# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3063 | 0 | 0.8692 | Antibiotic resistance among coliform and fecal coliform bacteria isolated from the freshwater mussel Hydridella menziesii. Freshwater mussels (Hydridella menziesii) collected from Lakes Rotoroa, Rotoiti, and Brunner, South Island, New Zealand, contained coliform and fecal coliform bacteria. The majority of these bacteria were resistant to one or more antibiotics, but none transferred streptomycin, tetracycline, or kanamycin resistance to an antibiotic-susceptible strain of Escherichia coli K-12. | 1976 | 779633 |
| 2995 | 1 | 0.8664 | Antibiotic resistance in bacteria from magpies (Pica pica) and rabbits (Oryctolagus cuniculus) from west Wales. The prevalence of antibiotic-resistant bacteria in wild animal and bird populations is largely unknown, with little consistency among the few published reports. We therefore examined intestinal bacteria from magpies (Pica pica) and rabbits (Oryctolagus cuniculus) collected in rural west Wales. Escherichia coli isolates resistant to multiple antibiotics were grown from eight of 20 magpies trapped in spring, 1999 and one of 17 in spring, 2000; the most prevalent resistance trait among these isolates was to tetracycline, but resistances to ampicillin, chloramphenicol, kanamycin, sulphonamide, tetracycline and trimethoprim were also found. Tetracycline-resistant Enterococcus spp. were found in one of 20 magpies in 1999 and three of 17 in 2000. Only one resistant E. coli isolate was detected among gut bacteria from 13 rabbits, and this strain was resistant only to tetracycline. Differences in the prevalence of resistance between bacteria from rabbits and magpies may reflect differences in diet: rabbits graze field edges, whereas magpies are omnivorous and opportunistic. The resistance genes found in E. coli isolates from magpies mostly corresponded to those common among human isolates, but those conferring tetracycline resistance were unique. | 2001 | 11722546 |
| 2996 | 2 | 0.8575 | Presence and antimicrobial resistance profiles of Escherichia coli, Enterococcusspp. and Salmonellasp. in 12 species of Australian shorebirds and terns. Antibiotic resistance is an ongoing threat to both human and animal health. Migratory birds are a potential vector for the spread of novel pathogens and antibiotic resistance genes. To date, there has been no comprehensive study investigating the presence of antibiotic resistance (AMR) in the bacteria of Australian shorebirds or terns. In the current study, 1022 individual birds representing 12 species were sampled across three states of Australia (Victoria, South Australia, and Western Australia) and tested for the presence of phenotypically resistant strains of three bacteria with potential to be zoonotic pathogens; Escherichia coli, Enterococcusspp., and Salmonellasp. In total, 206 E. coli, 266 Enterococcusspp., and 20 Salmonellasp. isolates were recovered, with AMR detected in 42% of E. coli, 85% of Enterococcusspp., and 10% of Salmonellasp. Phenotypic resistance was commonly detected to erythromycin (79% of Enterococcusspp.), ciprofloxacin (31% of Enterococcusspp.) and streptomycin (21% of E. coli). Resident birds were more likely to carry AMR bacteria than migratory birds (p ≤ .001). Bacteria isolated from shorebirds and terns are commonly resistant to at least one antibiotic, suggesting that wild bird populations serve as a potential reservoir and vector for AMR bacteria. However, globally emerging phenotypes of multidrug-resistant bacteria were not detected in Australian shorebirds. This study provides baseline data of the carriage of AMR bacteria in Australian shorebirds and terns. | 2022 | 35460193 |
| 1227 | 3 | 0.8560 | Antibiotic resistance among coliform bacteria isolated from carcasses of commercially slaughtered chickens. A total of 322 coliform bacteria Escherichia coli, Enterobacter spp., Citrobacter spp., Klebsiella spp. and Serratia spp., were isolated from 50 carcasses of commercially slaughtered chickens. Their resistance to ampicillin, tetracycline, gentamicin, chloramphenicol, cephalotine, cotrimoxazole, nalidixic acid and nitrofurantoin, were determined. The most commonly found resistance was to tetracycline followed by cephalotine, cotrimoxazole and nalidixic acid. A large percentage of E. coli (41%) and Klebsiella spp. (38%) showed multiple antibiotic resistance. | 1990 | 2282290 |
| 1382 | 4 | 0.8551 | Surveillance of antimicrobial-resistant Escherichia coli in Sheltered dogs in the Kanto Region of Japan. There is a lack of an established antimicrobial resistance (AMR) surveillance system in animal welfare centers. Therefore, the AMR prevalence in shelter dogs is rarely known. Herein, we conducted a survey in animal shelters in Chiba and Kanagawa prefectures, in the Kanto Region, Japan, to ascertain the AMR status of Escherichia coli (E. coli) prevalent in shelter dogs. E. coli was detected in the fecal samples of all 61 and 77 shelter dogs tested in Chiba and Kanagawa, respectively. The AMR was tested against 20 antibiotics. E. coli isolates derived from 16.4% and 26.0% of samples from Chiba and Kanagawa exhibited resistance to at least one antibiotic, respectively. E. coli in samples from Chiba and Kanagawa prefectures were commonly resistant to ampicillin, piperacillin, streptomycin, kanamycin, tetracycline, and nalidixic acid; that from the Kanagawa Prefecture to cefazolin, cefotaxime, aztreonam, ciprofloxacin, and levofloxacin and that from Chiba Prefecture to chloramphenicol and imipenem. Multidrug-resistant bacteria were detected in 18 dogs from both regions; β-lactamase genes (blaTEM, blaDHA-1, blaCTX-M-9 group CTX-M-14), quinolone-resistance protein genes (qnrB and qnrS), and mutations in quinolone-resistance-determining regions (gyrA and parC) were detected. These results could partially represent the AMR data in shelter dogs in the Kanto Region of Japan. | 2022 | 35031646 |
| 5442 | 5 | 0.8499 | Prevalence, Antimicrobial Susceptibility and Resistance Gene Detection in Bacteria Isolated from Goldfish and Tiger Barb from Ornamental Fish Farms of Tamil Nadu. This study aims to determine the antimicrobial resistance (AMR) pattern in freshwater ornamental cyprinids, such as Goldfish and Tiger barb. Molecular characterization of bacterial isolates confirmed the presence of 7 bacterial isolates in Goldfish and 6 in Tiger barb. Antimicrobial susceptibility test using 36 antibiotics revealed a higher resistance pattern for bacitracin, rifampicin, trimethoprim, cefalexin, ampicillin, amoxicillin, nalidixic acid and nitrofurantoin. Sulphafurazole, norfloxacin and ciprofloxacin were effective against all the bacterial isolates derived from Goldfish and Tiger barb. Most bacterial isolates exhibited > 0.2 multi-drug resistance index (MDR), indicating the severity of antibiotic use in the culture system. The finding of the present study suggests that ornamental fish may act as the reservoir of MDR bacteria and dissemination of resistance genes to clinical and human commensal bacteria through horizontal gene transfer. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12088-022-01023-y. | 2022 | 35974915 |
| 1244 | 6 | 0.8494 | Identification of antibiotic resistance genes in Escherichia coli from subclinical mastitis milk in dairy cows and goats, East Java Province. Antibiotics are still used to treat mastitis in dairy cows in Indonesia. This study aimed to analyse antibiotic resistance genes in Escherichia coli (E. coli) from subclinical mastitis milk in East Java Province, Indonesia. The samples consisted of subclinical mastitis milk from cows and goats. A total of 592-quarter cow's milk and 71 goat's milk samples from both halves of the udder were collected from 67 farms in Lumajang, Banyuwangi, Malang, Sidoarjo, Jember, Pasuruan, Probolinggo, and Mojokerto. Subclinical mastitis samples were screened using the California mastitis test (CMT). E. coli was identified by phenotypic and genotypic methods. E. coli was confirmed with a primer specific to the polymerase chain reaction (PCR) technique. Gene resistance of E. coli was tested using the multiplex-PCR (mPCR) technique with primers encoding the genes temoneira enzyme (TEM), oxacillinase (OXA), sulfhydryl variable (SHV), and cefotaximase-munich IV (CTX-M IV). These genes were chosen because mastitis treatment generally uses oxacilline and β-lactam antibiotics. All data obtained were analysed descriptively. The results show that six isolates of E. coli (46.15%) carried a single resistance gene (TEM or SHV) and two isolates (33.33%) were confirmed as multiple drug-resistant organisms (MDROs) (TEM and SHV). The resistance genes were found in samples originating from Blitar, Banyuwangi, Lumajang, and Pasuruan Regencies. This research implies that antibiotic-resistance genes found in E. coli on certain farms are dangerous and may allow gene transmission to other bacteria that make treatment for mastitis or other bacterial infections ineffective. | 2024 | 38550619 |
| 826 | 7 | 0.8492 | Sequence identity with type VIII and association with IS176 of type IIIc dihydrofolate reductase from Shigella sonnei. An uncommon dihydrofolate reductase (DHFR), type IIIc, was coded for by Shigella sonnei that harbors plasmid pBH700 and that was isolated in North Carolina. The trimethoprim resistance gene carried on pBH700 was subcloned and sequenced. The nucleotide sequence of the gene encoding type IIIc DHFR was identical to the gene encoding type VIII DHFR. The type IIIc amino acid sequence was approximately 50% similar to those of DHFRs commonly found in enteric bacteria. Furthermore, this gene was flanked by IS176 (IS26), an insertion sequence usually associated with those of aminoglycoside resistance genes. The gene for type IIIc DHFR was located by hybridization within a 1,993-bp PstI fragment in each of eight conjugative plasmids from geographically diverse strains of S. sonnei. Each plasmid also conferred resistance to ampicillin, streptomycin, and sulfamethoxazole and belonged to incompatibility group M. Plasmids carrying this new trimethoprim resistance gene, which is uniquely associated with IS176, have disseminated throughout the United States. | 1995 | 7695291 |
| 2602 | 8 | 0.8487 | Human-wildlife ecological interactions shape Escherichia coli population and resistome in two sloth species from Costa Rica. Antimicrobial resistance (AMR) is a global health concern, with natural ecosystems acting as reservoirs for resistant bacteria. We assessed AMR in Escherichia coli isolated from two wild sloth species in Costa Rica. E. coli from two-toed sloths (Choloepus hoffmanni), a species with greater mobility and a broader diet, showed resistance to sulfamethoxazole (25%), tetracycline (9.4%), chloramphenicol (6.3%), ampicillin (6.3%), trimethoprim (3.1%), and ciprofloxacin (3.1%), which correlated with the presence of resistance genes (tet(A), tet(B), bla(TEM-1B), aph(3")-Id, aph(6)-Id, sul2, qnrS1, floR and dfrA8). E. coli from three-toed sloths (Bradypus variegatus) showed 40% resistance to sulfamethoxazole despite no detected resistance genes, suggesting a regional effect. A significant negative correlation was found between AMR and distance to human-populated areas, highlighting anthropogenic impact on AMR spread. Notably, E. coli isolates from remote areas with no human impact indicate that some ecosystems remain unaffected. Preserving these areas is essential to protect environmental and public health. | 2025 | 40610649 |
| 1226 | 9 | 0.8484 | Multi-drug resistant gram-negative enteric bacteria isolated from flies at Chengdu Airport, China. We collected flies from Chengdu Shuangliu International Airport to examine for the presence of bacteria and to determine the sensitivity patterns of those bacteria. A total of 1,228 flies were collected from 6 sites around Chengdu Shuangliu International Airport from April to September 2011. The predominant species was Chrysomya megacephala (n=276, 22.5%). Antimicrobial-resistant gram-negative enteric bacteria (n=48) were isolated from flies using MacConkey agar supplemented with cephalothin (20 microg/ml). These were identified as Escherichia coli (n=37), Klebsiella pneumoniae (n=6), Pseudomonas aeruginosa (n=3) and Aeromonas hydrophila (n=2). All isolated bacteria were tested for resistance to 21 commonly used antimicrobials: amoxicillin (100%), ticarcillin (100%), cephalothin (100%), cefuroxime (100%), ceftazidime 1 (93.8%), piperacillin (93.8%), cefotaxime (89.6%), ticarcillin-clavulanate (81.3%), trimethoprim-sulfamethoxazole (62.5%), ciprofloxacin (54.2%), gentamicin (45.8%), cefepime (39.6%), tobramycin (39.6%), ceftazidime (22.9%), cefoxitin (16.7%), amikacin (16.7%), netilmicin (14.6%), amoxicillin-clavulanate (6.3%) and piperacillin-tazobactam (2.1%). No resistance to meropenem or imipenem was observed. Antibiotic resistance genes among the isolated bacteria were analyzed for by polymerase chain reaction. Thirty of the 48 bacteria with resistance (62.5%) possessed the blaTEM gene. | 2013 | 24450236 |
| 1364 | 10 | 0.8484 | Antimicrobial resistance patterns of Shiga toxin-producing Escherichia coli O157:H7 and O157:H7- from different origins. Shiga toxin-producing Escherichia coli (STEC) serotypes including O157:H7 (n = 129) from dairy cows, cull dairy cow feces, cider, salami, human feces, ground beef, bulk tank milk, bovine feces, and lettuce; and O157:H7- (n = 24) isolated from bovine dairy and bovine feedlot cows were evaluated for antimicrobial resistance against 26 antimicrobials and the presence of antimicrobial resistance genes (tetA, tetB, tetC, tetD, tetE, tetG, floR, cmlA, strA, strB, sulI, sulII, and ampC). All E. coli exhibited resistance to five or more antimicrobial agents, and the majority of isolates carried one or more target antimicrobial resistance gene(s) in different combinations. The majority of E. coli showed resistance to ampicillin, aztreonam, cefaclor, cephalothin, cinoxacin, and nalidixic acid, and all isolates were susceptible to chloramphenicol and florfenicol. Many STEC O157:H7 and O157:H7-isolates were susceptible to amikacin, carbenicillin, ceftriaxone, cefuroxime, ciprofloxacin, fosfomycin, moxalactam, norfloxacin, streptomycin, tobramycin, trimethoprim, and tetracycline. The majority of STEC O157:H7 (79.8%) and O157:H7- (91.7%) carried one or more antimicrobial resistance gene(s) regardless of whether phenotypically resistant or susceptible. Four tetracycline resistant STEC O157:H7 isolates carried both tetA and tetC. Other tetracycline resistance genes (tetB, tetD, tetE, and tetG) were not detected in any of the isolates. Among nine streptomycin resistant STEC O157:H7 isolates, eight carried strA-strB along with aadA, whereas the other isolate carried aadA alone. However, the majority of tetracycline and streptomycin susceptible STEC isolates also carried tetA and aadA genes, respectively. Most ampicillin resistant E. coli of both serotypes carried ampC genes. Among sulfonamide resistance genes, sulII was detected only in STEC O157:H7 (4 of 80 sulfonamide-resistant isolates) and sulI was detected in O157:H7- (1 of 16 sulfonamide resistant isolates). The emergence and dissemination of multidrug resistance in STEC can serve as a reservoir for different antimicrobial resistance genes. Dissemination of antimicrobial resistance genes to commensal and pathogenic bacteria could occur through any one of the horizontal gene transfer mechanisms adopted by the bacteria. | 2007 | 17536933 |
| 1324 | 11 | 0.8484 | Molecular characterization of antimicrobial resistance in enterococci and Escherichia coli isolates from European wild rabbit (Oryctolagus cuniculus). A total of 44 Escherichia coli and 64 enterococci recovered from 77 intestinal samples of wild European rabbits in Portugal were analyzed for resistance to antimicrobial agents. Resistance in E. coli isolates was observed for ampicillin, tetracycline, sulfamethoxazole/trimethoprim, streptomycin, gentamicin, tobramycin, nalidixic acid, ciprofloxacin and chloramphenicol. None of the E. coli isolates produced extended-spectrum beta-lactamases (ESBLs). The bla(TEM), aadA, aac(3)-II, tet(A) and/or tet(B), and the catA genes were demonstrated in all ampicillin, streptomycin, gentamicin, tetracycline, and chloramphenicol-resistant isolates respectively, and the sul1 and/or sul2 and/or sul3 genes in 4 of 5 sulfamethoxazole/trimethoprim resistant isolates. Of the enterococcal isolates, Enterococcus faecalis was the most prevalent detected species (39 isolates), followed by E. faecium (21 isolates) and E. hirae (4 isolates). More than one-fourth (29.7%) of the isolates were resistant to tetracycline; 20.3% were resistant to erythromycin, 14.1% were resistant to ciprofloxacin and 10.9% were resistant to high-level-kanamycin. Lower level of resistance (<10%) was detected for ampicillin, quinupristin/dalfopristin and high-level-gentamicin, -streptomycin. No vancomycin-resistance was detected in the enterococci isolates. Resistance genes detected included aac(6')-aph(2''), ant(6)-Ia, tet(M) and/or tet(L) in all gentamicin, streptomycin and tetracycline-resistant isolates respectively. The aph(3')-IIIa gene was detected in 6 of 7 kanamycin-resistant isolates, the erm(B) gene in 11 of 13 erythromycin-resistant isolates and the vat(D) gene in the quinupristin/dalfopristin-resistant E. faecium isolate. This survey showed that faecal bacteria such as E. coli and enterococci of wild rabbits could be a reservoir of antimicrobial resistance genes. | 2010 | 20624632 |
| 1253 | 12 | 0.8482 | Phenotypic and Genotypic Assessment of Antibiotic Resistance and Genotyping of vacA, cagA, iceA, oipA, cagE, and babA2 Alleles of Helicobacter pylori Bacteria Isolated from Raw Meat. BACKGROUND: Foodstuffs with animal origins, particularly meat, are likely reservoirs of Helicobacter pylori. PURPOSE: An existing survey was accompanied to assess phenotypic and genotypic profiles of antibiotic resistance and genotyping of vacA, cagA, cagE, iceA, oipA, and babA2 alleles amongst the H. pylori bacteria recovered from raw meat. METHODS: Six-hundred raw meat samples were collected and cultured. H. pylori isolates were tested using disk diffusion and PCR identification of antibiotic resistance genes and genotyping. RESULTS: Fifty-two out of 600 (8.66%) raw meat samples were contaminated with H. pylori. Raw ovine meat (13.07%) had the uppermost contamination. H. pylori bacteria displayed the uppermost incidence of resistance toward tetracycline (82.69%), erythromycin (80.76%), trimethoprim (65.38%), levofloxacin (63.46%), and amoxicillin (63.46%). All H. pylori bacteria had at least resistance toward one antibiotic, even though incidence of resistance toward more than eight antibiotics was 28.84%. Total distribution of rdxA, pbp1A, gyrA, and cla antibiotic resistance genes were 59.61%, 51.92%, 69.23%, and 65.38%, respectively. VacA s1a (84.61%), s2 (76.92%), m1a (50%), m2 (39.13%), iceA1 (38.46%), and cagA (55.76%) were the most generally perceived alleles. S1am1a (63.46%), s2m1a (53.84%), s1am2 (51.92%), and s2m2 (42.30%) were the most generally perceived genotyping patterns. Frequency of cagA-, oipA-, and babA2- genotypes were 44.23%, 73.07%, and 80.76%, respectively. A total of 196 combined genotyping patterns were also perceived. CONCLUSION: The role of raw meat, particularly ovine meat, in transmission of virulent and resistant H. pylori bacteria was determined. VacA and cagA genotypes had the higher incidence. CagE-, babA2-, and oipA- H. pylori bacteria had the higher distribution. Supplementary surveys are compulsory to originate momentous relations between distribution of genotypes, antibiotic resistance, and antibiotic resistance genes. | 2020 | 32099418 |
| 1367 | 13 | 0.8479 | Azorean wild rabbits as reservoirs of antimicrobial resistant Escherichia coli. Antibiotic resistance in bacteria is an increasing problem that is not only constrained to the clinical setting but also to other environments that can lodge antibiotic resistant bacteria and therefore they may serve as reservoirs of genetic determinants of antibiotic resistance. One hundred and thirty-six faecal samples from European wild rabbits (Oryctolagus cuniculus algirus) were collected on São Jorge Island in Azores Archipelago, and analysed for Escherichia coli isolates. Seventy-seven isolates (56.6%) were recovered and studied for antimicrobial resistance, one isolate per positive sample. Thirteen (16.9%), 19 (24.7%), 25 (32.4%) and 20 (26%) isolates were ascribed to A, B1, B2 and D phylogenetic groups, respectively, by specific primer polymerase chain reaction. Different E. coli isolates were found to be resistant to ampicillin (16.9%), tetracycline (1.3%), streptomycin (42.9%), sulfamethoxazole-trimethoprim (1.3%), amikacin (1.3%), tobramycin (2.6%) and nalidixic acid (1.3%). Additionally, the blaTEM, tetA, strA/strB, aadA, sul1, intI, intI2 and qacEΔ+sul1 genes were found in most resistant isolates. This study showed that E. coli from the intestinal tract of wild rabbits from Azores Archipelago are resistant to widely prescribed antibiotics in medicine and they constitute a reservoir of antimicrobial resistant genes, which may play a significant role in the spread of antimicrobial resistance. Therefore, antibiotic resistant E. coli from Azorean wild rabbits may represent an ecological and public health problem. | 2014 | 25246166 |
| 1308 | 14 | 0.8479 | Antimicrobial resistance genes and virulence gene encoding intimin in Escherichia coli and Enterococcus isolated from wild rabbits (Oryctolagus cuniculus) in Tunisia. The spread of antimicrobial-resistant bacteria in wildlife must be viewed as a major concern with serious implications for human and animal health. Escherichia coli and enterococcal isolates were recovered from faecal samples of 49 wild rabbits (Oryctolagus cuniculus) on specific media and were characterised using biochemical and molecular tests. For all isolates, antimicrobial susceptibility testing was performed, and resistance genes were detected by PCR. Molecular typing of isolates was carried out by pulsed-field gel-electrophoresis, and E. coli strains were also tested for the presence of intimin (eae) gene characteristic of rabbit enteropathogenic E. coli. A total of 34 E. coli and 36 enterococci [E. hirae (52.8%) and E. faecalis (47.2%)] were obtained. For E. coli, resistance to tetracycline (94%), streptomycin (62%), ciprofloxacin (47%), trimethoprim-sulphamethoxazole (35%) and chloramphenicol (6%) was observed. Resistance to third-generation cephalosporins was detected in one E. coli strain that carried the bla(CMY-2) and bla(TEM-1) genes. Class 1 integrons were detected in eight isolates. For enterococci, resistance to tetracycline (63.9%), erythromycin (30.5%), streptomycin (18.2%), and chloramphenicol (5.5%) was detected. The tet(M)+tet(L), erm(B) and ant (6)-Ia genes were identified in thirteen, seven and three resistant Enterococcus strains, respectively. Molecular typing showed a high diversity among our strains. Wild rabbits could represent a reservoir of E. coli, and enterococci carrying antimicrobial resistance genes and E. coli additionally carrying the eae gene of enteropathogenic pathotypes could both contaminate the environment. our finding seems to represent the first report of eae-positive E. coli in wild rabbits. | 2019 | 31842593 |
| 1323 | 15 | 0.8478 | Detection of antibiotic resistant enterococci and Escherichia coli in free range Iberian Lynx (Lynx pardinus). Thirty fecal samples from wild specimens of Iberian lynx were collected and analyzed for Enterococcus spp. (27 isolates) and Escherichia coli (18 isolates) recovery. The 45 isolates obtained were tested for antimicrobial resistance, molecular mechanisms of resistance, and presence of virulence genes. Among the enterococci, Enterococcus faecium and Enterococcus hirae were the most prevalent species (11 isolates each), followed by Enterococcus faecalis (5 isolates). High percentages of resistance to tetracycline and erythromycin (33% and 30%, respectively) were detected among enterococcal isolates. The tet(M) and/or tet(L), erm(B), aac(6')-Ie-aph(2″)-Ia, ant(6)-Ia, or aph(3')-IIIa genes were detected among resistant enterococci. Virulence genes were detected in one E. faecalis isolate (cpd, cylB, and cylL) and one E. hirae isolate (cylL). High percentages of resistance were detected in E. coli isolates to tetracycline (33%), streptomycin (28%), nalidixic acid (28%), and sulfamethoxazole-trimethoprim (SXT, 22%). Additionally, the blaTEM, tet(A), aadA, cmlA, and different combinations of sul genes were detected among most ampicillin, tetracycline, streptomycin, chloramphenicol and SXT-resistant isolates, respectively. Two isolates contained a class 1 integron with the gene cassette arrays dfrA1 + aadA1 and dfrA12 + aadA2. The E. coli isolates were ascribed to phylo-groups A (n=5); B1 (n=4); B2 (n=6), and D (n=3), with the virulence gene fimA present in all E. coli isolates. This study found resistance genes in wild specimens of Iberian lynx. Thus, it is important to notice that multiresistant bacteria have reached species as rare and completely non-synanthropic as the Iberian lynx. Furthermore, the susceptibility of this endangered species to bacterial infection may be affected by the presence of these virulence and resistance genes. | 2013 | 23588135 |
| 5448 | 16 | 0.8478 | Virulence gene profiles, biofilm formation, and antimicrobial resistance of Vibrio cholerae non-O1/non-O139 bacteria isolated from West Bengal, India. Vibrio cholerae is the causative agent of acute dehydrating diarrhoeal disease cholera. Among 71 V. cholerae non-O1/non-O139 isolates, all yielded negative results for ctxA, ctxB and tcpA genes in PCR assay. Few strains were positive for stn (28.38%), and ompU (31.08%) genes. While all isolates were negative for ace gene, only two were positive for zot gene. All strains expressed toxR and toxT genes. It was also found that all isolates were slime-producer and these were capable of forming moderate to high biofilm. Biofilm formation was controlled positively by the transcriptional regulators VpsR and VpsT and was regulated negatively by HapR, as well as CRP regulatory complex. These isolates were resistant to ampicillin, furazolidone, doxycycline, vancomycin, erythromycin, while these were susceptible to ciprofloxacin, gentamycin, kanamycin, polymixin B, norfloxacin, chloramphenicol, sulphamethoxazole-trimethoprim, tetracycline, nalidixic acid, and streptomycin. Indeed, 69.01% isolates were resistant to multiple antibiotics (MAR: resistance to 3 or more antibiotics). Treatment protocols for cholera patients should be based on local antibiogram data. | 2018 | 30582054 |
| 5446 | 17 | 0.8476 | Antimicrobial sensitivity trends and virulence genes in Shigella spp. from the Oceania region. Shigella is a common cause of diarrhoea in Papua New Guinea (PNG) and other Oceania countries. However, little is known about the strains causing infection. Archived Shigella isolates (n = 72) were obtained from research laboratories in PNG and reference laboratories in Australia. Shigella virulence genes were detected by PCR, and antimicrobial susceptibility was determined by disk diffusion. The ipaH virulence gene was present in all 72 isolates. The prevalence of other virulence genes was variable, with ial, invE, ipaBCD, sen/ospD3 and virF present in 60% of isolates and set1A and set1B genes present in 42% of isolates. Most S. flexneri isolates contained genes encoding enterotoxin 1 and/or enterotoxin 2. Resistance to antibiotics was common, with 51/72 isolates resistant to 2-4 antimicrobials. A greater proportion of bacteria isolated since 2010 (relative to pre-2010 isolates) were resistant to commonly used antibiotics such as ampicillin, chloramphenicol, tetracycline, and trimethoprim-sulfamethoxazole; suggesting that antimicrobial resistance (AMR) in Shigella is increasing over time in the Oceania region. There is a need for improved knowledge regarding Shigella circulation in the Oceania region and further monitoring of AMR patterns. | 2018 | 29906636 |
| 1383 | 18 | 0.8474 | Detection of Tetracycline Resistance Genes in European Hedgehogs (Erinaceus europaeus) and Crested Porcupines (Hystrix cristata). Relatively little is known regarding the role of wildlife in the development of antibiotic resistance. Our aim was to assess the presence of the tetracycline resistance genes, tet(A), tet(B), tet(C), tet(D), tet(E), tet(G), tet(K), tet(L), tet(M), tet(O), tet(P), tet(Q), tet(S), and tet(X), in tissue samples of 14 hedgehogs (Erinaceus europaeus) and 15 crested porcupines (Hystrix cristata) using PCR assays. One or more tet genes were found in all but three hedgehogs and one crested porcupine. Of the 14 tetracycline resistance genes investigated, 13 were found in at least one sample; tet(G) was not detected. We confirmed the potential role of wild animals as bioindicators, reservoirs, or vectors of antibiotic-resistant bacteria in the environment. | 2020 | 31526277 |
| 1223 | 19 | 0.8474 | Characterization of Escherichia coli virulence genes, pathotypes and antibiotic resistance properties in diarrheic calves in Iran. BACKGROUND: Calf diarrhea is a major economic concern in bovine industry all around the world. This study was carried out in order to investigate distribution of virulence genes, pathotypes, serogroups and antibiotic resistance properties of Escherichia coli isolated from diarrheic calves. RESULTS: Totally, 76.45% of 824 diarrheic fecal samples collected from Isfahan, Chaharmahal, Fars and Khuzestan provinces, Iran were positive for E. coli and all of them were also positive for cnf2, hlyA, cdtIII, f17c, lt, st, stx1, eae, ehly, stx2 and cnf1 virulence genes. Chaharmahal had the highest prevalence of STEC (84.61%), while Isfahan had the lowest (71.95%). E. coli serogroups had the highest frequency in 1-7 days old calves and winter season. Distribution of ETEC, EHEC, AEEC and NTEC pathotypes among E. coli isolates were 28.41%, 5.07%, 29.52% and 3.49%, respectively. Statistical analyses were significant for presence of bacteria between various seasons and ages. All isolates had the high resistance to penicillin (100%), streptomycin (98.25%) and tetracycline (98.09%) antibiotics. The most commonly detected resistance genes were aadA1, sul1, aac[3]-IV, CITM, and dfrA1. The most prevalent serogroup among STEC was O26. CONCLUSIONS: Our findings should raise awareness about antibiotic resistance in diarrheic calves in Iran. Clinicians should exercise caution when prescribing antibiotics. | 2014 | 25052999 |