susceptibility, minimal inhibitory concentration (MIC), and minimal bactericidal concentration (MBC) to ethidium bromide were based in "standard methods" whereas the ethidium bromide efflux assay was done by fluorometric assay. Transcriptional expression of efflux pumps was analyzed by RT-PCR. LAB showed antibiotic multiresistance profiles, moreover, Lactococcus (L.) lactis and Lactobacillus (L.) plantarum displayed higher ethidium bromide efflux phenotype than S. aureus control strains. Ethidium bromide resistance and ethidium bromide efflux phenotypes were unrelated with the overexpression of lmrD in L. lactics, or the underexpression of lmrA in L. plantarum and norA in S. aureus. These findings suggest that, moreover, the analyzed efflux pumps genes, other unknown redundant mechanisms may underlie the antibiotic resistance and the ethidium bromide efflux phenotype in L. lactis and L. plantarum. Phenotypic and molecular drug multiresistance assessment in LAB may improve a better selection of the fermentation starter cultures used in pozol, and to control the antibiotic resistance widespread and food spoiling for health safety.201627247772
1473110.9534Evaluation of the Unyvero i60 ITI® multiplex PCR for infected chronic leg ulcers diagnosis. OBJECTIVES: Unyvero i60 ITI multiplex PCR (mPCR) may identify a large panel of bacteria and antibiotic resistance genes. In this study, we compared results obtained by mPCR to standard bacteriology in chronic leg ulcer (CLU) infections. METHODS: A prospective study, part of the interventional-blinded randomized study "ulcerinfecte" (NCT02889926), was conducted at Saint Joseph Hospital in Paris. Fifty patients with a suspicion of infected CLU were included between February 2017 and September 2018. Conventional bacteriology and mPCR were performed simultaneously on deep skin biopsies. RESULTS: Staphylococcus aureus and Pseudomonas aeruginosa were the most detected pathogens. Regarding the global sensitivity, mPCR is not overcome to the standard culture. Anaerobes and slow growing bacteria were detected with a higher sensitivity rate by mPCR than standard culture. CONCLUSION: Unyvero i60 ITI multiplex PCR detected rapidly pathogenic bacteria in infected CLU especially anaerobes and slow growing bacteria and was particularly effective for patients previously treated with antibiotics.202031790779
2337120.9534Klebsiella pneumoniae susceptibility to biocides and its association with cepA, qacΔE and qacE efflux pump genes and antibiotic resistance. BACKGROUND: Although antiseptics are some of the most widely used antibacterials in hospitals, there is very little information on reduced susceptibility to these biocides and its relationship with resistance to antibiotics. AIM: To determine the relationship between reduced susceptibility to biocides and the carriage of antiseptic resistance genes, cepA, qacΔE and qacE, as well as identifying the role of efflux pumps in conferring reduced susceptibility. METHODS: Susceptibility was assessed for five biocides: chlorhexidine, benzalkonium chloride, Trigene, MediHex-4, Mediscrub; and for 11 antibiotics against 64 isolates of Klebsiella pneumoniae. Susceptibility to all compounds was tested by the agar double dilution method (DDM) and the effect of efflux pumps on biocides determined by repeating the susceptibility studies in the presence of the efflux pump inhibitor carbonyl cyanide m-chlorophenyl hydrazone (CCCP). The presence of the cepA, qacΔE and qacE genes was identified by polymerase chain reaction. FINDINGS: The bacteria were not widely antibiotic resistant though a few showed reduced susceptibility to cefoxitin, chloramphenicol and rifampicin and later-generation cephalosporins but not to carbapenems. Biocide susceptibility, tested by DDM, showed that 50, 49 and 53 strains had reduced susceptibility to chlorhexidine, Trigene and benzalkonium chloride, respectively. The antiseptic resistance genes cepA, qacΔE and qacE were found in 56, 34 and one isolates respectively and their effects as efflux pumps were determined by CCCP (10 mg/L), which decreased the minimum inhibitory concentrations (MICs) of chlorhexidine and Medihex-4 by 2-128-fold but had no impact on the MICs of benzalkonium chloride, Trigene and Mediscrub. CONCLUSION: There was a close link between carriage of efflux pump genes, cepA, qacΔE and qacE genes and reduced biocide susceptibility, but not antibiotic resistance, in K. pneumoniae clinical isolates.201222498639
5377130.9534Synthetic lincosamides iboxamycin and cresomycin are active against ocular multidrug-resistant methicillin-resistant Staphylococcus aureus carrying erm genes. OBJECTIVE: Antimicrobial resistance is a global pandemic that poses a major threat to vision health as ocular bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA), are becoming increasingly resistant to first-line therapies. Here we evaluated the antimicrobial activity of new synthetic lincosamides in comparison to currently used antibiotics against clinical ocular MRSA isolates. METHODS: Antimicrobial susceptibility testing was performed by broth microdilution for two novel synthetic lincosamides (iboxamycin and cresomycin) and eight comparator antibiotics against a collection of 50 genomically characterised ocular MRSA isolates, including isolates harbouring erm genes (n = 25). RESULTS: Both drugs were active against widespread MRSA clonal complexes CC8 and CC5. The MIC(50) and MIC(90) of iboxamycin were 0.06 and 2 mg/L, respectively. Cresomycin (MIC(50) = 0.06 mg/L) also displayed good activity with an in vitro potency four-fold higher (MIC(90) = 0.5 mg/L) than iboxamycin. In isolates harbouring erm genes, MIC(90) were >16, 2, and 0.5 mg/L for clindamycin, iboxamycin, and cresomycin, respectively. The in vitro potencies of iboxamycin and cresomycin were similar or higher than that of comparator agents and were not impacted by multidrug-resistance phenotypes or by the presence of erm genes when compared with clindamycin. CONCLUSIONS: Our results demonstrate that iboxamycin and cresomycin display potent in vitro activity against ocular MRSA isolates, including multidrug-resistant isolates harbouring erm genes.202439293511
2338140.9533Characterization of disinfectant susceptibility profiles among clinical isolates of Acinetobacter baumannii in Ardabil, Iran. Antimicrobial disinfectants have been extensively used to control hospital-acquired infections worldwide. Prolonged exposure to bacteria could promote resistance to antimicrobial disinfectants. This study evaluated the antimicrobial activity of four commonly used disinfectants; triclosan, chlorhexidine digluconate, benzalkonium chloride, and formaldehyde against Acinetobacter baumannii clinical isolates. This study also determined the prevalence and association of efflux pumps encoding genes qacE, qacED1, emrA, and aceI with tolerance to disinfectants. A total of 100 A. baumannii isolates were included in the current study. The antimicrobial disinfectants' minimum inhibitory concentration (MIC) was determined using an agar dilution method. Genes involved in resistance to disinfectants were investigated by PCR method. The benzalkonium chloride MICs ranged between 32 and 128 μg mL-1, chlorhexidine digluconate 8-64 μg mL-1, triclosan 1-32 μg mL-1, and formaldehyde 128 μg mL-1. Overall, the highest MIC90 value was identified for formaldehyde (128 μg mL-1), followed by benzalkonium chloride and chlorhexidine digluconate (64 μg mL-1, each one) and triclosan (4 μg mL-1). In the present study, the qacE, qacED1, emrA, and aceI genes were found in 91%, 55%, 100%, and 88% of isolates, respectively. The qacG gene was not identified in our A. baumannii isolates. The qacED1 gene was associated with higher MICs for all disinfectants tested (P < 0.05), while the qacE and aceI genes were associated with higher MICs for benzalkonium chloride and chlorhexidine. This study indicated that triclosan is the most effective disinfectant against A. baumannii isolates.202338063878
5437150.9530Analysis of antibiotics resistant genes in different strains of Staphylococcus aureus. The control of Staphylococcus aureus infection is being hampered by methicillin and other resistant strains. The identification of the unique antibiotic resistant genes from the genomes of various strains of S. aureus is of interest. We analyzed 11 S. aureus genomes sequences for Antibiotics Resistance Genes (ARGs) using CARD 2017 platform. We identified 32 ARGs across 11 S. aureus strains. Tet(38), norB, lmrB, mepA and mepR were present across genomes except for S. aureus strain UTSW MRSA 55. The mepA and mepR were found across 11 different genomes. However, FosB3, vgaALC, mphC and SAT-4 were found in UTSW MRSA 55, S.a. strain ISU935 and S.a. strain FDAARGOS_159. The prevalent mode of mechanism of antibiotics resistant was efflux pump complex or subunit conferring antibiotic resistance as well as protein(s). Analysis of norB, ImrB, norA, ImrB, tet (38), sav1866 and mecA have 12 to 14 TMHs. The results help in the understanding of Staphylococcus aureus pathogenesis in the context of antibiotic resistance.201829785070
5228160.9530Mycobacterium bolletii respiratory infections. Contrary to other species in the Mycobacterium chelonae-abscessus complex, we reidentified M. bolletii strains isolated from 4 respiratory patients and found these strains to be uniformly resistant to clarithromycin. No mutations previously associated with macrolide resistance in bacteria were detected in either the 23S rDNA or the genes encoding riboproteins L4 and L22.200919193279
5414170.9529Genetic determinants of antimicrobial resistance in Gram positive bacteria from organic foods. Bacterial biocide resistance is becoming a matter of concern. In the present study, a collection of biocide-resistant, Gram-positive bacteria from organic foods (including 11 isolates from genus Bacillus, 25 from Enterococcus and 10 from Staphylococcus) were analyzed for genes associated to biocide resistance efflux pumps and antibiotic resistance. The only qac-genes detected were qacA/B (one Bacillus cereus isolate) and smr (one B. cereus and two Staphylococcus saprophyticus isolates). Efflux pump genes efrA and efrB genes were detected in Staphylococcus (60% of isolates), Bacillus (54.54%) and Enterococcus (24%); sugE was detected in Enterococcus (20%) and in one Bacillus licheniformis; mepA was detected in Staphylococcus (60%) and in one Enterococcus isolate (which also carried mdeA), and norE gene was detected only in one Enterococcus faecium and one S. saprophyticus isolate. An amplicon for acrB efflux pump was detected in all but one isolate. When minimal inhibitory concentrations (MICs) were determined, it was found that the addition of reserpine reduced the MICs by eight fold for most of the biocides and isolates, corroborating the role of efflux pumps in biocide resistance. Erythromycin resistance gene ermB was detected in 90% of Bacillus isolates, and in one Staphylococcus, while ereA was detected only in one Bacillus and one Staphyloccus, and ereB only in one Staphylococcus. The ATP-dependent msrA gene (which confers resistance to macrolides, lincosamides and type B streptogramins) was detected in 60% of Bacillus isolates and in all staphylococci, which in addition carried msrB. The lincosamide and streptogramin A resistance gene lsa was detected in Staphylococcus (40%), Bacillus (27.27%) and Enterococcus (8%) isolates. The aminoglycoside resistance determinant aph (3_)-IIIa was detected in Staphylococcus (40%) and Bacillus (one isolate), aph(2_)-1d in Bacillus (27.27%) and Enterococcus (8%), aph(2_)-Ib in Bacillus (one isolate), and the bifunctional aac(6_)1e-aph(2_)-Ia in Staphylococcus (20%), Enterococcus (8%) and Bacillus (one isolate). Chloramphenicol resistance cat gene was detected in Enterococcus (8%) and Staphylococcus (20%), and blaZ only in Staphylococcus (20%). All other antibiotic or biocide resistance genes investigated were not detected in any isolate. Isolates carrying multiple biocide and antibiotic determinants were frequent among Bacillus (36.36%) and Staphylococcus (50%), but not Enterococcus. These results suggest that biocide and antibiotic determinants may be co-selected.201424361832
1245180.9525Mutation-based fluoroquinolone resistance in carbapenem-resistant Acinetobacter baumannii and Escherichia coli isolates causing catheter-related bloodstream infections. OBJECTIVE: We studied the presence of mutations in the chromosomal quinolone resistance-determining regions (QRDRs) of the fluoroquinolone targets gyrA and parC genes and detected the carbapenem resistance (CR) encoding genes among Acinetobacter baumannii and Escherichia coli isolates from catheter-related bloodstream infections (CRBSIs). METHODS: The study included 39 non-duplicate isolates of A. baumannii (14/39, 35.9%) and E. coli (25/39, 64.1%) isolated from 128 confirmed CRBSIs cases. Antimicrobial susceptibility testing was performed, followed by an evaluation of biofilm formation using the tissue culture plate method. The carbapenemase encoding genes were detected by multiplex polymerase chain reaction (PCR). The mutations in QRDRs of gyrA and parC genes were determined by singleplex PCR amplification followed by DNA sequencing and BlastN analysis in the GenBank database. DNA and the translated amino acid sequences were analyzed using the Mega7 bioinformatics tool. RESULTS: Multidrug-resistant (MDR) E. coli and A. baumannii isolates harbored CR encoding genes and combined gyrA and parC genes mutation. The specific substitutions observed in GyrA were Cys173Arg, Cys174Gly, Asp80Val, Tyr178ASP, Tyr84Gly, Glu85Lys, Ser172Leu, and Asp176Asn, while the specific substitutions observed in the ParC amino acid sequence were point mutation 62 Arg, Phe60Leu, Ils66Val, and Gln76Lys. Point mutation 62Arg was detected in two A. baumannii isolates, whereas Ser172Leu mutation was observed in two E. coli isolates. CONCLUSION: The presence of new single and multiple mutations in QRDR causes the emergence of MDR E. coli and A. baumannii infections in carbapenem-resistant Enterobacteriaceae in Egypt, requiring further investigation in Gram-negative bacteria.202337151743
2352190.9525Phenotypic and Molecular Detection of Biofilm Formation in Methicillin-Resistant Staphylococcus Aureus Isolated from Different Clinical Sources in Erbil City. BACKGROUND: Staphylococcus aureus is an important causative pathogen. The production of biofilms is an important factor and makes these bacteria resistant to antimicrobial therapy. OBJECTIVES: the current study aimed to assess the prevalence of resistance to antibacterial agents and to evaluate the phenotypic and genotypic characterization of biofilm formation among S. aureus strains. METHODS: This study included 50 isolates of Methicillin-resistant S. aureus (MRSA) and Methicillin-Susceptible S. aureus (MSSA). S. aureus was identified by molecular and conventional methods, and antimicrobial resistance was tested with a disc diffusion method. The biofilm formation was performed through the Microtiter plate method. Strains were subjected to PCR to determine the presence of nuc, mecA, icaA, icaB, icaC, and icaD genes. RESULTS: Of the 50 S. aureus isolates, 32(64%) and 18(36%) were MRSA and MSSA, respectively. A large number of MRSA and MSSA isolates showed resistance to Penicillin and Azithromycin, and a lower number of MRSA and MSSA isolates showed resistance to Amikacin Gentamicin. None of the isolates was resistant to Vancomycin. The MRSA strains had significantly higher resistance against antibiotics than MSSA strains (P = 0.0154). All isolates (MRSA and MSSA) were able to produce biofilm with levels ranging from strong (31.25 %), (16.6%) to moderate (53.12%), (50%) to weak (15.6%), (33.3%) respectively. The MRSA strains had a significantly higher biofilm formation ability than the MSSA strains (P = 0.0079). The biofilm-encoding genes were detected among isolates with different frequencies. The majority of S. aureus isolates, 42 (84%), were positive for the icaA. The prevalence rates of the icaB, icaC and icaD genes were found to be 37 (74%), 40 (80%) and 41 (82%), respectively. CONCLUSIONS: The prevalence of biofilm encoding genes associated with multidrug resistance in S. aureus strains is high. Therefore, identifying epidemiology, molecular characteristics, and biofilm management of S. aureus infection would be helpful.202336908866