MARB - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
348100.9662Antibiotics and Antibiotic Resistance Genes in Sediment of Honghu Lake and East Dongting Lake, China. Sediment is an ideal medium for the aggregation and dissemination of antibiotics and antibiotic resistance genes (ARGs). The levels of antibiotics and ARGs in Honghu Lake and East Dongting Lake of central China were investigated in this study. The concentrations of eight antibiotics (four sulfonamides and four tetracyclines) in Honghu Lake were in the range 90.00-437.43 μg kg(-1) (dry weight (dw)) with mean value of 278.21 μg kg(-1) dw, which was significantly higher than those in East Dongting Lake (60.02-321.04 μg kg(-1) dw, mean value of 195.70 μg kg(-1) dw). Among the tested three sulfonamide resistance genes (sul) and eight tetracycline resistance genes (tet), sul1, sul2, tetA, tetC, and tetM had 100 % detection frequency in sediment samples of East Dongting Lake, while only sul1, sul2, and tetC were observed in all samples of Honghu Lake. The relative abundance of sul2 was higher than that of sul1 at p < 0.05 level in both lakes. The relative abundance of tet genes in East Dongting Lake was in the following order: tetM > tetB > tetC > tetA. The relative abundance of sul1, sul2, and tetC in East Dongting Lake was significantly higher than those in Honghu Lake. The abundance of background bacteria may play an important role in the horizontal spread of sul2 and tetC genes in Honghu Lake and sul1 in East Dongting Lake, respectively. Redundancy analysis indicated that tetracyclines may play a more important role than sulfonamides in the abundance of sul1, sul2, and tetC gens in Honghu Lake and East Dongting Lake.201627418176
716010.9660High-throughput profiling of antibiotic resistance genes in the Yellow River of Henan Province, China. Profiling antibiotic resistance genes (ARGs) in the Yellow River of China's Henan Province is essential for understanding the health risks of antibiotic resistance. The profiling of ARGs was investigated using high-throughput qPCR from water samples in seven representative regions of the Yellow River. The absolute and relative abundances of ARGs and moble genetic elements (MGEs) were higher in summer than in winter (ANOVA, p < 0.001). The diversity and abundance of ARGs were higher in the Yellow River samples from PY and KF than the other sites. Temperature (r = 0.470 ~ 0.805, p < 0.05) and precipitation (r = 0.492 ~ 0.815, p < 0.05) positively influenced the ARGs, while pH had a negative effect (r = - 0.462 ~ - 0.849, p < 0.05). Network analysis indicated that the pathogenic bacteria Rahnella, Bacillus, and Shewanella were the possible hub hosts of ARGs, and tnpA1 was the potential MGE hub. These findings provide insights into the factors influencing ARG dynamics and the complex interaction among the MGEs, pathogenic bacteria and environmental parameters in enriching ARGs in the Yellow River of Henan Province.202439080455
526120.9658Prevalence of antibiotic resistance genes from effluent of coastal aquaculture, South Korea. The wide use of antibiotics in aquaculture for prophylactic and therapeutic purposes can potentially lead to the prevalence of antibiotic resistance genes (ARGs). This study reports for the first time the profile of ARGs from effluents of coastal aquaculture located in South Jeolla province and Jeju Island, South Korea. Using quantitative PCR (qPCR), twenty-two ARGs encoding tetracycline resistance (tetA, tetB, tetD, tetE, tetG, tetH, tetM, tetQ, tetX, tetZ, tetBP), sulfonamide resistance (sul1, sul2), quinolone resistance (qnrD, qnrS, aac(6')-Ib-cr), β-lactams resistance (bla(TEM), bla(CTX), bla(SHV)), macrolide resistance (ermC), florfenicol resistance (floR) and multidrug resistance (oqxA) and a class 1 integrons-integrase gene (intI1) were quantified. In addition, Illumina Miseq sequencing was applied to investigate microbial community differences across fish farm effluents. Results from qPCR showed that the total number of detected ARGs ranged from 4.24 × 10(-3) to 1.46 × 10(-2) copies/16S rRNA gene. Among them, tetB and tetD were predominant, accounting for 74.8%-98.0% of the total ARGs. Furthermore, intI1 gene showed positive correlation with tetB, tetD, tetE, tetH, tetX, tetZ tetQ and sul1. Microbial community analysis revealed potential host bacteria for ARGs and intI1. Two genera, Vibrio and Marinomonas belonging to Gammaproteobacteria, showed significant correlation with tetB and tetD, the most dominant ARGs in all samples. Also, operational taxonomic units (OTUs)-based network analysis revealed that ten OTUs, classified into the phyla Proteobacteria, Cyanobacteria/Chloroplast, Bacteroidetes, Verrucomicrobia and an unclassified phylum, were potential hosts of tetracycline resistance genes (i.e., tetA, tetG, tetH, tetM, tetQ and tetZ). Further systematic monitoring of ARGs is warranted for risk assessment and management of antibacterial resistance from fish farm effluents.201829031406
527730.9654Antibiotic resistance of bacteria isolated from shrimp hatcheries and cultural ponds on Donghai Island, China. The resistance of bacteria to 12 different antibiotics was investigated in shrimp farms on Donghai Island, China. Antibiotic-resistant bacteria were found to be widespread in shrimp farms, indicating a high environmental risk. Further, significant differences were found in bacterial strains among farms (ANOVA, p<0.05), showing resistance to antibiotics such as ampicillin, trimethoprim, compound sinomi, tetracycline, chloramphenicol and cefazolin. No significant differences in antibiotic resistance were found among 6 hatcheries evaluated in this study (ANOVA, p>0.05), between exalted and traditional shrimp ponds (ANOVA, p>0.05), and between cultural ponds and corresponding control water source sites (T-test, p>0.05). In cultural ponds, no significant difference in bacterial resistance to antibiotics was found between water and sediment (T-test, p>0.05), and antibiotic resistance of bacteria from water showed a significant positive correlation with that from sediment (p<0.05). Therefore, our study indicates that bacterial multiple antibiotic resistance (MAR) is more widespread in shrimp hatcheries than ponds.201121945557
349840.9654Comparative study on the bacterial diversity and antibiotic resistance genes of urban landscape waters replenished by reclaimed water and surface water in Xi'an, China. Pathogenic bacteria and antibiotic resistance genes (ARGs) in urban landscape waters may pose a potential threat to human health. However, the investigation of their occurrence in the urban landscape waters replenished by reclaimed water (RW) and surface water (SW) is still insufficient. The water samples collected from six urban landscape waters replenished by RW or SW were used to analyze bacterial diversity using high-throughput sequencing of 16S rRNA gene and to detect 18 ARGs and 2 integron-integrase genes by means of quantitative PCR array. Results indicated that Proteobacteria was the dominant phylum in all six urban landscape waters. The bacterial species richness was lower in urban landscape waters replenished by RW than that by SW. Sulfonamide resistance genes (sulI and sulIII) were the major ARGs in these urban landscape waters. No significant difference in the relative abundance of sulfonamide resistance genes, tetracycline resistance genes, and most of beta-lactam resistance genes was observed between RW-replenished and SW-replenished urban landscape waters. By contrast, the relative abundance of bla(ampC) gene and qnrA gene in RW-replenished urban landscape waters was significantly higher than that in SW-replenished urban landscape waters (p < 0.05), which suggested that use of RW may increase the amount of specific ARGs to urban landscape waters. Interestingly, among six urban landscape waters, RW-replenished urban landscape waters had a relatively rich variety of ARGs (12-15 of 18 ARGs) but a low relative abundance of ARGs (458.90-1944.67 copies/16S × 10(6)). The RW replenishment was found to have a certain impact on the bacterial diversity and prevalence of ARGs in urban landscape waters, which provide new insight into the effect of RW replenishment on urban landscape waters.202133786766
348450.9653Occurrence of human pathogenic bacteria carrying antibiotic resistance genes revealed by metagenomic approach: A case study from an aquatic environment. Antibiotic resistance genes (ARGs), human pathogenic bacteria (HPB), and HPB carrying ARGs are public issues that pose a high risk to aquatic environments and public health. Their diversity and abundance in water, intestine, and sediments of shrimp culture pond were investigated using metagenomic approach. A total of 19 classes of ARGs, 52 HPB species, and 7 species of HPB carrying ARGs were found. Additionally, 157, 104, and 86 subtypes of ARGs were detected in shrimp intestine, pond water, and sediment samples, respectively. In all the samples, multidrug resistance genes were the highest abundant class of ARGs. The dominant HPB was Enterococcus faecalis in shrimp intestine, Vibrio parahaemolyticus in sediments, and Mycobacterium yongonense in water, respectively. Moreover, E. faecalis (contig Intestine_364647) and Enterococcus faecium (contig Intestine_80272) carrying efrA, efrB and ANT(6)-Ia were found in shrimp intestine, Desulfosaricina cetonica (contig Sediment_825143) and Escherichia coli (contig Sediment_188430) carrying mexB and APH(3')-IIa were found in sediments, and Laribacter hongkongensis (contig Water_478168 and Water_369477), Shigella sonnei (contig Water_880246), and Acinetobacter baumannii (contig Water_525520) carrying sul1, sul2, ereA, qacH, OXA-21, and mphD were found in pond water. Mobile genetic elements (MGEs) analysis indicated that horizontal gene transfer (HGT) of integrons, insertion sequences, and plasmids existed in shrimp intestine, sediment, and water samples, and the abundance of integrons was higher than that of other two MGEs. The results suggested that HPB carrying ARGs potentially existed in aquatic environments, and that these contributed to the environment and public health risk evaluation.201930952342
775560.9651Anthropogenic impacts on sulfonamide residues and sulfonamide resistant bacteria and genes in Larut and Sangga Besar River, Perak. The environmental reservoirs of sulfonamide (SA) resistome are still poorly understood. We investigated the potential sources and reservoir of SA resistance (SR) in Larut River and Sangga Besar River by measuring the SA residues, sulfamethoxazole resistant (SMX(r)) in bacteria and their resistance genes (SRGs). The SA residues measured ranged from lower than quantification limits (LOQ) to 33.13 ng L(-1) with sulfadiazine (SDZ), sulfadimethoxine (SDM) and SMX as most detected. Hospital wastewater effluent was detected with the highest SA residues concentration followed by the slaughterhouse and zoo wastewater effluents. The wastewater effluents also harbored the highest abundance of SMX(r)-bacteria (10(7) CFU mL(-1)) and SRGs (10(-1)/16S copies mL(-1)). Pearson correlation showed only positive correlation between the PO(4) and SMX(r)-bacteria. In conclusion, wastewater effluents from the zoo, hospital and slaughterhouse could serve as important sources of SA residues that could lead to the consequent emergence of SMX(r)-bacteria and SRGs in the river.201931726563
351470.9648Potential risks of microplastics combined with superbugs: Enrichment of antibiotic resistant bacteria on the surface of microplastics in mariculture system. Microplastics have become emerging pollutants and served as potential vectors for harmful bacteria, while rare information on the emergency and propagation of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) on the surface of microplastics is available. This study investigated the enrichment of ARB, especially multi-antibiotic resistant bacteria (MARB), on the surface of microplastics in mariculture system. Polyethylene terephthalate accounted for the highest proportion (75%) in the collected microplastics. The counts of cultivable ARB in microplastic samples were 6.40 × 10(6)-2.48 × 10(8) cfu/g, which were 100-5000 times higher than those in water samples. The ratios of cultivable ARB to total cultivable bacteria from microplastic samples were higher than those from water samples. High-throughput sequencing showed that the diversity and abundance of cultivable ARB in the microplastic samples was high with the predominant bacterial genera of Vibrio, Muricauda and Ruegeria. Total 160 MARB isolates were obtained and most of isolates were obtained from the microplastic samples. MARB isolates resisting or intermediating to four and three antibiotics accounted for much higher proportions in the microplastic samples, and the higher percentage of antibiotic resistance was to penicillin, sulfafurazole, erythromycin and tetracycline. The dominant multiple antibiotic resistance profile was TET-SFX-ERY-PEN, which accounted for 25.4% in microplastic samples and 23.9% in water samples. In typical MARB isolates, the positive detection rate of ARGs was up to 80.0% in microplastic samples while that was 65.3% in water samples. Five types of class 1 integrons (intI1) associated gene cassette arrays and seven types of gene cassettes were detected in microplastic samples, which were more than those in water samples. These results revealed that microplastics were hazardous pollutants for the enrichment of ARB, especially superbugs, and the spread of antibiotic resistance.202031670243
721380.9647Distribution characteristics of antibiotic resistant bacteria and genes in fresh and composted manures of livestock farms. Livestock manure is a major reservoir of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). This study investigated the distribution characteristics of ARB, ARGs in fresh and composted manures of traditional breading industry in rural areas in China. Samples collected were naturally piled without professional composting, and will be applied to farmland. The real-time quantitative polymerase chain reaction (qPCR) results showed the presence of ten target ARGs and two mobile genetic elements (MGEs) in the tested manure samples. The relative abundance of tetracycline and sulfonamide resistance genes (TRGs and SRGs) was generally higher than that of macrolide resistance genes (MRGs), followed by quinolone resistance genes (QRGs). There were significant positive correlations between the abundance of sul1, sul2, tetW and MGEs (intl1, intl2). In addition, the distribution of target ARGs was associated with the residual concentrations of doxycycline (DOX), sulfamethazine (SM2), enrofloxacin (ENR) and tylosin (TYL). Overall, a total of 24 bacterial genera were identified. The resistance rates of ARB were 17.79%-83.70% for SM2, followed 0.40%-63.77% for TYL, 0.36%-43.90% for DOX and 0.00%-13.36% for ENR, which showed a significant dose-effect. This study also demonstrated that the abundance of clinically relevant ARB and ARGs in chicken, swine and cow fresh manures significantly greater than that in composted manures, and chicken and swine manures had higher proportion of ARB and higher abundance of ARGs than that in cow manures.201931756854
715790.9647Overlooked risk of dissemination and mobility of antibiotic resistance genes in freshwater aquaculture of the Micropterus salmoides in Zhejiang, China. Residual antibiotics in aquaculture ecosystems can exert selective pressures on bacterial communities, driving bacteria to acquire antibiotic resistance genes (ARGs) through gene mutations or horizontal gene transfer (HGT). This study investigated the antibiotic resistance risk in freshwater aquaculture ecosystems of Micropterus salmoides in Zhejiang Province. The results revealed that oxytetracycline, ciprofloxacin and florfenicol were up to 300 ng/L, and the proportion of multidrug-resistant genes varied from 32.20 % to 50.70 % in the surveyed aquaculture water. Additionally, approximately 9.80 % of all annotated ARGs were identified as possessing plasmid-mediated horizontal transfer risks. The ARGs host prediction revealed that Actinobacteria carried the highest abundance of ARGs, up to 159.38 (coverage, ×/Gb). Furthermore, the abundance of Paer_emrE, ksgA, ompR and golS were positively correlated with Chlorophyll a concentration (p < 0.05), suggesting that algal blooms might facilitate the evolution and transfer of ARGs. Correlations between ARG abundances and total phosphorus, total nitrogen, pH, electrical conductivity indicated that modulating water quality parameters may serve as a viable strategy to mitigate the eco-environmental risk of ARGs in aquaculture water. This study identified antibiotic resistance characteristics in freshwater aquaculture ecosystems of Micropterus salmoides in Zhejiang Province, establishing a foundation on managing antibiotic resistance risks in such aquaculture environments.202540378740
5278100.9647Antibiotic resistance of culturable heterotrophic bacteria isolated from shrimp (Penaeus vannamei) aquaculture ponds. Shrimp aquaculture is one of the fastest growing food-producing avenues, where antibiotics usage has become an issue of great concern due to the development of antimicrobial resistance in bacteria. A total of 2304 bacterial isolates from 192 samples (sediment, water, shrimp, and source water) from Andhra Pradesh, India were screened. Antibiotic resistance of bacterial isolates was highest for oxytetracycline (23.4%) followed by erythromycin (12.7%), co-trimoxazole (10%) ciprofloxacin (9.6%), and chloramphenicol (6%), of which 11.9% isolates were multi-drug resistant. Bacterial isolates from shrimp (26.7%), water (23.9%), and sediment (19.6%) samples exhibited more resistance (p ≤ 0.05) towards oxytetracycline. Higher antibacterial resistance was observed from samples of southern Andhra Pradesh (locations L6 and L7). Gram negative bacteria were more prevalent (64%) and showed significantly (p ≤ 0.01) higher resistance. This study indicated the wider distribution of antibiotic-resistant bacteria in shrimp aquaculture ponds with potential risk to humans and the environment.202134450408
3506110.9646Occurrence and distribution of antibiotic resistance genes in sediments in a semi-enclosed continental shelf sea. Extensive and improper overuse of antibiotics resulted in the prevalence of antibiotic resistance genes (ARGs). As the typical semi-enclosed continental shelf sea, the Bohai Sea has been considered as one of the most polluted marine areas in China. However, no comprehensive investigation on the spatial distribution of ARGs in sediments from the Bohai Sea has been reported. A large-scale sampling was performed in the Bohai Sea areas. The abundances of ARGs (6 classes, 29 ARG subtypes), class 1 integron-integrase gene (intI1), hmt-DNA and 16S rRNA gene were evaluated. IntI1 was detected with higher abundances in coastal areas ranging from 2.8 × 10(5) to 2.5 × 10(8) copies/g. The total ARGs abundances varied over 3 orders of magnitude in different sampling sites with the maximum at 4.9 × 10(8) copies/g. Sulfonamides resistance genes were ubiquitous and abundant with the abundances ranging from 5.7 × 10(4) to 1.8 × 10(7) copies/g, and quinolones resistance genes varied greatly in different samples. The contour map demonstrated that ARGs were more abundant in the Laizhou Bay, the south of Bohai Bay and the eastern of central sea basin. Most of the target ARG subtypes were detected with 100% detection frequencies. The genes of sul1, sul2 and tetX were detected with both higher absolute and relative abundance, while the abundance of β-lactams ARG subtypes was lower. Principal component analysis (PCA) and redundancy analysis (RDA) indicated that no significant differences in the ARGs abundance existed in different samples, and the sediment qualities played important roles in the distribution of ARGs. Bacterial communities were investigated and 768 strong and significant connections between ARGs and bacteria were identified. The possible hosts of ARGs were revealed by network analysis with higher relative abundance in coastal areas than the sea.202032325606
7214120.9646Long-term application of fresh and composted manure increase tetracycline resistance in the arable soil of eastern China. The aim of this study was to compare the occurrence, abundance, and diversity of tetracycline resistance genes (tet) in agricultural soils after 6 years' application of fresh or composted swine manure. Soil samples were collected from fresh or composted manure-treated farmland at three depths (0-5 cm, 5-10 cm, and 10-20 cm). Nine classes of tet genes [tetW, tetB(P), tetO, tetS, tetC, tetG, tetZ, tetL, and tetX] were detected; tetG, tetZ, tetL, and tetB(P) were predominant in the manure-treated soil. The abundances of tetB(P), tetW, tetC, and tetO were reduced, while tetG and tetL were increased by fertilizing with composted versus fresh manure; thus, the total abundance of tet genes was not significantly reduced by compost manuring. tetG was the most abundant gene in manure-treated soil; the predominant tetG genotypes shared high homology with pathogenic bacteria. The tetG isolates were more diverse in soils treated with fresh versus composted manure, although the residual tet genes in composted manure remain a pollutant and produce a different influence on the tet gene resistome in field soil.201525460961
3626130.9644Multiple antibiotic resistance and herbicide catabolic profiles of bacteria isolated from Lake Villarrica surface sediments (Chile). Antibiotics and herbicides are contaminants of emerging concern in aquatic environments. Lake Villarrica is a relevant freshwater body in Chile and was recently designated a 'saturated nutrient zone'. Here, we investigated the occurrence of multiple antibiotic resistance (MAR) and herbicide catabolic profiles among bacteria present in the surface sediments of Lake Villarrica. The occurrence of antibiotic-resistant genes (ARGs; blaTEM, catA and tetM) and herbicide-catabolic genes (HCGs; phnJ and atzA) was investigated by qPCR. Subsequently, the presence of culturable bacteria with multiple resistance to amoxicillin (AMX), chloramphenicol (CHL) and oxytetracycline (OXT) was studied. Forty-six culturable MAR (AMX + CHL + OXT) strains were isolated and characterized with respect to their resistance to 11 antibiotics by using a disc diffusion assay and testing their ability to use herbicides as a nutrient source. qPCR analyses revealed that ARGs and HCGs were present in all sediment samples (10(1) to 10(3) gene copies g(-1)), with significant (P ≤ 0.05) higher values in sites near Villarrica city and cattle pastures. The plate method was used to recover MAR isolates from sediment (10(3)-10(6) CFU g(-1)), and most of the 46 isolates also showed resistance to oxacillin (100%), cefotaxime (83%), erythromycin (96%) and vancomycin (93%). Additionally, 54 and 57% of the MAR isolates were able to grow on agar supplemented (50 mg L(-1)) with atrazine and glyphosate as nutrient sources, respectively. Most of the MAR isolates were taxonomically close to Pseudomonas (76.1%) and Pantoea (17.4%), particularly those isolated from urbanized sites (Pucón city). This study shows the presence of MAR bacteria with herbicide catabolic activity in sediments, which is valuable for conservation strategies and risk assessments of Lake Villarrica. However, major integrative studies on sediments as reservoirs or on the fate of MAR strains and traces of antibiotics and herbicides as a result of anthropic pressure are still needed.202439002747
7779140.9644Metagenomic and Resistome Analysis of a Full-Scale Municipal Wastewater Treatment Plant in Singapore Containing Membrane Bioreactors. Reclaimed water provides a water supply alternative to address problems of scarcity in urbanized cities with high living densities and limited natural water resources. In this study, wastewater metagenomes from 6 stages of a wastewater treatment plant (WWTP) integrating conventional and membrane bioreactor (MBR) treatment were evaluated for diversity of antibiotic resistance genes (ARGs) and bacteria, and relative abundance of class 1 integron integrases (intl1). ARGs confering resistance to 12 classes of antibiotics (ARG types) persisted through the treatment stages, which included genes that confer resistance to aminoglycoside [aadA, aph(6)-I, aph(3')-I, aac(6')-I, aac(6')-II, ant(2″)-I], beta-lactams [class A, class C, class D beta-lactamases (bla (OXA))], chloramphenicol (acetyltransferase, exporters, floR, cmIA), fosmidomycin (rosAB), macrolide-lincosamide-streptogramin (macAB, ereA, ermFB), multidrug resistance (subunits of transporters), polymyxin (arnA), quinolone (qnrS), rifamycin (arr), sulfonamide (sul1, sul2), and tetracycline (tetM, tetG, tetE, tet36, tet39, tetR, tet43, tetQ, tetX). Although the ARG subtypes in sludge and MBR effluents reduced in diversity relative to the influent, clinically relevant beta lactamases (i.e., bla (KPC), bla (OXA)) were detected, casting light on other potential point sources of ARG dissemination within the wastewater treatment process. To gain a deeper insight into the types of bacteria that may survive the MBR removal process, genome bins were recovered from metagenomic data of MBR effluents. A total of 101 close to complete draft genomes were assembled and annotated to reveal a variety of bacteria bearing metal resistance genes and ARGs in the MBR effluent. Three bins in particular were affiliated to Mycobacterium smegmatis, Acinetobacter Iwoffii, and Flavobacterium psychrophila, and carried aquired ARGs aac(2')-Ib, bla (OXA-278), and tet36 respectively. In terms of indicator organisms, cumulative log removal values (LRV) of Escherichia coli, Enterococci, and P. aeruginosa from influent to conventional treated effluent was lower (0-2.4), compared to MBR effluent (5.3-7.4). We conclude that MBR is an effective treatment method for reducing fecal indicators and ARGs; however, incomplete removal of P. aeruginosa in MBR treated effluents (<8 MPN/100 mL) and the presence of ARGs and intl1 underscores the need to establish if further treatment should be applied prior to reuse.201930833934
7757150.9644Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: Effect of flow configuration and plant species. This study aims to investigate the removal of antibiotics and antibiotic resistance genes (ARGs) in raw domestic wastewater by various mesocosm-scale constructed wetlands (CWs) with different flow configurations or plant species including the constructed wetland with or without plant. Six mesocosm-scale CWs with three flow types (surface flow, horizontal subsurface flow and vertical subsurface flow) and two plant species (Thaliadealbata Fraser and Iris tectorum Maxim) were set up in the outdoor. 8 antibiotics including erythromycin-H2O (ETM-H2O), monensin (MON), clarithromycin (CTM), leucomycin (LCM), sulfamethoxazole (SMX), trimethoprim (TMP), sulfamethazine (SMZ) and sulfapyridine (SPD) and 12 genes including three sulfonamide resistance genes (sul1, sul2 and sul3), four tetracycline resistance genes (tetG, tetM, tetO and tetX), two macrolide resistance genes (ermB and ermC), two chloramphenicol resistance genes (cmlA and floR) and 16S rRNA (bacteria) were determined in different matrices (water, particle, substrate and plant phases) from the mesocosm-scale systems. The aqueous removal efficiencies of total antibiotics ranged from 75.8 to 98.6%, while those of total ARGs varied between 63.9 and 84.0% by the mesocosm-scale CWs. The presence of plants was beneficial to the removal of pollutants, and the subsurface flow CWs had higher pollutant removal than the surface flow CWs, especially for antibiotics. According to the mass balance analysis, the masses of all detected antibiotics during the operation period were 247,000, 4920-10,600, 0.05-0.41 and 3500-60,000μg in influent, substrate, plant and effluent of the mesocosm-scale CWs. In the CWs, biodegradation, substrate adsorption and plant uptake all played certain roles in reducing the loadings of nutrients, antibiotics and ARGs, but biodegradation was the most important process in the removal of these pollutants.201627443461
3483160.9643Abundance and diversity of antibiotic resistance genes and bacterial communities in the western Pacific and Southern Oceans. This study investigated the abundance and diversity of antibiotic resistance genes (ARGs) and the composition of bacterial communities along a transect covering the western Pacific Ocean (36°N) to the Southern Ocean (74°S) using the Korean icebreaker R/V Araon (total cruise distance: 14,942 km). The relative abundances of ARGs and bacteria were assessed with quantitative PCR and next generation sequencing, respectively. The absolute abundance of ARGs was 3.0 × 10(6) ± 1.6 × 10(6) copies/mL in the western Pacific Ocean, with the highest value (7.8 × 10(6) copies/mL) recorded at a station in the Tasman Sea (37°S). The absolute abundance of ARGs in the Southern Ocean was 1.8-fold lower than that in the western Pacific Ocean, and slightly increased (0.7-fold) toward Terra Nova Bay in Antarctica, possibly resulting from natural terrestrial sources or human activity. β-Lactam and tetracycline resistance genes were dominant in all samples (88-99%), indicating that they are likely the key ARGs in the ocean. Correlation and network analysis showed that Bdellovibrionota, Bacteroidetes, Cyanobacteria, Margulisbacteria, and Proteobacteria were positively correlated with ARGs, suggesting that these bacteria are the most likely ARG carriers. This study highlights the latitudinal profile of ARG distribution in the open ocean system and provides insights that will help in monitoring emerging pollutants on a global scale.202235085628
7773170.9643Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Antibiotics and corresponding resistance genes and resistant bacteria have been considered as emerging pollutants worldwide. Wastewater treatment plants (WWTPs) are potential reservoirs contributing to the evolution and spread of antibiotic resistance. In this study, total concentrations of tetracycline and sulfonamide antibiotics in final effluent were detected at 652.6 and 261.1ng/L, respectively, and in treated sludge, concentrations were at 1150.0 and 76.0μg/kg dry weight (dw), respectively. The quantities of antibiotic resistance genes and antibiotic resistant bacteria in final effluent were quantified in the range of 9.12×10(5)-1.05×10(6) gene abundances /100mL (genomic copies/100mL) and 1.05×10(1)-3.09×10(3)CFU/mL, respectively. In treated sludge, they were quantified at concentrations of 1.00×10(8)-1.78×10(9) gene abandances/100mL and 7.08×10(6)-1.91×10(8)CFU/100mL, respectively. Significant reductions (2-3 logs, p<0.05) of antibiotic resistance genes and antibiotic resistant bacteria were observed between raw influent and final effluent. The gene abundances of tetO and tetW normalized to that of 16S rRNA genes indicated an apparent decrease as compared to sulI genes, which remained stable along each treatment stage. Significant correlations (R(2)=0.75-0.83, p<0.05) between numbers of resistant bacteria and antibiotic concentrations were observed in raw influent and final effluent. No significance (R(2)=0.15, p>0.05) was found between tet genes (tetO and tetW) with concentration of tetracyclines identified in wastewater, while a significant correlation (R(2)=0.97, p<0.05) was observed for sulI gene and total concentration of sulfonamides. Correlations of the quantities of antibiotic resistance genes and antibiotic resistant bacteria with corresponding concentrations of antibiotics in sludge samples were found to be considerably weak (R(2)=0.003-0.07).201222369865
7228180.9642Proliferation of antibiotic resistance genes in coastal recirculating mariculture system. The abuse of antibiotics has caused the propagation of antibiotic resistance genes (ARGs) in aquaculture systems. Although the recirculating systems have been considered as a promising approach for preventing the coastal water pollution of antibiotics and ARG, rare information is available on the distribution and proliferation of ARGs in the recirculating mariculture system. This study firstly investigated the proliferation of ARGs in coastal recirculating mariculture systems. Ten subtypes of ARGs including tet (tetB, tetG, tetX), sul (sul1, sul2), qnr (qnrA, qnrB, qnrS), and erm (ermF, ermT) were detected. The absolute abundances of the ARGs detected in the mariculture farm were more than 1 × 10(4) copies/mL. The sulfonamide resistance genes (sul1 and sul2) were the most abundant ARGs with the abundance of 3.5 × 10(7)-6.5 × 10(10) copies/mL. No obvious correlation existed between the antibiotics and ARGs. Some bacteria were positively correlated with two or more ARGs to indicate the occurrence of multidrug resistance. The fluidized-bed biofilter for wastewater treatment in the recirculating system was the main breeding ground for ARGs while the UV sterilization process could reduce the ARGs. The highest flux of ARGs (6.5 × 10(21) copies/d) indicated that the discharge of feces and residual baits was the main gateway for ARGs in the recirculating mariculture system to enter the environments.201930826609
7159190.9642Profiles and natural drivers of antibiotic resistome in multiple environmental media in penguin-colonized area in Antarctica. Profiles and driving mechanisms of antibiotic resistome in the polar region are important for exploring the natural evolution of antibiotic resistance genes (ARGs). Here, we evaluated the profiles of antibiotic resistome in multiple media on Inexpressible Island, Terra Nova Bay, Antarctica. Average concentrations of ARGs in intracellular DNA (iARGs) among water (3.98 × 10(6) copies/L), soil (3.41 × 10(7) copies/kg), and penguin guano (7.04 × 10(7) copies/kg) were higher than those of ARGs in extracellular DNA (eARGs) among water (1.99 × 10(4) copies/L), soil (1.75 × 10(6) copies/kg), and penguin guano (8.02 × 10(6) copies/kg). It was indicated that the transmission of ARGs across different media occurs with around 77.8% of iARGs from soil and 86.7% of iARGs from penguins observed in water, and 80.7% of iARGs and 56.7% of eARGs from penguins found in soil. Annual inputs of ARGs from Adélie penguins on Inexpressible Island have increased since 1983. Bacitracin, multidrug, and aminoglycoside resistance genes were the main ARGs among water, soil, and penguin guano. Primary medium-risk ARGs associated with human pathogenic bacteria were multidrug resistance genes, and main low-risk ARGs associated with mobile genetic elements (MGEs) were aminoglycoside resistance genes. Antibiotic-resistant bacteria (ARB) from soil and penguins were more phylogenetically related to aquatic antibiotic-resistant mesophiles than aquatic antibiotic-resistant psychrophiles. MGEs, ARB, bacterial diversities, antibiotics, and metals could explain total ARGs between water and soil. Intracellular MGEs were the most significant in-situ driver of iARGs in water, reflecting that horizontal gene transfer could facilitate the spread of ARGs in water. Penguins were important ex-situ drivers of environmental antibiotic resistome, which was linked with risky ARGs between water and soil. These findings highlight the major roles of natural drivers (e.g., MGEs and penguins) in shaping environmental antibiotic resistome in polar areas, improving our understanding of the evolution of environmental microbiome.202540166126