# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2093 | 0 | 0.9960 | Are Enterobacteriaceae and Enterococcus Isolated from Powdered Infant Formula a Hazard for Infants? A Genomic Analysis. Powdered infant formulas (PIF) are the most used dietary substitutes that are used in order to supplement breastfeeding. However, PIF are not sterile and can be contaminated with different microorganisms. The objective of this study was to genomically characterize Enterobacteriaceae (ENT) and Enterococcus strains that were isolated from PIF. Strains were identified by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and whole-genome sequencing (WGS). Genomic typing, detection of virulence, and resistance profiles and genes were performed with the Ridom SeqSphere+ software; the comprehensive antibiotic resistance database (CARD) platform; ResFinder and PlasmidFinder tools; and by the disk diffusion method. Nineteen isolates from PIF were analyzed, including ENT such as Kosakonia cowanii, Enterobacter hormaechei, Franconibacter helveticus, Mixta calida, and lactic acid bacteria such as Enterococcus faecium. The strains exhibited resistance to beta-lactams, cephalosporins, and macrolides. Resistance genes such as AcrAB-TolC, marA, msbA, knpEF, oqxAB, fosA, bla(ACT-)(7), bla(ACT-)(14,)qacJ, oqxAB(,)aac(6')-Ii, and msr(C); and virulence genes such as astA, cheB, cheR, ompA ompX, terC, ironA, acm, and efaAfm, adem were also detected. All the analyzed strains possessed genes that produced heat-shock proteins, such as IbpA and ClpL. In PIF, the presence of ENT and Enterococcus that are multiresistant to antibiotics-together with resistance and virulence genes-pose a health risk for infants consuming these food products. | 2022 | 36429148 |
| 2374 | 1 | 0.9957 | Phenotypic and genetic antimicrobial resistance of the intestinal microbiota isolated from two alpacas (Vicugna pacos) post mortem. INTRODUCTION: In Poland, alpacas are commonly companion animals and producers of wool. Human-alpaca-environment interactions raise One Health concerns about antimicrobial resistance (AMR). No medications are licensed in Poland for camelids, and so all are prescribed under the cascade; they include β-lactams, cephalosporin, florfenicol, enrofloxacin, marbofloxacin, gentamicin, tetracycline and trimethoprim/sulfamethoxazole. Human and animal bacterial AMR is a matter of global concern. Consequently, the aim of the present study was to determine the prevalence of phenotypic and genotypic AMR among bacteria isolated from alpaca intestines. MATERIAL AND METHODS: Fifty-four strains were identified using matrix-assisted laser desorption/ionisation-time-of-flight mass spectrometry and biochemical methods. Antibacterial susceptibility was assessed by determining minimum inhibitory concentrations and by the Kirby-Bauer method. RESULTS: Citrobacter spp., Enterobacter spp. and Serratia spp. exhibited resistance to β-lactams, first-generation cephalosporins and tetracyclines, with Serratia spp. also resistant to colistin, polymyxin B and florfenicol. Enterococcus spp. were resistant to penicillin G, benzylpenicillin and erythromycin, but not to vancomycin, while Staphylococcus spp. showed resistance to amoxicillin and penicillins, but not to methicillin. Bacillus spp. and Corynebacterium spp. were resistant to some penicillins, tetracyclines and trimethoprim-sulfamethoxazole. Enterobacteriaceae isolates carried resistance genes (aadA, dfrA1, tetA, sul1, sul2, strA/strB and floR); therefore, the tested alpacas' microbiomes harboured AMR determinants. CONCLUSION: Alpacas should be monitored over an extended period to know the risk of transmission of AMR genes from components of their microbiome. | 2025 | 41064399 |
| 926 | 2 | 0.9956 | Molecular diversity of Klebsiella pneumoniae clinical isolates: antimicrobial resistance, virulence, and biofilm formation. One of the mechanisms responsible for antibiotic resistance in Klebsiella pneumoniae is the enzymes produced by the bacteria; another important mechanism is the ability to form biofilm. In this study, antibiotic resistance, genes associated with virulence, and biofilm-forming properties of K. pneumoniae strains were investigated. A total of 100 K. pneumoniae isolates were obtained from different clinical samples identified by Matrix-Assisted Laser Desorption/Ionization time-of-flight Mass Spectrometry. Antimicrobial susceptibility testing was performed with the Phoenix 100 apparatus. The biofilm forming properties of strains were determined by the microtiter plate method. For molecular analysis, genes encoding the carbapenemase enzyme (bla(OXA-48), bla(NDM-1), bla(IMP), and bla(VIM)) and biofilm-related genes (treC, luxS, mrkA, and wza) were investigated by polymerase chain reaction (PCR). While 76% of clinical isolates were resistant to three or more antimicrobials, 24% were classified as non-multidrug resistant (non-MDR). When biofilm-forming capacities of clinical isolates were tested, it was determined that the resistant-isolates produced 59.2% strong biofilm, and susceptible-isolates produced 12.5% strong biofilm. According to PCR results, carbapenemase genes were determined as follows: bla(OXA-48)-70%, bla(NDM)-49%, and bla(KPC)-19%, bla(OXA-48)/bla(NDM)/bla(KPC)-12%, bla(OXA-48)/bla(NDM)-26%, and bla(OXA-48)/bla(KPC)-4%. The biofilm-associated genes in bacterial isolates were determined as follows: luxS-98%, treC-94%, mrkA-88%, and wza-15%. In addition, Hierarchical Clustering Tree and Heatmap analysis revealed an association between isolates that lacks resistance genes and isolates lacks biofilm-formation related genes that were included in MDR or non-MDR classes. As a result, biofilm should be considered in the treatment of MDR infections, and therapy should be planned accordingly. In addition, pursuing the data and genes of antibiotic resistance is significant for combating resistance. | 2025 | 38718417 |
| 5043 | 3 | 0.9955 | Detection of Colistin Resistance in Escherichia coli by Use of the MALDI Biotyper Sirius Mass Spectrometry System. Polymyxin antibiotics are a last-line treatment for multidrug-resistant Gram-negative bacteria. However, the emergence of colistin resistance, including the spread of mobile mcr genes, necessitates the development of improved diagnostics for the detection of colistin-resistant organisms in hospital settings. The recently developed MALDIxin test enables detection of colistin resistance by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) in less than 15 min but is not optimized for the mass spectrometers commonly found in clinical microbiology laboratories. In this study, we adapted the MALDIxin test for the MALDI Biotyper Sirius MALDI-TOF MS system (Bruker Daltonics). We optimized the sample preparation protocol by using a set of 6 mobile colistin resistance (MCR) protein-expressing Escherichia coli clones and validated the assay with a collection of 40 E. coli clinical isolates, including 19 confirmed MCR protein producers, 12 colistin-resistant isolates that tested negative for commonly encountered mcr genes (i.e., likely chromosomally resistant isolates), and 9 polymyxin-susceptible isolates. We calculated polymyxin resistance ratio (PRR) values from the acquired spectra; PRR values of 0, indicating polymyxin susceptibility, were obtained for all colistin-susceptible E. coli isolates, whereas positive PRR values, indicating resistance to polymyxins, were obtained for all resistant strains, independent of the genetic basis of resistance. Thus, we report a preliminary feasibility study showing that an optimized version of the MALDIxin test adapted for the routine MALDI Biotyper Sirius system provides an unbiased, fast, reliable, cost-effective, and high-throughput way of detecting colistin resistance in clinical E. coli isolates. | 2019 | 31597744 |
| 2648 | 4 | 0.9955 | Multidrug-Resistant Elizabethkingia anophelis Bacteremia in Northern Taiwan: Focusing on Prognostic Factors and Antimicrobial Susceptibility to Minocycline and Rifampin. PURPOSE: Elizabethkingia anophelis is an emerging multidrug-resistant pathogen associated with high mortality, particularly in healthcare-associated bacteremia. Treatment is complicated by frequent species misidentification and limited availability of effective antibiotics. This study aimed to investigate the clinical characteristics, predictors of early and late mortality, and antimicrobial resistance profiles, including associated resistance genes. PATIENTS AND METHODS: A retrospective cohort study was conducted from 2018 to 2022 at a center in northern Taiwan, involving patients with E. anophelis bacteremia. Demographic and clinical data, including comorbidities and laboratory parameters, were collected. Clinical severity was assessed using the Pitt bacteremia score. Bacterial isolates were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and species-specific polymerase chain reaction. Antimicrobial susceptibility was determined using broth microdilution, and resistance genes were detected by PCR. RESULTS: The 14-day and 28-day mortality rates after admission were 35% and 40%, respectively. The 14-day mortality rate was associated with high Pitt bacteremia scores, chronic kidney disease, anemia, and hyperbilirubinemia. Anemia and high Pitt bacteremia scores were consistently associated with 28-day mortality. Most isolates were phenotypically resistant to β-lactams, fluoroquinolones, and trimethoprim-sulfamethoxazole, while susceptibility to minocycline (1.6%) and rifampin (9.5%) was preserved. The detected resistance genes included multiple determinants (bla(B), bla(GOB), bla(CME) , and dfrE), with a notable absence of arr-1. CONCLUSION: E. anophelis bacteremia is associated with higher mortality and multidrug resistance. Prognosis is significantly influenced by host factors and specific laboratory findings. Given the high resistance of these bacteria to traditional antibiotics, minocycline and rifampin may serve as key treatment options when susceptibility is confirmed. Further studies are needed to validate their clinical efficacy, dosing, and combination strategies. | 2025 | 40901005 |
| 2140 | 5 | 0.9955 | Investigation for the presence of bacteria and antimicrobial resistance genes in sea snails (Rapana venosa). INTRODUCTION AND OBJECTIVE: The aims of this study were to search for the presence of bacteria in sea snails (Rapana venosa) by using culturomics and Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), and the antibiotic resistance/susceptibility of the sea snails. MATERIAL AND METHODS: The anti-microbial susceptibilities of Gram-negative bacteriawas assessed by the Kirby-Bauer disk diffusion method, the presence of the mcr genes (mcr-1 to -5), the major carbapenemase and β-lactamase resistant genes in Gram-negative bacteria, using mPCR method and 16S rRNA sequence analysis of A. hydrophila isolates. RESULTS: Bacterial growth accounted for 100% and 94.2% in the samples of intestine and meat, respectively, in the snails. The main organisms identified by MALDI-TOF MS were A. salmonicida subsp. salmonicida at 33.7%, followed by Raoultella ornithinolytica at 9.6% (10/104) and Staphylococcus warneri at 7.7% in meat and intestine samples. Aeromonas hydrophila/punctata (caviae), Aeromonas sobria, Klebsiella aerogenes, Klebsiella oxytoca, Raoultella planticola, Shewanella putrefaciens and Vibrio vulnificus are intrinsic or chromosomally-mediated resistant against ampicillin. No mcr genes (mcr-1 to -5), the major carbapenemase and β-lactamase resistant genes were found. Aeromonas salmonicida subsp. salmonicida showed very low levofloxacin and meropenem resistance levels at 2.9%. When the sequence was searched in the Blast database, the genome of A. hydrophila/punctata (caviae) isolate showed high similarity with the A. hydrophila sequences. CONCLUSIONS: Conclusions. The findings obtained not only provide data about the proportion of bacteria in the gut and meat of the sea snails and their antibiotic resistance/susceptibility, but also show the absence of carbapenemase, colistin, and β-lactamase resistant genes among bacterial isolates from sea snail gut microbes. | 2023 | 37387372 |
| 2372 | 6 | 0.9954 | Multidrug-resistant and potentially pathogenic Enterobacteriaceae found in a tertiary hospital sewage in southeastern Brazil. Hospital sewage is considered an environment with the potential to favor the spread and increase of multidrug-resistant bacteria (MDR). The increase in antimicrobial resistance is one of the greatest global threats today. Therefore, this study aimed to evaluate the profile of antimicrobial susceptibility and virulence factors in Enterobacteriaceae isolated from the sewage of a tertiary hospital located in southeastern Brazil. For bacterial isolation, membrane filtering, serial dilution, and spread-plate techniques were used. The bacterial isolates were identified using the MALDI-TOF (matrix-assisted laser desorption ionization-time of flight) technique. Antimicrobial susceptibility profile was performed by disk-diffusion test. Virulence genes were screened by Polymerase Chain Reaction (PCR) and the hypermucoviscosity phenotype by string test. In total, 13 enterobacteria distributed in three species were identified (Klebsiella pneumoniae, Escherichia coli, and Citrobacter freundii) and 76.9% (n = 10) were classified as MDR. Two K. pneumoniae demonstrated the hypermucoviscosity phenotype. The virulence genes ycfM and entB were detected in all K. pneumoniae isolates (other genes found were fimH, mrkD, and kfu). The results indicated that the sewage from the analyzed hospital receives MDR bacteria and has the potential to contaminate and spread through the environment. | 2022 | 36098842 |
| 1161 | 7 | 0.9954 | Detection of extended-spectrum β-lactamase-producing Escherichia coli genes isolated from cat rectal swabs at Surabaya Veterinary Hospital, Indonesia. BACKGROUND AND AIM: Escherichia coli causes a bacterial illness that frequently affects cats. Diseases caused by E. coli are treated using antibiotics. Because of their proximity to humans, cats possess an extremely high risk of contracting antibiotic resistance genes when their owners touch cat feces containing E. coli that harbor resistance genes. This study was conducted to identify multidrug-resistant E. coli and extended-spectrum β-lactamase (ESBL)-producing genes from cat rectal swabs collected at Surabaya City Veterinary Hospital to determine antibiotic sensitivity. MATERIALS AND METHODS: Samples of cat rectal swabs were cultured in Brilliant Green Bile Lactose Broth medium and then streaked on eosin methylene blue agar medium for bacterial isolation, whereas Gram-staining and IMViC tests were conducted to confirm the identification results. The Kirby-Bauer diffusion test was used to determine antibiotic sensitivity, and the double-disk synergy test was used to determine ESBL-producing bacteria. Molecular detection of the genes TEM and CTX-M was performed using a polymerase chain reaction. RESULTS: Based on morphological culture, Gram-staining, and biochemical testing, the results of sample inspection showed that of the 100 cat rectal swab samples isolated, 71 (71%) were positive for E. coli. Furthermore, 23 E. coli isolates (32.39%) demonstrated the highest resistance to ampicillin. Four isolates were confirmed to be multidurg-resistant and ESBL-producing strains. Molecular examination revealed that three E. coli isolates harbored TEM and CTX-M. CONCLUSION: In conclusion, pet owners must be educated on the use of antibiotics to improve their knowledge about the risks of antibiotic resistance. | 2023 | 37859949 |
| 2100 | 8 | 0.9953 | Prevalence of Bacteria and Antimicrobial Resistance Genes in Hospital Water and Surfaces. Purpose Antimicrobial resistance (AMR) has become a worldwide environmental and public health problem, causing more than 250,000 deaths per year. Unregulated usage, unsafe hospital practices, and misuse in veterinary contribute to the development of multidrug resistance in various bacteria. Hospital water was hypothesized to be a hotspot for AMR transmission because of (1) increased exposure to antibiotic load, (2) poor drainage and sanitation system, (3) interaction between environmental and clinical microbes. The purpose of the research was to assess the biodiversity and AMR in hospital tap waters. Methodology In this study, the microflora of the hospital tap water and hospital surfaces was observed by obtaining water samples from the intensive care unit (ICU), surgical wards, and washrooms. These were processed through membrane filtration and spread on seven different media (Aeromonas Medium, Azide Dextrose Agar, MacConkey Agar, Mannitol Salt Agar, Pseudomonas Cetrimide Agar, Salmonella Shigella Agar, and Thiosulfate Citrate Bile Salts Sucrose Agar). Surface samples were collected from the faucet, basin, and drain and directly spread on the media plates. Isolates were identified using standard bacteriological and biochemical tests. Kirby-Bauer disk diffusion method was performed using 21 antibiotic disks from 10 different antibiotic classes. They included ampicillin (AMP), amoxicillin (AML), piperacillin-tazobactam (TZP), cefipime (FEP), cefoxitin (FOX), ceftazidime (CAZ), ceftriaxone (CRO), imipenem (IMP), meropenem (MEM), ciprofloxacin (CIP), moxifloxacin (MXF), levofloxacin (LEV), amikacin (AK), gentamicin (CN), tigecycline (TGC), aztreonam (ATM), erythromycin (E), clindamycin (DA), rifampicin (RD), colistin (CT), and chloramphenicol (C). The results were interpreted according to EUCAST guidelines for the antibiogram of the isolates; 38 isolates were selected out of 162 based on different parameters for genotyping and detection of six beta-lactamase genes (blaSHV, blaTEM, blaCTX-M, blaOXA, blaKPC, blaNDM). Results Among these 162 isolates, 82 were obtained from water sources and 80 were collected from surfaces (faucet, basin, drain). The isolates included a variety of bacteria including Aeromonas spp. (20%), Klebsiella spp. (13%), Staphylococcus aureus (13%), Pseudomonas spp.(10%), Escherichia coli (9%), Vibrio spp. (8%), Enterococcus spp. (6%), Shigella spp. (6%), Salmonella spp. (4%), Acinetobacter spp. (3%), Staphylococcus epidermitis (3%), Streptococci spp. (2%), Proteus spp. (1%), Citrobacter spp. (1%), and Serratia spp. (1%). A diverse range of microbes were identified including clinically relevant bacteria, which shows that the urban water cycle is already contaminated with multidrug-resistant microflora of the hospital settings. Macrolide and lincosamide showed the highest resistance followed by penicillin, monobactam, and cephalosporins. blaSHV and blaTEM were prevalent in samples. blaNDM was also found which manifests as a real threat since it causes resistance against carbapenems and colistin, antibiotics reserved as a last resort against infections. Conclusions This study presented the ground reality of antibiotic resistance in Pakistan and how its subsequent spread poses a great threat to the strides made in the field of medicine and public health. Strict regulations regarding antibiotic usage, hospital effluent, and urban water sanitation must be imposed to curb the devastating effects of this increasing phenomenon. | 2021 | 34790487 |
| 1062 | 9 | 0.9953 | Prevalence of Biofilm-Forming, ESβLs and Metallo-β-lactamase Producing Gram-Negative MDR Bacteria in the Domestic and Hospital Wastewater of Aligarh City. Gram-negative pathogenic bacteria are a major contributor to antibiotic-resistant infections in hospitals and communities. The emergence of multidrug resistance (MDR) and biofilm formation complicates chemotherapy. This study aimed to assess the prevalence of multidrug-resistant (MDR) biofilm-forming, extended-spectrum beta-lactamase (ESβL) and metallo-beta-lactamase (MβL) producers in wastewater, which pose a public health threat. During 2022-2023, 117 enteric/Gram-negative isolates were isolated using selective culture techniques. Antimicrobial resistance was assessed via disc diffusion assay. ESβL and MβL production was confirmed through phenotypic and PCR-based methods. Biofilm formation was determined using a microtiter plate assay. Biofilms developed on glass coverslips were visualized by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Isolates with bla-(CTX-M), bla-(SHV), and bla-(NDM-1) genes were identified by partial 16S rRNA gene sequencing. A total of 93.16% of isolates were resistant to multiple drug classes (≥ 4), with the increased resistance to ampicillin (100%) and the lowest to gentamicin (12.82%). Biofilm assays indicated that 32.48% of MDR strains formed strong biofilms, 31.62% moderate, and 35.90% weak. β-lactamase activity appeared in 58.97% of isolates, with 56.41% confirmed as ESβL producers. PCR detection in ESβL-positive strains showed 84.61% carried CTX-M, 46.15% SHV, and 53.84% NDM-1 genes. 16S rRNA gene sequencing identified selected MDR strains as Escherichia coli (5), Klebsiella pneumoniae (1), Pseudomonas aeruginosa (1), Salmonella sp. (1), Enterobacter sp. (1), Citrobacter sp. (1), and Proteus sp. (1). The findings reveal the prevalence of biofilm-forming, ESβL, and MβL-producing Gram-negative pathogens in Aligarh's wastewater, underscoring the need for effective treatment to reduce public health risks from MDR bacteria and AMR genes. | 2025 | 40590993 |
| 1168 | 10 | 0.9953 | Dairy Cattle and the Iconic Autochthonous Cattle in Northern Portugal Are Reservoirs of Multidrug-Resistant Escherichia coli. Background/Objectives: Animals destined for human consumption play a key role in potentially transmitting bacteria carrying antibiotic resistance genes. However, there is limited knowledge about the carriage of antibiotic-resistant bacteria in native breeds. We aimed to characterize the phenotypic profiles and antibiotic resistance genes in Escherichia coli isolated from bovines, including three native Portuguese bovine breeds. Methods: Forty-nine E. coli isolates were selected from 640 fecal samples pooled by age group (eight adult or eight calf samples) from each farm, representing both dairy cattle raised in intensive systems and meat cattle raised in extensive systems in Northern Portugal. The presumptive E. coli colonies plated onto MacConkey agar were confirmed using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). The antibiotic resistance profiles were screened by antimicrobial susceptibility testing (EUCAST/CLSI guidelines), and the antibiotic resistance genes by PCR. Results: Most isolates showed resistance to ampicillin (69%), tetracycline (57%), gentamicin (55%), and trimethoprim + sulfamethoxazole (53%), with no resistance to imipenem. Resistance to at least one antibiotic was found in 92% of isolates, while 59% exhibited multidrug resistance. Most calf isolates, including those from native breeds, showed a multidrug-resistant phenotype. Among the adults, this was only observed in Holstein-Friesian and Barrosã cattle. None of the Holstein-Friesian isolates were susceptible to all the tested antibiotics. ESBL-producing E. coli was identified in 39% of isolates, including those from Holstein-Friesian calves and adults, Cachena calves and Minhota adults. The sul2 gene was detected in 69% of isolates, followed by bla(CTX-M) (45%), aac(3')-IV (41%), and aac(6')-Ib-cr (31%), with a higher prevalence in adults. Conclusions: This pioneering study highlights the concerning presence of multidrug-resistant E. coli in native Portuguese cattle breeds. | 2024 | 39766598 |
| 925 | 11 | 0.9953 | Antimicrobial resistance and carbapenemase dissemination in Pseudomonas aeruginosa isolates from Libyan hospitals: a call for surveillance and intervention. Pseudomonas aeruginosa is a multidrug-resistant bacterium capable of forming biofilms. This study aimed to assess resistance of clinical isolates from Libyan hospitals to antipseudomonal antibiotics, the prevalence of selected extended-spectrum β-lactamases and carbapenemase genes among these isolates, and the microorganisms' capacity for alginate and biofilm production. Forty-five isolates were collected from four hospitals in Benghazi and Derna, Libya. Antimicrobial susceptibility was determined using agar disc diffusion. The presence of resistance genes (bla(CTXM), bla(TEM), bla(SHV-1), bla(GES-1), bla(KPC), and bla(NDM)) was screened using PCR. Biofilm formation was quantified via the crystal violet assay, while alginate production was measured spectrophotometrically. Resistance to antipseudomonal antibiotics ranged from 48.9% to 75.6%. The most prevalent resistance gene was blaNDM (26.7%), followed by blaGES-1 (17.8%). Moreover, all isolates demonstrated varying degrees of biofilm-forming ability and alginate production. No statistically significant correlation was found between biofilm formation and alginate production. The dissemination of resistant genes in P. aeruginosa, particularly carbapenemases, is of great concern. This issue is compounded by the bacteria's biofilm-forming capability. Urgent intervention and continuous surveillance are imperative to prevent further deterioration and the catastrophic spread of resistance among these formidable bacteria. | 2024 | 38643488 |
| 2217 | 12 | 0.9953 | MALDI-TOF MS based carbapenemase detection from culture isolates and from positive blood culture vials. BACKGROUND: Antibiotic resistance in bacteria leads to massive health problems. Incidence of carbapenem and multidrug resistance in Gram-negative bacteria are increasing globally and turn out to be a very urgent challenge in health care. Resistant bacteria play an important clinical role during hospital outbreaks as well as in sepsis. Rapid diagnostic tests are necessary to provide immediate information for antimicrobial treatment and infection control measures. METHODS: Our mass spectrometry-based assay was validated with 63 carbapenemase-producing Gram-negative bacterial isolates, and 35 carbapenem-resistant Gram-negative species with no carbapenemase production. These were analyzed from solid culture media and positive blood culture vials. After 4 h of incubation the carbapenemase products were analyzed with the MALDI-TOF MS. All the isolates were genotyped for carbapenemase genes by PCR and sequencing. RESULTS: For culture isolates the concordance of hydrolysis assay to genetic results was 98 % for OXA variants, KPC, VIM, IMP, GIM, and NDM. In contrast, only 14 of 29 Acinetobacter baumannii isolates carrying the OXA and NDM genes could be identified from blood culture. However, from blood culture vials our method allowed the detection of carbapenemases in 98 % of Pseudomonas and Enterobacteriaceae isolates harboring different genes. CONCLUSIONS: This MALDI-TOF MS-based assay permitted the detection of carbapenemases either from solid culture media (98-100 %) or blood culture vials (96 %) for all non-A. baumannii isolates within 4 h. In case of A. baumannii isolates the assay was highly sensitive for the detection of carbapenemases directly from solid culture media. | 2016 | 26839024 |
| 2136 | 13 | 0.9953 | Antibiotic profiling of multidrug resistant pathogens in one-day-old chicks imported from Belgium to benin. BACKGROUND: Little data exist on the presence of resistant pathogens in day-old chicks imported into Benin. The occurrence of pathogenic bacteria was assessed in 180 one-day-old chicks imported from Belgium and received at the Cardinal Bernardin Gantin International Airport in Cotonou (Benin). The samples included swabbing the blisters of 180 chicks, followed by 18 pools of 10 swabs for bacterial isolation. Classic bacteriological methods based on Gram staining, culture on specific media and biochemical characterization were used. Antibacterial susceptibility screening to antibiotics was conducted using the Kirby-Bauer disc diffusion method, and the results were interpreted according to guidelines from the European Committee on Antimicrobial Susceptibility Testing (EUCAST). DNA extraction was performed by the heat treatment method. Resistance genes were screened by real-time PCR. RESULTS: We isolated 32 bacteria, including Escherichia coli (50%), Enterococcus spp. (28%), and coagulase-negative staphylococci (10%). The isolates were investigated for antibiotic resistance against antibiotics using the disk diffusion method and showed that in the Escherichia coli strains isolated, the highest rate of resistance was obtained against ciprofloxacin (81%), followed by trimethoprim + sulfamethoxazole (62%). Enterobacter cloacae was sensitive to all the antibiotics tested. Pseudomonas spp. resistant to amoxicillin and trimethoprim + sulfamethoxazole was noted. The SulII gene was found in all cloacal samples, while the SulI and bla(TEM) genes were present at 44.44% and 16.67%, respectively. CONCLUSION: This study confirms that imported day-old chicks can be a potential source of dissemination of resistant bacteria in poultry production. A system for immediate detection of resistant bacteria in chicks upon arrival in the country is thus needed. | 2023 | 36670436 |
| 1030 | 14 | 0.9952 | Occurrence of extended-spectrum β-lactamase-producing bacteria in urban Clinton River habitat. OBJECTIVE: The aim of this study was to determine whether Clinton River water is contaminated with antibiotics and is a reservoir of antimicrobial-resistant bacteria. METHODS: Water samples were taken from two sites of Clinton River. Antimicrobial-resistant bacteria were enumerated on agar plates supplemented with six commonly used antibiotics. Extended-spectrum β-lactamase (ESBL)-producing bacteria were identified using a BD Phoenix™ System and by 16S rRNA gene sequencing. Antimicrobial resistance gene transfer was performed by conjugation studies and the location of genes was determined by Southern hybridisation. Virulence properties of ESBL-producing isolates were determined by assessing their biofilm-forming ability, cellular toxicity, and induction of an inflammatory response in intestinal epithelial (Caco-2) cells. RESULTS: 16S rRNA analysis of water samples showed the presence of potentially pathogenic bacteria (e.g. Shigella flexneri, Klebsiella pneumoniae, Aeromonas punctata and Pseudomonas aeruginosa). Among 64 biochemically identified bacterial isolates tested, 42% were resistant to cefotaxime, 34% to chloramphenicol, 9% to tetracycline, 11% to ciprofloxacin and 9% to gentamicin. Of 27 cefotaxime-resistant isolates, 11 (41%) were ESBL-positive and possessed either bla(CTX-M) (n=9), bla(TEM) (n=1) or bla(KPC) (n=1). Comparative analysis of ESBL gene sequences from Clinton River water bacteria showed 98-100% identity with clinical isolates. ESBL-producing isolates from Clinton River water were found to form biofilms, induced inflammatory cytokines and caused toxicity to epithelial cells. CONCLUSIONS: Clinton River water contains isolates with ESBL genes identical to clinical isolates and possessing virulence properties, thus it could be a potential reservoir in causing human infections. | 2019 | 30316964 |
| 5615 | 15 | 0.9952 | Bacterial and Genetic Features of Raw Retail Pork Meat: Integrative Analysis of Antibiotic Susceptibility, Whole-Genome Sequencing, and Metagenomics. The global antibiotic resistance crisis, driven by overuse and misuse of antibiotics, is multifaceted. This study aimed to assess the microbiological and genetic characteristics of raw retail pork meat through various methods, including the isolation, antibiotic susceptibility testing (AST), whole-genome sequencing (WGS) of selected indicator bacteria, antibiotic residue testing, and metagenomic sequencing. Samples were purchased from 10 pre-selected retail stores in Gauteng, South Africa. The samples were aseptically separated, with portions sent to an external laboratory for isolating indicator bacteria and testing for antibiotic residues. Identification of the isolated bacteria was reconfirmed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). AST was performed using the Microscan Walkaway system (Beckman Coulter, Brea, CA, USA). WGS and metagenomic sequencing were performed using the Illumina NextSeq 550 instrument (San Diego, CA, USA). The isolated E. coli and E. faecalis exhibited minimal phenotypic resistance, with WGS revealing the presence of tetracycline resistance genes. Both the isolated bacteria and meat samples harboured tetracycline resistance genes and the antibiotic residue concentrations were within acceptable limits for human consumption. In the metagenomic context, most identified bacteria were of food/meat spoilage and environmental origin. The resistome analysis primarily indicated beta-lactam, tetracycline and multidrug resistance genes. Further research is needed to understand the broader implications of these findings on environmental health and antibiotic resistance. | 2024 | 39200000 |
| 1044 | 16 | 0.9952 | Molecular Characterization of Antimicrobial Resistance and Virulence Genes of Bacterial Pathogens from Bovine and Caprine Mastitis in Northern Lebanon. Mastitis is an infectious disease encountered in dairy animals worldwide that is currently a growing concern in Lebanon. This study aimed at investigating the etiology of the main mastitis-causing pathogens in Northern Lebanon, determining their antimicrobial susceptibility profiles, and identifying their antimicrobial resistance (AMR) genes. A total of 101 quarter milk samples were collected from 77 cows and 11 goats presenting symptoms of mastitis on 45 dairy farms. Bacterial identification was carried out through matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Antimicrobial susceptibility was tested by disc diffusion and broth microdilution methods. Molecular characterization included polymerase chain reaction (PCR) screening for genes encoding extended-spectrum beta-lactamases (ESBLs) and plasmid-mediated AmpC among Enterobacterales isolates, and virulence factors among Staphylococcus isolates. Escherichia coli isolates were subjected to phylogenetic typing by a quadruplex PCR method. The most frequently identified species were Streptococcus uberis (19.2%), Streptococcus agalactiae (15.1%), E. coli (12.3%), and Staphylococcus aureus (10.96%). Gram-positive bacteria were resistant to macrolides and tetracycline, whereas gram-negative bacteria displayed resistance to ampicillin and tetracycline. Two ESBL genes, bla(TEM) (83.3%) and bla(OXA) (16.7%), and one AmpC beta-lactamase gene, bla(CMY-II) (16.7%), were detected among six E. coli isolates, which mainly belonged to phylogenetic group B1. Among Staphylococcus spp., the mecA gene was present in three isolates. Furthermore, four isolates contained at least one toxin gene, and all S. aureus isolates carried the ica operon. These findings revealed the alarming risk of AMR in the Lebanese dairy chain and the importance of monitoring antimicrobial usage. | 2021 | 34071800 |
| 936 | 17 | 0.9952 | Occurrence and Diversity of Intra- and Interhospital Drug-Resistant and Biofilm-Forming Acinetobacter baumannii and Pseudomonas aeruginosa. Acinetobacter baumannii and Pseudomonas aeruginosa are the most relevant Gram-negative bacteria associated with hospital and opportunistic infections. This study aimed to evaluate the dynamics of drug-resistant A. baumannii and P. aeruginosa and biofilm formers from two public hospitals in northeastern Brazil. One hundred isolates (35 from A. baumannii and 65 from P. aeruginosa) were identified using the automated Vitek(®)2 Compact method (bioMérieux) and confirmed using the MALDI-TOF (MS) mass spectrometry technique. Molecular experiments were performed by polymerase chain reaction (PCR) to detect the frequency of bla(KPC), bla(IMP), bla(VIM), and bla(SHV) genes. The biofilm formation potential was evaluated using crystal violet in Luria Bertani Miller and trypticase soy broth culture media under the following conditions: at standard concentration, one quarter (25%) of the standard concentration and supplemented with 1% glucose. In addition, the genetic diversity of the isolates was verified by the ERIC-PCR technique. Isolates presented distinct resistance profiles with a high level of beta-lactam resistance. The highest index of genes detected was bla(KPC) (60%), followed by bla(SHV) (39%), bla(VIM) (8%), and bla(IMP) (1%). All the isolates were sensitive to the polymyxins tested and formed biofilms at different intensities. Twelve clones of A. baumannii and eight of P. aeruginosa were identified, of which few were indicative of intra- and interhospital dissemination. This study reveals the dispersion dynamics of these isolates in the hospital environment. The results demonstrate the importance of monitoring programs to combat the spread of these pathogens. | 2020 | 31916896 |
| 1459 | 18 | 0.9952 | Molecular characterization of carbapenem-resistance in Gram-negative isolates obtained from clinical samples at Jimma Medical Center, Ethiopia. BACKGROUND: In resource-constrained settings, limited antibiotic options make treating carbapenem-resistant bacterial infections difficult for healthcare providers. This study aimed to assess carbapenemase expression in Gram-negative bacteria isolated from clinical samples in Jimma, Ethiopia. METHODS: A cross-sectional study was conducted to assess carbapenemase expression in Gram-negative bacteria isolated from patients attending Jimma Medical Center. Totally, 846 Gram-negative bacteria were isolated and identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Phenotypic antibiotic resistance patterns were determined using the Kirby-Bauer disk diffusion method and Etest strips. Extended-spectrum β-lactamase phenotype was determined using MAST disks, and carbapenemases were characterized using multiplex polymerase chain reactions (PCR). RESULTS: Among the isolates, 19% (157/846) showed phenotypic resistance to carbapenem antibiotics. PCR analysis revealed that at least one carbapenemase gene was detected in 69% (107/155) of these strains. The most frequently detected acquired genes were blaNDM in 35% (37/107), blaVIM in 24% (26/107), and blaKPC42 in 13% (14/107) of the isolates. Coexistence of two or more acquired genes was observed in 31% (33/107) of the isolates. The most common coexisting acquired genes were blaNDM + blaOXA-23, detected in 24% (8/33) of these isolates. No carbapenemase-encoding genes could be detected in 31% (48/155) of carbapenem-resistant isolates, with P. aeruginosa accounting for 85% (41/48) thereof. CONCLUSION: This study revealed high and incremental rates of carbapenem-resistant bacteria in clinical samples with various carbapenemase-encoding genes. This imposes a severe challenge to effective patient care in the context of already limited treatment options against Gram-negative bacterial infections in resource-constrained settings. | 2024 | 38328425 |
| 2402 | 19 | 0.9952 | Antimicrobial Resistance and Virulence Genes in Staphylococci Isolated from Aviary Capercaillies and Free-living Birds in South-eastern Poland. INTRODUCTION: The current study characterises Staphylococcus bacteria recovered from dead free-living birds and captive capercaillies kept in south-eastern Poland. The results provide novel information about the antimicrobial resistance phenotype/genotype and the virulence profile of these bacteria. MATERIAL AND METHODS: Samples of internal organs were taken from dead birds. Staphylococcus strains were identified by matrix-assisted laser desorption/ionisation-time-of-flight mass spectrometry. Susceptibility to 13 antibiotics was tested using a standard disc diffusion method on Mueller-Hinton agar. All isolates were screened for the presence of antibiotic resistance genes and staphylococcal enterotoxins (A to E), toxic shock syndrome toxin 1, exfoliative toxins A and B and Panton-Valentine leukocidin. RESULTS: A total of 129 bacterial strains belonging to 19 species of the Staphylococcus genus were isolated. A relatively high percentage of them resisted fluoroquinolones, tetracyclines, macrolides and β-lactams to a significant degree and harboured the tetK, tetM, ermC, mphC and mecA genes. Strains of the coagulase-negative S. sciuri, S. xylosus and S. cohnii were isolated with genes encoding enterotoxin A and toxic shock syndrome toxin. CONCLUSION: Both coagulase-positive and coagulase-negative staphylococci isolated from aviary capercaillies and free-living birds have significant pathogenic potential, and greater attention must be paid to the coagulase-negative species, which are still often considered mere contaminants. Virulence factors associated with resistance to antimicrobials, this being multiple in some strains, seem most important because they can be easily transferred between animals, especially those living in a given area. | 2022 | 36349137 |