MARINOBACTER - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
844100.9602Genomic and phenotypic attributes of novel salinivibrios from stromatolites, sediment and water from a high altitude lake. BACKGROUND: Salinivibrios are moderately halophilic bacteria found in salted meats, brines and hypersaline environments. We obtained three novel conspecific Salinivibrio strains closely related to S. costicola, from Socompa Lake, a high altitude hypersaline Andean lake (approx. 3,570 meters above the sea level). RESULTS: The three novel Salinivibrio spp. were extremely resistant to arsenic (up to 200 mM HAsO42-), NaCl (up to 15%), and UV-B radiation (19 KJ/m2, corresponding to 240 minutes of exposure) by means of phenotypic tests. Our subsequent draft genome ionsequencing and RAST-based genome annotation revealed the presence of genes related to arsenic, NaCl, and UV radiation resistance. The three novel Salinivibrio genomes also had the xanthorhodopsin gene cluster phylogenetically related to Marinobacter and Spiribacter. The genomic taxonomy analysis, including multilocus sequence analysis, average amino acid identity, and genome-to-genome distance revealed that the three novel strains belong to a new Salinivibrio species. CONCLUSIONS: Arsenic resistance genes, genes involved in DNA repair, resistance to extreme environmental conditions and the possible light-based energy production, may represent important attributes of the novel salinivibrios, allowing these microbes to thrive in the Socompa Lake.201424927949
52210.9590Detoxification of ars genotypes by arsenite-oxidizing bacteria through arsenic biotransformation. The detoxification process of transforming arsenite (As(III)) to arsenate (As(V)) through bacterial oxidation presents a potent approach for bioremediation of arsenic-polluted soils in abandoned mines. In this study, twelve indigenous arsenic-oxidizing bacteria (AOB) were isolated from arsenic-contaminated soils. Among these, Paenibacillus xylanexedens EBC-SK As2 (MF928871) and Ochrobactrum anthropi EBC-SK As11 (MF928880) were identified as the most effective arsenic-oxidizing isolates. Evaluations for bacterial arsenic resistance demonstrated that P. xylanexedens EBC-SK As2 (MF928871) could resist As(III) up to 40 mM, while O. anthropi EBC-SK As11 (MF928880) could resist As(III) up to 25 mM. From these bacterial strains, genotypes of arsenic resistance system (ars) were detected, encompassing ars leader genes (arsR and arsD), membrane genes (arsB and arsJ), and aox genes known to be crucial for arsenic detoxification. These ars genotypes in the isolated AOBs might play an instrumental role in arsenic-contaminated soils with potential to reduce arsenic contamination.202439382695
614320.9589Paleomicrobiology to investigate copper resistance in bacteria: isolation and description of Cupriavidus necator B9 in the soil of a medieval foundry. Remains of a medieval foundry were excavated by archaeologists in 2013 in Verdun (France). Ancient workshops specialized in brass and copper alloys were found with an activity between 13th to 16th c. Levels of Cu, Zn and Pb reached 20000, 7000 and 6000 mg kg(-1) (dw), respectively, in several soil horizons. The objective of the present work was to examine the microbial community in this contaminated site. A total of 8-22 10(6) reads were obtained by shotgun metagenomics in four soil horizons. Bioinformatic analyses suggest the presence of complex bacterial communities dominated by Proteobacteria. The structure of the community was not affected by metals, contrary to the set of metal-resistance genes. Using selective media, a novel strain of Cupriavidus necator (eutrophus), strain B9, was isolated. Its genome was sequenced and a novel metal resistance gene cluster with Hg resistance genes (merRTPCA) followed by 24 copper-resistance genes (actP, cusCBAF, silP, copK1, copH4QLOFGJH3IDCBARS, copH2H1, copK2) was found. This cluster is partly homologous to the cop genes of Cupriavidus gilardii CR3 and C. metallidurans CH34. Proteomics indicated that the four copH genes were differentially expressed: CopH1 and CopH2 were mostly induced by Cd while CopH4 was highly expressed by Cu.201727943589
513330.9587Draft genome sequence of Marinobacter sp. DUT-3, a manganese-oxidizing and potential antibiotic-resistant bacterium from Bohai coastal sediments. A manganese-oxidizing bacterium, Marinobacter sp. DUT-3, was isolated from Bohai coastal sediments. A total of 24 contigs with GC content of 57.91% and 3,817 protein-coding genes were obtained by genome sequencing. Isolation of this strain suggests potential for synergistic antibiotics removal via biogenic manganese oxides and intrinsic resistance.202541081498
81140.9583Genomic analysis of five antibiotic-resistant bacteria isolated from the environment. Our study presents the whole-genome sequences and annotation of five bacteria isolates, each demonstrating distinct antibiotic resistance. These isolates include Bacillus paranthracis RIT 841, Atlantibacter hermanii RIT 842, Pantoea leporis RIT 844, Enterococcus casseliflavus RIT 845, and Pseudomonas alkylphenolica RIT 846, underscoring the importance of understanding antimicrobial resistance.202439189722
521250.9582Draft Genome Sequences of Pseudomonas MWU13-2625 and MWU12-2115, Isolated from a Wild Cranberry Bog at the Cape Cod National Seashore. Two highly similar Pseudomonas sp. genome sequences from wetland bog soil isolates with draft genomes of ~6.3 Mbp are reported. Although the exact taxonomic placement and environmental roles of these bacteria are unclear, predicted genes for stress tolerance, antibiotic resistance, and a type VI secretion system were detected.201830533670
613360.9579Comparative genomic study of three species within the genus Ornithinibacillus, reflecting the adaption to different habitats. In the present study, we report the whole genome sequences of two species, Ornithinibacillus contaminans DSM22953(T) isolated from human blood and Ornithinibacillus californiensis DSM 16628(T) isolated from marine sediment, in genus Ornithinibacillus. Comparative genomic study of the two species was conducted together with their close relative Ornithinibacillus scapharcae TW25(T), a putative pathogenic bacteria isolated from dead ark clam. The comparisons showed O. contaminans DSM22953(T) had the smallest genome size of the three species indicating that it has a relatively more stable habitat. More stress response and heavy metal resistance genes were found in the genome of O. californiensis DSM 16628(T) reflecting its adaption to the complex marine environment. O. scapharcae TW25(T) contained more antibiotic resistance genes and virus factors in the genome than the other two species, which revealed its pathogen potential.201626706221
82370.9575Characterization of the prtA and prtB genes of Erwinia chrysanthemi EC16. Two tandem metalloprotease-encoding structural genes, prtA and prtB, were sequenced from Erwinia chrysanthemi EC16. These were highly homologous to previously reported genes from the same bacteria, as well as to three other metalloprotease-encoding genes from enteric bacteria. The three tandem prt structural genes from strain EC16 were closely linked to a cluster of genes previously found to be essential for extracellular secretion of the metalloproteases.19938224883
52780.9575Characterization of the bagremycin biosynthetic gene cluster in Streptomyces sp. Tü 4128. Bagremycin A and bagremycin B isolated from Streptomyces sp. Tü 4128 have activities against Gram-positive bacteria, fungi and also have a weak antitumor activity, which make them have great potential for development of novel antibiotics. Here, we report a draft genome 8,424,112 bp in length of S. sp. Tü 4128 by Illumina Hiseq2000, and identify the bagremycins biosynthetic gene cluster (BGC) by bioinformatics analysis. The putative bagremycins BGC includes 16 open reading frames (ORFs) with the functions of biosynthesis, resistance and regulation. Disruptions of relative genes and HPLC analysis of bagremycins production demonstrated that not all the genes within the BGC are responsible for the biosynthesis of bagremycins. In addition, the biosynthetic pathways of bagremycins are proposed for deeper inquiries into their intriguing biosynthetic mechanism.201930526412
80390.9574Nucleotide sequences and genetic analysis of hydrogen oxidation (hox) genes in Azotobacter vinelandii. Azotobacter vinelandii contains a heterodimeric, membrane-bound [NiFe]hydrogenase capable of catalyzing the reversible oxidation of H2. The beta and alpha subunits of the enzyme are encoded by the structural genes hoxK and hoxG, respectively, which appear to form part of an operon that contains at least one further potential gene (open reading frame 3 [ORF3]). In this study, determination of the nucleotide sequence of a region of 2,344 bp downstream of ORF3 revealed four additional closely spaced or overlapping ORFs. These ORFs, ORF4 through ORF7, potentially encode polypeptides with predicted masses of 22.8, 11.4, 16.3, and 31 kDa, respectively. Mutagenesis of the chromosome of A. vinelandii in the area sequenced was carried out by introduction of antibiotic resistance gene cassettes. Disruption of hoxK and hoxG by a kanamycin resistance gene abolished whole-cell hydrogenase activity coupled to O2 and led to loss of the hydrogenase alpha subunit. Insertional mutagenesis of ORF3 through ORF7 with a promoterless lacZ-Kmr cassette established that the region is transcriptionally active and involved in H2 oxidation. We propose to call ORF3 through ORF7 hoxZ, hoxM, hoxL, hoxO, and hoxQ, respectively. The predicted hox gene products resemble those encoded by genes from hydrogenase-related operons in other bacteria, including Escherichia coli and Alcaligenes eutrophus.19921624446
362100.9572Complete Genome Sequences of Highly Arsenite-Resistant Bacteria Brevibacterium sp. Strain CS2 and Micrococcus luteus AS2. The complete genome sequences of two highly arsenite-resistant Actinomycetales isolates are presented. Both genomes are G+C rich and consist of a single chromosome containing homologs of known arsenite resistance genes.201931371538
460110.9568Horizontal transfer of the photosynthesis gene cluster and operon rearrangement in purple bacteria. A 37-kb photosynthesis gene cluster was sequenced in a photosynthetic bacterium belonging to the beta subclass of purple bacteria (Proteobacteria), Rubrivivax gelatinosus. The cluster contained 12 bacteriochlorophyll biosynthesis genes (bch), 7 carotenoid biosynthesis genes (crt), structural genes for photosynthetic apparatuses (puf and puh), and some other related genes. The gene arrangement was markedly different from those of other purple photosynthetic bacteria, while two superoperonal structures, crtEF-bchCXYZ-puf and bchFNBHLM-lhaA-puhA, were conserved. Molecular phylogenetic analyses of these photosynthesis genes showed that the photosynthesis gene cluster of Rvi. gelatinosus was originated from those of the species belonging to the alpha subclass of purple bacteria. It was concluded that a horizontal transfer of the photosynthesis gene cluster from an ancestral species belonging to the alpha subclass to that of the beta subclass of purple bacteria had occurred and was followed by rearrangements of the operons in this cluster.200111343129
6150120.9567Redox biotransformation of arsenic along with plant growth promotion by multi-metal resistance Pseudomonas sp. MX6. Remediation of toxic metal-polluted sites by microorganisms is an environment-friendly remediation technique. Multi-metal-resistant bacteria were isolated from a wastewater treatment plant showing resistance against As(III), As(V), Cr, Co, Cu, Cd, Hg, Ni, Pb, Se and Zn. Maximum resistance against all metals was shown by the bacterial isolate MX-6 (As 20mM, Cd 30mM, Cr 5.0mM, Co 25mM, Cu 25mM, Ni 20mM, Zn 30mM, Pb 15mM, Se 20mM and Hg 2.5mM), which was identified as Pseudomonas sp. through 16S rDNA sequencing. Pseudomonas sp. MX-6 reduced 506μM As(V) and also oxidized 160μM As(III). The genes for As, Cd, Se and Zn resistance in Pseudomonas sp. MX-6 were found to be plasmid borne, as indicated by transformation. Pseudomonas sp. MX-6 produced 49.37μg·mL(-1) IAA and was also positive for HCN production and phosphate solubilisation. The bacterial isolate also supported Vigna radiata growth, both in the absence and presence of the aforementioned metals. Such bacteria can be used as biofertilizers to reclaim the polluted lands and to enhance crop production in metal-contaminated soils.201728684222
6135130.9566Complete genome sequence of Bifidobacterium animalis subsp. lactis KLDS 2.0603, a probiotic strain with digestive tract resistance and adhesion to the intestinal epithelial cells. Bifidobacterium animalis subsp. lactis KLDS 2.0603 (abbreviated as KLDS 2.0603) is a probiotic strain isolated from the feces of an adult human. Previous studies showed that KLDS 2.0603 has a high resistance to simulated digestive tract conditions and a high ability to adhere to intestinal epithelial cells (Caco-2). These two characteristics are essential requirements for the selection of probiotic bacteria. To explore the stress resistance mechanism to the digestive tract environment and the adhesive proteins of this strain, in this paper, we reported the complete genome sequence of KLDS 2.0603, which contains 19,469bp and encodes 1614 coding sequences(CDSs), 15 rRNA genes, 52 tRNA genes with 1678 open reading frames.201626795356
479140.9564Genome sequences of Methylobacterium and Methylorubrum isolates from Cd-contaminated soils in the Tar Creek Superfund site. Soil bacteria were isolated from the Tar Creek Superfund site in the presence of cadmium. Eight of these strains belong to the genus Methylobacterium, whereas one strain belongs to the genus Methylorubrum. Here, we report drafts of their genome sequences and highlight cadmium-resistance genes required in an exceptionally contaminated environment.202539835800
6144150.9564Efficient arsenate reduction by As-resistant bacterium Bacillus sp. strain PVR-YHB1-1: Characterization and genome analysis. Arsenate (AsV) reduction in bacteria is essential to alleviate their arsenic (As) toxicity. We isolated a Bacillus strain PVR-YHB1-1 from the roots of As-hyperaccumulator Pteris vittata. The strain was efficient in reducing AsV to arsenite (AsIII), but the associated mechanisms were unclear. Here, we investigated its As resistance and reduction behaviors and associated genes at genome level. Results showed that the strain tolerated up to 20 mM AsV. When grown in 1 mM AsV, 96% AsV was reduced to AsIII in 48 h, with its AsV reduction ability being positively correlated to bacterial biomass. Two ars operons arsRacr3arsCDA and arsRKacr3arsC for As metabolisms were identified based on draft genome sequencing and gene annotations. Our data suggested that both operons might have attributed to efficient As resistance and AsV reduction in PVR-YHB1-1, providing clues to better understand As transformation in bacteria and their roles in As transformation in the environment.201930609485
530160.9562Location of the genes for anthranilate synthase in Streptomyces venezuelae ISP5230: genetic mapping after integration of the cloned genes. The anthranilate synthase (trpEG) genes in Streptomyces venezuelae ISP5230 were located by allowing a segregationally unstable plasmid carrying cloned S. venezuelae trpEG DNA and a thiostrepton resistance (tsr) marker to integrate into the chromosome. The integrated tsr was mapped by conjugation and transduction to a location close to tyr-2, between arg-6 and trpA13. A genomic DNA fragment containing trpC from S. venezuelae ISP5230 was cloned by complementation of a trpC mutation in Streptomyces lividans. Evidence from restriction enzyme analysis of the cloned DNA fragments, from Southern hybridization using the cloned trp DNA as probes, and from cotransduction frequencies, placed trpEG at a distance of 12-45 kb from the trpCBA cluster. The overall arrangement of tryptophan biosynthesis genes in the S. venezuelae chromosome differs from that in other bacteria examined so far.19938515229
5248170.9561Antibiotic resistance of heterotrophic bacteria from the sediments of adjoining high Arctic fjords, Svalbard. Antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) are now considered major global threats. The Kongsfjorden and Krossfjorden are the interlinked fjords in the Arctic that are currently experiencing the effects of climate change and receiving input of pollutants from distant and regional sources. The present study focused on understanding the prevalence of antibiotic resistance of retrievable heterotrophic bacteria from the sediments of adjacent Arctic fjords Kongsfjorden and Krossfjorden. A total of 237 bacterial isolates were tested against 16 different antibiotics. The higher resistance observed towards Extended Spectrum β-lactam antibiotic (ESBL) includes ceftazidime (45.56%) followed by trimethoprim (27%) and sulphamethizole (24.05%). The extent of resistance was meagre against tetracycline (2.53%) and gentamycin (2.95%). The 16S rRNA sequencing analysis identified that Proteobacteria (56%) were the dominant antibiotic resistant phyla, followed by Firmicutes (35%), Actinobacteria (8%) and Bacteroidetes. The dominant resistant bacterial isolates are Bacillus cereus (10%), followed by Alcaligenes faecalis (6.47%), Cytobacillus firmus (5.75%) Salinibacterium sp. (5%) and Marinobacter antarcticus (5%). Our study reveals the prevalence of antibiotic resistance showed significant differences in both the inner and outer fjords of Kongsfjorden and Krossfjorden (p < 0.05). This may be the input of antibiotic resistance bacteria released into the fjords from the preserved permafrost due to the melting of glaciers, horizontal gene transfer, and human influence in the Arctic region act as a selection pressure for the development and dissemination of more antibiotic resistant bacteria in Arctic fjords.202438767750
8640180.9560Comparative genomics reveals the acquisition of mobile genetic elements by the plant growth-promoting Pantoea eucrina OB49 in polluted environments. Heavy metal-tolerant plant growth-promoting bacteria (PGPB) have gained popularity in bioremediation in recent years. A genome-assisted study of a heavy metal-tolerant PGPB Pantoea eucrina OB49 isolated from the rhizosphere of wheat grown on a heavy metal-contaminated site is presented. Comparative pan-genome analysis indicated that OB49 acquired heavy metal resistance genes through horizontal gene transfer. On contigs S10 and S12, OB49 has two arsRBCH operons that give arsenic resistance. On the S12 contig, an arsRBCH operon was discovered in conjunction with the merRTPCADE operon, which provides mercury resistance. P. eucrina OB49 may be involved in an ecological alternative for heavy metal remediation and growth promotion of wheat grown in metal-polluted soils. Our results suggested the detection of mobile genetic elements that harbour the ars operon and the fluoride resistance genes adjacent to the mer operon.202336792019
6146190.9558Arsenic resistance genes of As-resistant purple nonsulfur bacteria isolated from As-contaminated sites for bioremediation application. This study aimed to identify arsenic resistant mechanisms in As-resistant purple nonsulfur bacteria (PNSB) by screening them for presence of As-resistance genes and related enzymes. Resistance to As(III) and As(V) of four As-resistant PNSB determined in terms of median inhibition concentration (IC(50) values) were in the order of strains Rhodopseudomonas palustris C1 > R. palustris AB3 > Rubrivivax benzoatilyticus C31 > R. palustris L28 which corresponded to the presence of As-resistance genes in these bacteria. The strain C1 showed all As-marker genes; arsC, arsM, aioA, and acr3, while aioA was not detected in strain AB3. Strains C31 and L28 had only Arsenite-transporter gene, acr3. Translation of all these detected gene sequences of strain C1 to amino acid sequences showed that these proteins have vicinal cysteine; Cys126, Cys105, and Cys178 of Acr3, ArsC, AioA, respectively. Tertiary structure of proteins Acr3, ArsC, AioA, and ArsM showed strain C1 exhibits the high activities of arsenite oxidase and arsenate reductase enzymes that are encoded by aioA and arsC genes, respectively. Moreover, strain C1 with arsM gene produced volatile-methylated As-compounds; monomethylarsonic acid (MMA), dimethylarsenic acid (DMA), and arsenobetaine (AsB) in the presence of either As(III) or As(V). In conclusion, the strain C1 has great potential for its application in bioremediation of As-contaminated sites.201728054716