MATERIALS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
145400.9956OCCURRENCE OF AMINOGLYCOSIDES RESISTANCE GENES ACC(6)-IB AND ACC(3)-II AMONG GRAM-NEGATIVE ISOLATES CAUSING URINARY TRACT INFECTION IN PEDIATRIC PATIENTS, NAJAF, IRAQ. OBJECTIVE: The aim: The aim of the study was to detect the antimicrobial susceptibility patterns and frequency of aminoglycosides resistance genes of Gram-negative bacteria isolated from pediatric patient with UTI. PATIENTS AND METHODS: Materials and methods: The study has been performed with a total of 500 urine specimens collected from pediatric patients under the age of 18 year suspected with UTI, admitted to hospitals in Al-Najaf province/Iraq during the period from November 2018 to March 2019. RESULTS: Results: A total of 500 urine specimens had been tested, 120 (24%) had signifficant bacteriuria, while there 380 (76%) had non-signi!cant bacteriuria. Escherichia coli represent about 70 (68.2%) followed by followed by 23 (22.5%) K. pneumoniae, 5 (4.9%) P. aeruginosa, 2 (1.9%) Proteus spp., 1 (0.9%) Enterobacter spp. and 1 (0.9%) Oligella uratolytic. The antimicrobial susceptibility profile of 102 Gram-negative isolates, revealed that 59 (58%) were multidrug resistant (MDR) and 38(37%) were extensive drug resistant (XDR). The PCR results of aminoglycosides resistance showing that 23 (74.1%) Gram-negative isolates had acc(6')-Ib gene and 12 (38.7%) Gram-negative isolates acc(3')-II gene. CONCLUSION: Conclusions: A high frequency of multi-drug resistance and extensive-drug resistance of isolates were recognized, and an alarming percentage of amino-glycosides resistance to acc(6')-Ib and acc(3')-II.202337010165
142810.9954Carbapenem-resistant Gram-negative bacteria associated with catheter-related bloodstream infections in three intensive care units in Egypt. We aimed to identify the carbapenem-resistant Gram-negative bacteria (GNB) causing catheter-related bloodstream infections (CRBSI) in intensive care units (ICU) in a tertiary care Egyptian hospital, to study their resistance mechanisms by phenotypic and genetic tests, and to use ERIC-PCR for assessing their relatedness. The study was conducted over 2 years in three ICUs in a tertiary care hospital in Egypt during 2015-2016. We identified 194 bloodstream infections (BSIs); 130 (67.01%) were caused by GNB, of which 57 were isolated from CRBSI patients (73.84%). Identification of isolates was performed using conventional methods and MALDI-TOF MS. Antimicrobial susceptibility testing (AST) was done by disc diffusion following CLSI guidelines. Phenotypic detection of carbapenemases enzymes activity was by modified Hodge test and the Carba-NP method. Isolates were investigated for the most common carbapenemases encoding genes bla(KPC), bla(NDM), and bla(OXA-48) using multiplex PCR. Molecular typing of carbapenem-resistant isolates was done by ERIC-PCR followed by sequencing of common resistance genes. The overall rate of CRBSI in our study was 3.6 per 1000 central venous catheter (CVC) days. Among 57 Gram-negative CRBSI isolates, Klebsiella pneumoniae (K. pneumoniae) was the most frequently isolated (27/57; 47.4%), of which more than 70% were resistant to Meropenem. Phenotypic tests for carbapenemases showed that 37.9% of isolates were positive by modified Hodge test and 63.8% by Carba-NP detection. Multiplex PCR assay detected the bla(NDM) in 28.6% of the isolates and bla(KPC) in 26.8%, bla(NDM) and bla(KPC) were detected together in the same isolate in 5.6%, while bla(OXA-48)-like were not detected. ERIC-PCR detected limited genetic relatedness between K. pneumoniae isolates. Elevated resistance rates were observed to all antibiotics including carbapenems among K. pneumoniae isolates causing CRBSI. ERIC-PCR showed that the resistant isolates were mainly polyclonal. Our results call for reinforcement of antimicrobial stewardship and measures to prevent CRBSI.201829936619
140620.9954Multicentre study of the burden of multidrug-resistant bacteria in the aetiology of infected diabetic foot ulcers. BACKGROUND: Infected diabetic foot ulcer (IDFU) is a public health issue and the leading cause of non-traumatic limb amputation. Very few published data on IDFU exist in most West African countries. OBJECTIVE: The study investigated the aetiology and antibacterial drug resistance burden of IDFU in tertiary hospitals in Osun state, Nigeria, between July 2016 and April 2017. METHODS: Isolates were cultured from tissue biopsies or aspirates collected from patients with IDFU. Bacterial identification, antibiotic susceptibility testing and phenotypic detection of extended-spectrum beta-lactamase and carbapenemase production were done by established protocols. Specific resistance genes were detected by polymerase chain reaction. RESULTS: There were 218 microorganisms isolated from 93 IDFUs, comprising 129 (59.2%) Gram-negative bacilli (GNB), 59 (27.1%) Gram-positive cocci and 29 (13.3%) anaerobic bacteria. The top five facultative anaerobic bacteria isolated were: Staphylococcus aureus (34; 15.6%), Escherichia coli (23; 10.6%), Pseudomonas aeruginosa (20; 9.2%), Klebsiella pneumoniae (19; 8.7%) and Citrobacter spp. (19; 8.7%). The most common anaerobes were Bacteroides spp. (7; 3.2%) and Peptostreptococcus anaerobius (6; 2.8%). Seventy-four IDFUs (80%) were infected by multidrug-resistant bacteria, predominantly methicillin-resistant S. aureus and GNB producing extended-spectrum β-lactamases, mainly of the CTX-M variety. Only 4 (3.1%) GNB produced carbapenemases encoded predominantly by bla (VIM). Factors associated with presence of multidrug-resistant bacteria were peripheral neuropathy (adjusted odds ratio [AOR] = 4.05, p = 0.04) and duration of foot infection of more than 1 month (AOR = 7.63, p = 0.02). CONCLUSION: Multidrug-resistant facultative anaerobic bacteria are overrepresented as agents of IDFU. A relatively low proportion of the aetiological agents were anaerobic bacteria.202133824857
145530.9953Resistance to bacterial infection, complication occurring after cardiac surgery. To analyze the occurrence of resistant bacterial infection in patients undergoing cardiac surgery hospitalized in the surgical specialty hospital, in Erbil city, Iraq. A prospective study was done on a total of 138 patients operated and hospitalized in an intensive care unit and surgical wards. Bacterial isolates identification was done according to cultural characteristics, microscopic examination, some biochemical tests, analytic Profile Index 20E& API Staph, confirmed with VITEK® 2 compact system (BioMérieux). Antimicrobial susceptibility for disc diffusion tested to 17 antimicrobial agents. Resistance isolates were confirmed phenotypically for carbapenemase by Rapidec Carba NP Test (bioMe´rieux SA, Marcy-l'E´toile, France) for ESBLs producers by ESBL screening test VITEK 2 system. Molecularly blaIMP blaTEM, blaKPC, AmpC and blaCTX-M were detected by PCR. In 134 patients, 28.3% of patients got infected post-operatively. The most frequent source of isolation was from ICU patients (75%). Isolated bacteria included gram-positive 29 (54.7%) and gram-negative bacteria 24 (45.3%). Most frequently:  Staphylococcus aureus (24.4%), each of pseudomonas aeroginosa, Klebsiella pneumonia (15.1%), Streptococcus spp. (11.3%), Escherichia coli (9.4%). Whereas included Coagulase Negative Staphylococci species (CoNS) (13.2%) and Enterococci species (5.7) Statistical analysis showed significantly higher sensitive isolates as compared with resistance isolates. Resistance to Carbapenems calss was 18.9% and Cephalosporins class 41.5% of isolates. The antimicrobial resistance pattern indicated that MDR bacterial isolates (81.1%) were widespread. Of the 34 phenotypically ESBL positive isolates, the ESBL genes (AmpC, blaCTX-M, and blaTEM) were amplified in 7(20.6), 6(17.6) and 6(17.6) isolates respectively. Out of 8 K. pneumonia (37.5%) harboring both blaAmpC and bla-CTX-M genes, while 6(75%) carries blaTEM. The blaCTX-M gene was found in only 1 (12.5%) out of 8 isolates of P. aeruginosa. While blaAmpC genotyping revealed that 1(7.7%) out of 13 Staph. aureus isolates were harboring it. Finally, 3(60%) out of 5 E. coli isolates harboring both AmpC and bla-CTX-M genes. Cardiac surgery patients wound show increasingly emerging strains of ESBL-producing gram-negative bacteria K. pneumonia, P. aeruginosa and E. coli especially patients prolonged in the intensive care unit.202034174972
141840.9953Nosocomial infections and antimicrobial susceptibility patterns among patients admitted to intensive care unit of Imam Khomeini hospital in Ilam, Iran. INTRODUCTION: Nosocomial infections (NIs) are a major challenge worldwide. Identification of antibiotic resistance pattern extended spectrum beta-lactamases (ESBLs) and carbapenem-resistant Enterobacteriaceae (CRE) were the objectives of this study. METHODS: In this cross-sectional study, the antimicrobial susceptibility pattern of bacterial isolates collected from patients with NIs in ICU was determined. Overall, 42 Escherichia coli and Klebsiella pneumoniae isolates from different infection sites were used to determine phenotypic tests of ESBLs, Metallo-β-lactamases (MBLs) and CRE. Detection of ESBLs, MBLs and CRE genes were performed by the polymerase chain reaction (PCR) method. RESULTS: From 71 patients with NIs, 103 different bacterial strains were isolated. The most frequently isolated bacteria were E. coli (n = 29; 28.16%), Acinetobacter baumannii (n = 15; 14.56%), and K. pneumoniae (n = 13; 12.26%). Also, the rate of multidrug-resistant (MDR) isolates was 58.25% (60/103). Based on phenotypic confirmation tests, 32 (76.19%) isolates of E. coli and K. pneumoniae produced ESBLs, and 6 (14.28%) isolates were identified as CRE producers. PCR showed the high prevalence of the bla(CTX-M) (n = 29; 90.62%) in ESBL genes. In addition, bla(NDM) was detected in 4 (66.66%), bla(OXA-23) in 3 (50%), and bla(OXA-48) gene in 1 (16.66%) isolates. The bla(VIM), bla(KPC), and bla(IMP) genes were not detected in any of the isolates. CONCLUSION: The Gram-negative bacteria E. coli, A. baumannii, and K. pneumoniae with high resistance levels were the most common bacteria causing NIs in the ICU. This study for the first time identified bla(OXA-11), bla(OXA-23), and bla(NDM-1) genes in E. coli and K. pneumoniae in Ilam city of Iran.202337155016
141150.9953Detection and characterization of carbapenem resistant Gram-negative bacilli isolates recovered from hospitalized patients at Soba University Hospital, Sudan. BACKGROUND: Antimicrobial resistance (AMR) poses a complex threat to global health security and universal health coverage. Recently, nosocomial infections with carbapenemase-producing Gram-negative bacilli (GNB) is increasing worldwide. We report the molecular characterization and detection of genes associated with carbapenemase producing Gram negative bacteria isolated from hospitalized patients at Soba University Hospital (SUH) in Khartoum State, Sudan. RESULTS: Between October 2016 and February 2017, a total of 206 GNB clinical specimens were collected from hospitalized patients in SUH. Of 206 carbapenem resistance isolates, 171 (83 %) were confirmed as phenotypically resistant and 121 (58.7 %) isolates harboured one or more carbapenemase genes. New Delhi metallo-β-lactamase (NDM) types were the most predominant genes, blaNDM 107(52 %), followed by blaIMP 7 (3.4 %), blaOXA-48 5(2.4 %) and blaVIM 2 (0.9 %). Co-resistance genes with NDM producing GNB were detected in 87 (81.3 %) of all blaNDM producing isolates. NDM-1 was the most frequent subtype observed in 75 (70 %) blaNDM producing isolates. The highest percentage of resistance was recorded in ampicillin (98 %), cephalexin (93.5 %) amoxicillin clavulanic acid (90 %), cefotaxime (89.7 %), ceftriaxone (88.4 %), ceftazidime (84.2 %), sulfamethoxazole-trimethoprim (78.4 %) and nitrofurantoin (75.2 %), aztreonam (66 %) and temocillin (64 %). A close correlation between phenotypic and carbapenemase genes detection in all GNB was observed. CONCLUSIONS: The frequency of carbapenemase producing bacilli was found to be high in SUH. NDM was found to be the most prevalent carbapenemase gene among clinical isolates. Close surveillance across all hospitals in Sudan is required. The relative distribution of carbapenemase genes among GNB in nosocomial infections in Africa needs to be defined.202133947325
146860.9953Phenotypic and Molecular Characterization of Multidrug Resistant Klebsiella pneumoniae Isolated from Different Clinical Sources in Al-Najaf Province-Iraq. BACKGROUND AND OBJECTIVE: Burns infections and urinary tract infections are the most important prevalent diseases in Asian countries, such as Iraq. Klebsiella pneumoniae is one of the most important bacteria cause this type of infections especially in hospitals. Therefore, the aim of this study was to investigate the prevalence of multi-drug resistance K. pneumoniae and extended-spectrum beta-lactamases producing K. pneumoniae isolates from inpatients with urinary tract infection and burns infections in Al-Kufa hospital in Al-Najaf province, Iraq. MATERIALS AND METHODS: A total of 285 clinical samples were collected from in-patients infected with urinary tract infection (141 urine samples) and burns infections (144 burns swabs). Fourteen different antibiotics were used by disc diffusion method and 13 antimicrobials resistance genes were used by PCR technique. RESULTS: A total of 43 K. pneumoniae strains were isolated. The highest resistance rate was observed for amoxicillin 25 μg and amoxicillin+clavulanic acid 20+10 μg (97.67%) while the lowest resistance rate was observed for imipenem 10 μg (9.30%). The most common resistance associated-genes were blaSHV (86.04%) and at lower prevalence were IMP (9.30%). CONCLUSION: Klebsiella pneumoniae strains isolated from burns infections were more virulent than those isolated from urinary tract infections.201729023034
142670.9953Phenotypic and genotypic detection of carbapenemase production among gram negative bacteria isolated from hospital acquired infections. OBJECTIVES: To identify the carbapenemase producing Gram-negative bacteria (GNB) by phenotypic methods and to confirm the presence of resistant genes using real-time polymerase chain reaction (PCR). METHODS: This was a prospective study carried out at the Department of Microbiology, Sri Venkata Sai Medical College and Hospital, Mahabubnagar, India, from March 2018-2021. All samples were screened for carbapenem resistance by disc diffusion method and the VITEK(®)2 compact system (bioMérieux, France). Detection of carbapenemase was carried out using RAPIDEC(®)CARBA NP test (Biomeriux Private Limited, South Delhi, India), screening for metallo-β-lactamases (MBL) was carried out by double disk synergy test (DDST), and genotypic characterization by real-time PCR. RESULTS: Among the 1093 Gram-negative bacilli identified, 220 (17.0%) were resistant to carbapenems by both tested methods. Carbapenemase detection using the RAPIDEC(®)CARBA NP test indicated that 207 (94.0%) were carbapenemase producers, of which 189 (91.2%) were MBL producers. The most common carbapenemase genes identified were New Delhi metallo-β-lactamase (NDM; 47.3%), followed by the co-existence of genes in combination of NDM, with Verona integron-mediated metallo-β-lactamase (VIM; 39.6%), VIM and oxacillin hydrolyzing enzymes-48 (OXA-48; 4.3%), and OXA-48 (1.4%).No gene of active on imipenem, Klebsiella pneumonia carbapenemase, VIM, or OXA-48 alone was detected. CONCLUSION: This study suggests routine carbapenem resistance testing among multi-drug resistant-GNBs, as most of these infections occur in hospitals. In addition, there is a possibility that these highly antibiotic-resistant genes could spread to other bacteria resulting in further dissemination.202235256490
147680.9953Evaluation of the BioFire FilmArray Pneumonia Panel for rapid detection of respiratory bacterial pathogens and antibiotic resistance genes in sputum and endotracheal aspirate specimens. OBJECTIVES: The performance of the investigational-use-only version of the BioFire FilmArray Pneumonia Panel (FA-Pneumo), a high-order nested multiplex PCR, was evaluated for the detection of typical respiratory bacterial pathogens and antibiotic resistance genes in sputa and endotracheal aspirate (ETA) specimens. METHODS: Thirty-one sputa and 69 ETA specimens were analyzed. The diagnostic performance of FA-Pneumo was assessed using routine microbiological methods as the reference standard. RESULTS: Overall sensitivity and specificity for organism detection using FA-Pneumo were 98.5% and 76.5%, respectively. The sensitivity for each pathogen was 100%, except for Klebsiella aerogenes, and the range of specificity was 83.3-99.0%. FA-Pneumo detected antimicrobial resistance genes in 17 out of 18 specimens (94.4%) that were resistant by antimicrobial susceptibility testing. FA-Pneumo additionally detected 25 resistance genes in 22 specimens, and sequencing for the presence of resistance genes confirmed the majority of these results (20/25, 80%). Semi-quantitative analysis of bacterial nucleic acid amounts by FA-Pneumo revealed that 88.2% of the identified bacteria (67/76) with ≥10(6) copies/ml also gave culture-positive results with significant amounts of bacteria. CONCLUSIONS: FA-Pneumo is a rapid test with high sensitivity for the detection of bacteria and antimicrobial resistance genes in sputum and ETA specimens and could aid in determining antibiotic therapy.202032179139
145790.9952Detection of TEM and CTX-M Genes in Escherichia coli Isolated from Clinical Specimens at Tertiary Care Heart Hospital, Kathmandu, Nepal. BACKGROUND: Antimicrobial resistance (AMR) among Gram-negative pathogens, predominantly ESBL-producing clinical isolates, are increasing worldwide. The main aim of this study was to determine the prevalence of ESBL-producing clinical isolates, their antibiogram, and the frequency of ESBL genes (bla(TEM) and bla(CTX-M)) in the clinical samples from patients. METHODS: A total of 1065 clinical specimens from patients suspected of heart infections were collected between February and August 2019. Bacterial isolates were identified on colony morphology and biochemical properties. Thus, obtained clinical isolates were screened for antimicrobial susceptibility testing (AST) using modified Kirby-Bauer disk diffusion method, while ESBL producers were identified by using a combination disk diffusion method. ESBL positive isolates were further assessed using conventional polymerase chain reaction (PCR) to detect the ESBL genes bla(TEM) and bla(CTX-M). RESULTS: Out of 1065 clinical specimens, 17.8% (190/1065) showed bacterial growth. Among 190 bacterial isolates, 57.4% (109/190) were Gram-negative bacteria. Among 109 Gram-negative bacteria, 40.3% (44/109) were E. coli, and 30.2% (33/109) were K. pneumoniae. In AST, 57.7% (n = 63) Gram-negative bacterial isolates were resistant to ampicillin and 47.7% (n = 52) were resistant to nalidixic acid. Over half of the isolates (51.3%; 56/109) were multidrug resistant (MDR). Of 44 E. coli, 27.3% (12/44) were ESBL producers. Among ESBL producer E. coli isolates, 58.4% (7/12) tested positive for the bla(CTX-M) gene and 41.6% (5/12) tested positive for the bla(TEM) gene. CONCLUSION: Half of the Gram-negative bacteria in our study were MDR. Routine identification of an infectious agent followed by AST is critical to optimize the treatment and prevent antimicrobial resistance.202133562276
2188100.9952Detection of Virulence Factors and Antibiotic Resistance Pattern of Clinical and Intensive Care Unit Environmental Isolates of Pseudomonas aeruginosa. BACKGROUND: Pseudomonas aeruginosa is a gram-negative non-glucose fermenting aerobic bacteria and an opportunistic pathogen in humans and animals. The present study was carried out to investigate the distribution of virulence factors and antibiotic resistance properties of P. aeruginosa isolated from patients and intensive care unit (ICU) environment. MATERIAL AND METHODS: A total of 116 P. aeruginosa isolated from patients and ICU environment were collected from Besat hospital in Hamadan, the West of Iran. P. aeruginosa isolates were analyzed based on the presence of the virulence factors encoding genes included exoA, exoS, exoU, and algD using polymerase chain reaction (PCR). Antimicrobial susceptibility test was performed using a disk diffusion method. RESULTS: The results showed the prevalence of exoA 33 (56.9%), exoS 21 (36.20%), exoU 37 (63.8%), and algD 35 (60.34%) genes in ICU environment P. aeruginosa strains and exo A 23 (39.25%), exoS 25 (43.1%), exoU 40(68.98%), and algD 25 (43.1%) genes in clinical isolates of P. aeruginosa. High resistance levels of the clinical and ICU environment isolate to ampicillinsulbactam (100%), were also observed. CONCLUSION: Our findings should raise awareness about antibiotic resistance in hospitalized patients in Iran. Clinicians should exercise caution in prescribing antibiotics, especially in cases of human infections.202031889501
1231110.9952Prevalence and Molecular Characterization of Plasmid-mediated Extended-Spectrum β-Lactamase Genes (balaTEM, blaCTX and blASHV) Among Urinary Escherichia coli Clinical Isolates in Mashhad, Iran. OBJECTIVES: Extended-spectrum beta-lactamase (ESBL) producing bacteria have an important role in nosocomial infections. Due to the limited availability of information about the molecular epidemiology of ESBL producing bacteria in Mashhad, we decided to investigate about TEM, CTX and SHV ESBLs among urinary Escherichia coli isolates in Mashhad, a city in northeast Iran. MATERIALS AND METHODS: One hundred and eleven clinical isolates of E. coli were diagnosed from hospitalized patients in 2009. After performing antibiogram and phenotypic confirmation test, polymerase chain reaction (PCR) was performed by blaTEM, blaSHV and blaCTX primers and restriction digestion was carried out using PstI and TaqI (Fermentas-Lithuania) for confirmation. RESULTS: ESBL producers of E. coli isolates were 33.3%. Among 37 ESBL-producing isolates, 35 (94.6%), 21 (56.8%) and 5 (13.5%) were shown to have blaCTX, blaTEM and blaSHV, genes respectively. Co-resistance to non-beta lactam antibiotics was observed more with ESBL producers (P < 0.05). CONCLUSION: The results showed that the studied ESBL genes are found with high prevalence and among them blaCTX is more widespread in urine E. coli isolates in Mashhad.201223493415
1429120.9952Detection of blaKPC and blaGES Carbapenemase Genes in Klebsiella pneumoniae Isolated from Hospitalized Patients in Kashan, Iran. INTRODUCTION: Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria are among the highly antimicrobial resistant gram negative bacteria and infections due to them are an increasingly major health problem worldwide. METHODS: In this study we have detected the blaKPC and blaGES carbapenemase genes in Klebsiella pneumoniae isolated from hospitalized patients in Kashan, Iran. In a cross-sectional study, a total of 181 K. pneumoniae isolates were recovered from clinical specimens during November 2013 to October 2014. RESULT: Antimicrobial susceptibility profiles were determined using disk diffusion method according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and CLSI guidelines. Carbapenem-resistant K. pneumoniae isolates were identified. PCR method and sequencing were used for detection of blaKPC and blaGES carbapenemase genes. Of the 181 K. pneumoniae isolates, 35 (19.3%) were found to be resistant to imipenem and 150 (82.9%) were identified as MDR strains. Among carbapenems, the most resistant rate 39 (21.5%) was seen against ertapenem using disk diffusion method. Of K. pneumoniae isolates 21 (11.6%) and 42 (23.2%) carried blaKPC and blaGES genes, respectively and 19(10.5%) carried both genes simultaneously. CONCLUSION: The data of current study revealed that the frequency of resistance to carbapenems and production of carbapenemase enzymes especially GES type was high among clinical isolates of K pneumoniae in Kashan, Iran.201627527726
1458130.9951Molecular characterization of extended spectrum β -lactamases enterobacteriaceae causing lower urinary tract infection among pediatric population. BACKGROUND: The β-lactam antibiotics have traditionally been the main treatment of Enterobacteriaceae infections, nonetheless, the emergence of species producing β- Lactamases has rendered this class of antibiotics largely ineffective. There are no published data on etiology of urinary tract infections (UTI) and antimicrobial resistance profile of uropathogens among children in Qatar. The aim of this study is to determine the phenotypic and genotypic profiles of antimicrobial resistant Enterobacteriaceae among children with UTI in Qatar. METHODS: Bacteria were isolated from 727 urine positive cultures, collected from children with UTI between February and June 2017 at the Pediatric Emergency Center, Doha, Qatar. Isolated bacteria were tested for antibiotic susceptibility against sixteen clinically relevant antibiotics using phoenix and Double Disc Synergy Test (DDST) for confirmation of extended-spectrum beta-lactamase (ESBL) production. Existence of genes encoding ESBL production were identified using polymerase chain reaction (PCR). Statistical analysis was done using non-parametric Kappa statistics, Pearson chi-square test and Jacquard's coefficient. RESULTS: 201 (31.7%) of samples were confirmed as Extended Spectrum β -Lactamases (ESBL) Producing Enterobacteriaceae. The most dominant pathogen was E. coli 166 (83%) followed by K. pneumoniae 22 (11%). Resistance was mostly encoded by (bla) CTX-M (59%) genes, primarily (bla) CTX-MG1 (89.2%) followed by (bla) CTX-MG9 (7.7%). 37% of isolated bacteria were harboring multiple (bla) genes (2 genes or more). E. coli isolates were categorized into 11 clusters, while K. pneoumoniae were grouped into five clonal clusters according to the presence and absence of seven genes namely (bla) TEM, (bla) SHV, (bla) CTX-MG1, (bla) CTX-MG2, (bla) CTX-MG8 (bla) CTX-MG9,(bla) CTX-MG25. CONCLUSIONS: Our data indicates an escalated problem of ESBL in pediatrics with UTI, which mandates implementation of regulatory programs to reduce the spread of ESBL producing Enterobacteriaceae in the community. The use of cephalosporins, aminoglycosides (gentamicin) and trimethoprim/sulfamethoxazole is compromised in Qatar among pediatric population with UTI, leaving carbapenems and amikacin as the therapeutic option for severe infections caused by ESBL producers.201830069306
1460140.9951Emergence of Multidrug Resistance and Metallo-beta-lactamase Producing Acinetobacter baumannii Isolated from Patients in Shiraz, Iran. BACKGROUND: Metallo-beta-lactamase (MβL) enzymes production is one of the most important resistance mechanisms against carbapenems in some bacteria including Acinetobacter baumannii. AIMS: This study was aimed to determine the antimicrobial susceptibility and the prevalence of MβL among carbapenem-resistant isolates of A. baumannii. MATERIALS AND METHODS: In this cross-sectional study from October 2012 to April 2013, 98 isolates were identified as A. baumannii using Microgen™ kits and confirmed by molecular method. These isolates were tested for antimicrobial susceptibilities by disk diffusion method according to the Clinical and Laboratory Standards Institute guidelines. Carbapenem-resistant isolates were further detected phenotypically by MβL minimal inhibitory concentration (MIC)-test strips, and subsequently positive MβL isolates were confirmed by polymerase chain reaction (PCR). RESULTS: Overall, 98% (96/98) of A. baumannii isolates were detected as carbapenem-resistant by MIC test. Highest sensitivity to the tested antibiotic with 42.9% (42/98) was observed to colistin. Of 96 carbapenem-resistant isolates, 43 were phenotypically positive for MβL; out of 43 isolates, 37 were confirmed for the presence of MβL genes by PCR. CONCLUSION: The frequency of drug resistance among the clinical samples of A. baumannii isolated in our study against most of the antibiotics was very high. Moreover, all MβL producing isolates were multidrug resistance. Therefore, systematic surveillance to detect MβL producing bacteria and rational prescription and use of carbapenems could be helpful to prevent the spread of carbapenem resistance.201627398247
1427150.9951Prevalence and Characterization of Carbapenem-Resistant Enterobacteriaceae Isolated from Mulago National Referral Hospital, Uganda. INTRODUCTION: Carbapenemases have increasingly been reported in enterobacteriaceae worldwide. Most carbapenemases are plasmid encoded hence resistance can easily spread. Carbapenem-resistant enterobacteriaceae are reported to cause mortality in up to 50% of patients who acquire bloodstream infections. We set out to determine the burden of carbapenem resistance as well as establish genes encoding for carbapenemases in enterobacteriaceae clinical isolates obtained from Mulago National Referral Hospital, Uganda. METHODS: This was a cross-sectional study with a total of 196 clinical isolates previously collected from pus swabs, urine, blood, sputum, tracheal aspirates, cervical swabs, endomentrial aspirates, rectal swabs, Vaginal swabs, ear swabs, products of conception, wound biopsy and amniotic fluid. All isolates were subjected to phenotypic carbapenemase screening using Boronic acid-based inhibition, Modified Hodge and EDTA double combined disk test. In addition, all the isolates were subjected to PCR assay to confirm presence of carbapenemase encoding genes. RESULTS: The study found carbapenemase prevalence of 22.4% (44/196) in the isolates using phenotypic tests, with the genotypic prevalence slightly higher at 28.6% (56/196). Over all, the most prevalent gene was blaVIM (21,10.7%), followed by blaOXA-48 (19, 9.7%), blaIMP (12, 6.1%), blaKPC (10, 5.1%) and blaNDM-1 (5, 2.6%). Among 56 isolates positive for 67 carbapenemase encoding genes, Klebsiella pneumonia was the species with the highest number (52.2%). Most 32/67(47.7%) of these resistance genes were in bacteria isolated from pus swabs. CONCLUSION: There is a high prevalence of carbapenemases and carbapenem-resistance encoding genes among third generation cephalosporins resistant Enterobacteriaceae in Uganda, indicating a danger of limited treatment options in this setting in the near future.201526284519
1421160.9951Predominance of Acinetobacter spp., Harboring the bla(IMP) Gene, Contaminating the Hospital Environment in a Tertiary Hospital in Mwanza, Tanzania: A Cross-Sectional Laboratory-Based Study. Data on colonization and hospital contamination of carbapenem-resistant Gram-negative bacteria (CR-GNB) are limited in low- and middle-income countries. We designed this study to determine the prevalence and co-existence of carbapenemase genes among CR-GNB isolated from clinical, colonization, and hospital environmental samples at a tertiary hospital in Mwanza, Tanzania. The modified Hodge test (MHT), the combined disk test (CDT), and the double-disk synergy test (DDST) were used for the phenotypic detection of carbapenemases. A multiplex PCR assay was used to detect bla(IMP) and bla(KPC), and a singleplex PCR assay was used to detect bla(OXA-48). Data were analyzed by STATA version 13.0. Overall, 68.8% (44/64) of the CR-GNB had at least one phenotype by phenotypic methods, whereby 60.9% (39/64) were both CDT and DDST positive and 31.3% (20/64) were MHT positive. A total of 23/64 (35.9%) had at least one of the genes tested with the predominance of bla(IMP) (91.3%; 21/23). In addition, 47.7% (21/44) of the CR-GNB phenotypes had at least one gene. Around 47.8% (11/23) of the CR-GNB carried multiple genes encoding for carbapenem resistance, with the maximum co-existence of bla(IMP)/bla(KPC)/bla(OXA-48) (45.5%; 5/11). The majority of carbapenem-resistant genes were detected in Acinetobacter spp. (82.6%; 19/23) and isolated from bed swabs (69.6%; 16/23). Acinetobacter spp. carrying the bla(IMP) gene predominantly contaminated the hospital environment. Therefore, we recommend routine decontamination of inanimate hospital surfaces, including patient beds.202235056011
1252170.9951Fluoroquinolone resistance in bacterial isolates from ocular infections: Trend in antibiotic susceptibility patterns between 2005-2020. PURPOSE: To assess the fluoroquinolone resistance pattern and trends among bacterial isolates from ocular infections over a 16-year period and explore alternative antibiotics in fluoroquinolone-resistant strains. METHODS: In this retrospective, longitudinal study, the microbiology laboratory records of patients with different ocular infections diagnosed at an eye institute in central India from 2005-2020 were reviewed to determine the pattern of fluoroquinolone (ciprofloxacin, ofloxacin, gatifloxacin, and moxifloxacin) resistance. Antibiotic susceptibility testing was done using the Kirby-Bauer disc diffusion method. RESULTS: In 725 Gram-positive bacteria, the resistance of ciprofloxacin, ofloxacin, gatifloxacin, and moxifloxacin was 55.9% (95% confidence interval [CI]: 52.2 - 59.6), 42.7% (95% CI: 39.0 - 46.4), 47.6% (95% CI: 43.9 - 51.3), and 45.6% (95% CI: 41.7-49.5), respectively. In 266 Gram-negative bacteria, the resistance of ciprofloxacin, ofloxacin, gatifloxacin, and moxifloxacin was 57.9% (95% CI: 51.9 - 63.9), 56.0% (95% CI: 49.7 - 62.1), 59.9% (95% CI: 53.8 - 66.0), and 74.3% (95% CI: 68.3 - 80.2), respectively. A declining trend in resistance to ciprofloxacin (P < 0.001), ofloxacin (P < 0.001), and moxifloxacin (P < 0.001) was seen in Gram-positive bacteria, whereas a reduction in resistance to only moxifloxacin (P = 0.04) was seen in Gram-negative bacteria. In fluoroquinolone-resistant Gram-positive bacteria, cefuroxime exhibited the highest susceptibility, whereas in fluoroquinolone-resistant Gram-negative bacteria, colistin exhibited the highest susceptibility. CONCLUSION: Fluoroquinolone resistance was high among bacteria from ocular infections in central India, but a declining trend in resistance to some of the fluoroquinolones was observed in recent times. Cefuroxime and colistin emerged as alternatives in fluoroquinolone-resistant Gram-positive and Gram-negative bacterial infections, respectively.202236453351
1461180.9951Phenotypic and Genetic Characterization of Carbapenemase and ESBLs Producing Gram-negative Bacteria (GNB) Isolated from Patients with Cystic Fibrosis (CF) in Tehran Hospitals. BACKGROUND: Cystic Fibrosis (CF) is an autosomal recessive genetic disorder in white populations caused by mutation in a gene that encodes Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein. Since frequent respiratory tract infections are the major problem in patients with CF, obligation to identify the causative bacteria and determining their antibiotic resistance pattern is crucial. The purpose of this project was to detect Gram-negative bacteria (GNB) isolated from sputa of CF patients and to determine their antibiotic resistance pattern. MATERIALS AND METHODS: The sputum of 52 CF patients, treated as inpatients at hospitals in Tehran, was obtained between November 2011 and June 2012. Samples cultured in selective and non-selective media and GNB recognized by biochemical tests. Antimicrobial susceptibility testing to cephalosporins, aminoglycosides and carbapenems was performed by disk diffusion method and MICs of them were measured. For phenotypic detection of carbapenemase and ESBLs production, the Modified Hodge test, double disk synergy test and the combined disk methods were performed. Subsequently, the genes encoding the extended spectrum beta-lactamases (blaPER, blaCTX-M) and carbapenemases (blaIMP-1, blaGES, blaKPC, blaNDM, blaVIM-1, blaVIM-2, blaSPM, blaSIM) in Gram negative bacteria were targeted among the resistant isolates by using PCR. PFGE was used to determine any genetic relationship among the Pseudomonas aeruginosa isolated from these patients. RESULTS: Fifty five GNB were isolated from 52 sputum samples including Pseudomonas aeruginosa, Klebsiella ozaenae, Alcaligenes xylosoxidans, Achromobacter denitrificans, Klebsiella pneumonia and Stenotrophomonas maltophilia. The rates of resistance to different antibiotic were as follows: cefixime (%80), ceftriaxone (%43), ceftazidime (%45) and meropenem (%7). The prevalence of genes encoding the ESBLs and Carbapenemases among the the phenotypically positive strains were as follows: blaCTX-M (19), blaIMP-1 (2), blaVIM-1 (2) and blaVIM-2 (3) genes respectively. No other genes were detected. PFGE analysis revealed 8 genotypes. Six isolates had mutually 3 similar patterns. CONCLUSION: This study showed the existence of important ESBLs and carbapenemases genes among the GNB isolated from patients with CF. Continuous surveillance of ESBLs and Carbapenemases, also identification of their types, in bacteria isolated from these patients have an important clinical impact, since, it can often provide valuable information for effective infection control measures and for the choice of appropriate antimicrobial therapy.201424596716
1467190.9951Detection of bla (CTX-M15) and bla (OXA-48) genes in Gram-negative isolates from neonatal sepsis in central of Iran. BACKGROUND AND OBJECTIVES: The aim of this study was to determine the prevalence of neonatal sepsis with a focus on antibiotic resistance and the frequency of the bla (CTX-M-15) and bla (OXA-48) genes in Gram-negative isolates. MATERIALS AND METHODS: A total of 108 Umbilical Cord Blood (UCB) and 153 peripheral blood samples were cultured via BACTEC from May 2017 to June 2018. The bacterial isolates were identified using phenotypic and genotypic analyses. The antibiotic susceptibility profile of the isolates was determined by disk diffusion. PCR was used to determine the frequency of β-lactamase genes. RESULTS: Among the 153 infants, 21 (13.7%) proved positive for sepsis. Escherichia coli, Staphylococcus epidermidis and Klebsiella pneumoniae were the most frequent isolates in the peripheral blood cultures. E. coli and Stenotrophomonas maltophilia were isolated from two UCB cultures. The highest resistance among the Gram-positive strains was to cefixime, ceftriaxone, cefotaxime and clindamycin. In the Gram-negative bacteria the highest rates of resistance were to ampicillin (91.7%). The frequency of bla (OXA-48) and bla (CTX-M-15) genes was 25% and 50%, respectively. CONCLUSION: The high antibiotic resistance among the isolates reveals the importance of monitoring antibiotic consumption and improving control standards in the health care system, especially in neonatal wards.201931719958