# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 345 | 0 | 0.9529 | Genetic redundancy, proximity, and functionality of lspA, the target of antibiotic TA, in the Myxococcus xanthus producer strain. We recently showed that type II signal peptidase (SPaseII) encoded by lspA is the target of an antibiotic called TA (myxovirescin), which is made by Myxococcus xanthus. SPaseII cleaves the signal peptide during bacterial lipoprotein processing. Bacteria typically contain one lspA gene; however, strikingly, the M. xanthus DK1622 genome contains four (lspA1 to lspA4). Since two of these genes, lspA3 and lspA4, are located in the giant TA biosynthetic gene cluster, we hypothesized they may play a role in TA resistance. To investigate the functions of the four M. xanthus lspA (lspA(Mx)) genes, we conducted sequence comparisons and found that they contained nearly all the conserved residues characteristic of SPaseII family members. Genetic studies found that an Escherichia coli ΔlspA mutation could be complemented by any of the lspA(Mx) genes in an lpp mutant background, but not in an E. coli lpp(+) background. Because Lpp is the most abundant E. coli lipoprotein, these results suggest the M. xanthus proteins do not function as efficiently as the host enzyme. In E. coli, overexpression of each of the LspA(Mx) proteins conferred TA and globomycin resistance, although LspA3 conferred the highest degree of resistance. In M. xanthus, each lspA(Mx) gene could be deleted and was therefore dispensable for growth. However, lspA3 or lspA4 deletion mutants each exhibited a tan phase variation bias, which likely accounts for their reduced-swarming and delayed-development phenotypes. In summary, we propose that all four LspA(Mx) proteins function as SPaseIIs and that LspA3 and LspA4 might also have roles in TA resistance and regulation, respectively. | 2014 | 24391051 |
| 518 | 1 | 0.9407 | Bacitracin and nisin resistance in Staphylococcus aureus: a novel pathway involving the BraS/BraR two-component system (SA2417/SA2418) and both the BraD/BraE and VraD/VraE ABC transporters. Two-component systems (TCSs) are key regulatory pathways allowing bacteria to adapt their genetic expression to environmental changes. Bacitracin, a cyclic dodecylpeptide antibiotic, binds to undecaprenyl pyrophosphate, the lipid carrier for cell wall precursors, effectively inhibiting peptidoglycan biosynthesis. We have identified a novel and previously uncharacterized TCS in the major human pathogen Staphylococcus aureus that we show to be essential for bacitracin and nisin resistance: the BraS/BraR system (Bacitracin resistance associated; SA2417/SA2418). The braRS genes are located immediately upstream from genes encoding an ABC transporter, accordingly designated BraDE. We have shown that the BraSR/BraDE module is a key bacitracin and nisin resistance determinant in S. aureus. In the presence of low antibiotic concentrations, BraSR activate transcription of two operons encoding ABC transporters: braDE and vraDE. We identified a highly conserved imperfect palindromic sequence upstream from the braDE and vraDE promoter sequences, essential for their transcriptional activation by BraSR, suggesting it is the likely BraR binding site. We demonstrated that the two ABC transporters play distinct and original roles in antibiotic resistance: BraDE is involved in bacitracin sensing and signalling through BraSR, whereas VraDE acts specifically as a detoxification module and is sufficient to confer bacitracin and nisin resistance when produced on its own. We show that these processes require functional BraD and VraD nucleotide-binding domain proteins, and that the large extracellular loop of VraE confers its specificity in bacitracin resistance. This is the first example of a TCS associated with two ABC transporters playing separate roles in signal transduction and antibiotic resistance. | 2011 | 21696458 |
| 332 | 2 | 0.9404 | Analysis and Reconstitution of the Menaquinone Biosynthesis Pathway in Lactiplantibacillus plantarum and Lentilactibacillus buchneri. In Lactococcus lactis and some other lactic acid bacteria, respiratory metabolism has been reported upon supplementation with only heme, leading to enhanced biomass formation, reduced acidification, resistance to oxygen, and improved long-term storage. Genes encoding a complete respiratory chain with all components were found in genomes of L. lactis and Leuconostoc mesenteroides, but menaquinone biosynthesis was found to be incomplete in Lactobacillaceae (except L. mesenteroides). Lactiplantibacillus plantarum has only two genes (menA, menG) encoding enzymes in the biosynthetic pathway (out of eight), and Lentilactobacillus buchneri has only four (menA, menB, menE, and menG). We constructed knock-out strains of L. lactis defective in menA, menB, menE, and menG (encoding the last steps in the pathway) and complemented these by expression of the extant genes from Lactipl. plantarum and Lent. buchneri to verify their functionality. Three of the Lactipl. plantarum biosynthesis genes, lpmenA1, lpmenG1, and lpmenG2, as well as lbmenB and lbmenG from Lent. buchneri, reconstituted menaquinone production and respiratory growth in the deficient L. lactis strains when supplemented with heme. We then reconstituted the incomplete menaquinone biosynthesis pathway in Lactipl. plantarum by expressing six genes from L. lactis homologous to the missing genes in a synthetic operon with two inducible promoters. Higher biomass formation was observed in Lactipl. plantarum carrying this operon, with an OD(600) increase from 3.0 to 5.0 upon induction. | 2021 | 34361912 |
| 616 | 3 | 0.9397 | Identification of lipoteichoic acid as a ligand for draper in the phagocytosis of Staphylococcus aureus by Drosophila hemocytes. Phagocytosis is central to cellular immunity against bacterial infections. As in mammals, both opsonin-dependent and -independent mechanisms of phagocytosis seemingly exist in Drosophila. Although candidate Drosophila receptors for phagocytosis have been reported, how they recognize bacteria, either directly or indirectly, remains to be elucidated. We searched for the Staphylococcus aureus genes required for phagocytosis by Drosophila hemocytes in a screening of mutant strains with defects in the structure of the cell wall. The genes identified included ltaS, which encodes an enzyme responsible for the synthesis of lipoteichoic acid. ltaS-dependent phagocytosis of S. aureus required the receptor Draper but not Eater or Nimrod C1, and Draper-lacking flies showed reduced resistance to a septic infection of S. aureus without a change in a humoral immune response. Finally, lipoteichoic acid bound to the extracellular region of Draper. We propose that lipoteichoic acid serves as a ligand for Draper in the phagocytosis of S. aureus by Drosophila hemocytes and that the phagocytic elimination of invading bacteria is required for flies to survive the infection. | 2009 | 19890048 |
| 6349 | 4 | 0.9395 | High-level chromate resistance in Arthrobacter sp. strain FB24 requires previously uncharacterized accessory genes. BACKGROUND: The genome of Arthrobacter sp. strain FB24 contains a chromate resistance determinant (CRD), consisting of a cluster of 8 genes located on a 10.6 kb fragment of a 96 kb plasmid. The CRD includes chrA, which encodes a putative chromate efflux protein, and three genes with amino acid similarities to the amino and carboxy termini of ChrB, a putative regulatory protein. There are also three novel genes that have not been previously associated with chromate resistance in other bacteria; they encode an oxidoreductase (most similar to malate:quinone oxidoreductase), a functionally unknown protein with a WD40 repeat domain and a lipoprotein. To delineate the contribution of the CRD genes to the FB24 chromate [Cr(VI)] response, we evaluated the growth of mutant strains bearing regions of the CRD and transcript expression levels in response to Cr(VI) challenge. RESULTS: A chromate-sensitive mutant (strain D11) was generated by curing FB24 of its 96-kb plasmid. Elemental analysis indicated that chromate-exposed cells of strain D11 accumulated three times more chromium than strain FB24. Introduction of the CRD into strain D11 conferred chromate resistance comparable to wild-type levels, whereas deletion of specific regions of the CRD led to decreased resistance. Using real-time reverse transcriptase PCR, we show that expression of each gene within the CRD is specifically induced in response to chromate but not by lead, hydrogen peroxide or arsenate. Higher levels of chrA expression were achieved when the chrB orthologs and the WD40 repeat domain genes were present, suggesting their possible regulatory roles. CONCLUSION: Our findings indicate that chromate resistance in Arthrobacter sp. strain FB24 is due to chromate efflux through the ChrA transport protein. More importantly, new genes have been identified as having significant roles in chromate resistance. Collectively, the functional predictions of these additional genes suggest the involvement of a signal transduction system in the regulation of chromate efflux and warrants further study. | 2009 | 19758450 |
| 617 | 5 | 0.9394 | Lytic action of cloned pneumococcal phage lysis genes in Streptococcus pneumoniae. The genes hbl3, cpl1 and cpl7 coding for the pneumococcal phage lytic enzymes HBL3, CPL1 and CPL7, respectively, have been cloned into shuttle plasmids that can replicate in Streptococcus pneumoniae and Escherichia coli. All these genes were expressed in E. coli under the control of either the lytP promoter of the lytA gene, which codes for the major pneumococcal autolysin, or the promoter of the tetracycline-resistance gene (tetP). In contrast, cpl1 and cpl7 genes that code for lysozymes were expressed in pneumococcus only under the control of tetP, whereas the hbl3 gene that codes for an amidase can be expressed using either promoter. The phage lysozymes or amidase expressed in S. pneumoniae M31, a mutant deleted in the lytA gene coding for short chains, were placed under physiological control since these transformed bacteria grew as normal 'diplo' cells during the exponential phase and underwent autolysis only after long incubation at 37 degrees C. The lysis genes appear to be expressed constitutively in the transformed pneumococci, since sharply defined lysis of these cultures could be induced prematurely during the exponential phase of growth by addition of sodium deoxycholate. | 1993 | 8472929 |
| 328 | 6 | 0.9393 | Multiresistance genes of Rhizobium etli CFN42. Multidrug efflux pumps of bacteria are involved in the resistance to various antibiotics and toxic compounds. In Rhizobium etli, a mutualistic symbiont of Phaseolus vulgaris (bean), genes resembling multidrug efflux pump genes were identified and designated rmrA and rmrB. rmrA was obtained after the screening of transposon-generated fusions that are inducible by bean-root released flavonoids. The predicted gene products of rmrAB shared significant homology to membrane fusion and major facilitator proteins, respectively. Mutants of rmrA formed on average 40% less nodules in bean, while mutants of rmrA and rmrB had enhanced sensitivity to phytoalexins, flavonoids, and salicylic acid, compared with the wild-type strain. Multidrug resistance genes emrAB from Escherichia coli complemented an rmrA mutant from R. etli for resistance to high concentrations of naringenin. | 2000 | 10796024 |
| 612 | 7 | 0.9391 | Pathways and roles of wall teichoic acid glycosylation in Staphylococcus aureus. The thick peptidoglycan layers of Gram-positive bacteria are connected to polyanionic glycopolymers called wall teichoic acids (WTA). Pathogens such as Staphylococcus aureus, Listeria monocytogenes, or Enterococcus faecalis produce WTA with diverse, usually strain-specific structure. Extensive studies on S. aureus WTA mutants revealed important functions of WTA in cell division, growth, morphogenesis, resistance to antimicrobials, and interaction with host or phages. While most of the S. aureus WTA-biosynthetic genes have been identified it remained unclear for long how and why S. aureus glycosylates WTA with α- or β-linked N-acetylglucosamine (GlcNAc). Only recently the discovery of two WTA glycosyltransferases, TarM and TarS, yielded fundamental insights into the roles of S. aureus WTA glycosylation. Mutants lacking WTA GlcNAc are resistant towards most of the S. aureus phages and, surprisingly, TarS-mediated WTA β-O-GlcNAc modification is essential for β-lactam resistance in methicillin-resistant S. aureus. Notably, S. aureus WTA GlcNAc residues are major antigens and activate the complement system contributing to opsonophagocytosis. WTA glycosylation with a variety of sugars and corresponding glycosyltransferases were also identified in other Gram-positive bacteria, which paves the way for detailed investigations on the diverse roles of WTA modification with sugar residues. | 2014 | 24365646 |
| 542 | 8 | 0.9391 | Role of Yops and adhesins in resistance of Yersinia enterocolitica to phagocytosis. Yersinia enterocolitica is a pathogen endowed with two adhesins, Inv and YadA, and with the Ysc type III secretion system, which allows extracellular adherent bacteria to inject Yop effectors into the cytosol of animal target cells. We tested the influence of all of these virulence determinants on opsonic and nonopsonic phagocytosis by PU5-1.8 and J774 mouse macrophages, as well as by human polymorphonuclear leukocytes (PMNs). The adhesins contributed to phagocytosis in the absence of opsonins but not in the presence of opsonins. In agreement with previous results, YadA counteracted opsonization. In every instance, the Ysc-Yop system conferred a significant level of resistance to phagocytosis. Nonopsonized single-mutant bacteria lacking either YopE, -H, -T, or -O were phagocytosed significantly more by J774 cells and by PMNs. Opsonized bacteria were phagocytosed more than nonopsonized bacteria, and mutant bacteria lacking either YopH, -T, or -O were phagocytosed significantly more by J774 cells and by PMNs than were wild-type (WT) bacteria. Opsonized mutants lacking only YopE were phagocytosed significantly more than were WT bacteria by PMNs but not by J774 cells. Thus, YopH, -T, and -O were involved in all of the phagocytic processes studied here but YopE did not play a clear role in guarding against opsonic phagocytosis by J774. Mutants lacking YopP and YopM were, in every instance, as resistant as WT bacteria. Overexpression of YopE, -H, -T, or -O alone did not confer resistance to phagocytosis, although it affected the cytoskeleton. These results show that YopH, YopT, YopO, and, in some instances, YopE act synergistically to increase the resistance of Y. enterocolitica to phagocytosis by macrophages and PMNs. | 2002 | 12117925 |
| 658 | 9 | 0.9389 | Enterococcus faecalis constitutes an unusual bacterial model in lysozyme resistance. Lysozyme is an important and widespread compound of the host constitutive defense system, and it is assumed that Enterococcus faecalis is one of the few bacteria that are almost completely lysozyme resistant. On the basis of the sequence analysis of the whole genome of E. faecalis V583 strain, we identified two genes that are potentially involved in lysozyme resistance, EF_0783 and EF_1843. Protein products of these two genes share significant homology with Staphylococcus aureus peptidoglycan O-acetyltransferase (OatA) and Streptococcus pneumoniae N-acetylglucosamine deacetylase (PgdA), respectively. In order to determine whether EF_0783 and EF_1843 are involved in lysozyme resistance, we constructed their corresponding mutants and a double mutant. The DeltaEF_0783 mutant and DeltaEF_0783 DeltaEF_1843 double mutant were shown to be more sensitive to lysozyme than the parental E. faecalis JH2-2 strain and DeltaEF_1843 mutant were. However, compared to other bacteria, such as Listeria monocytogenes or S. pneumoniae, the tolerance of DeltaEF_0783 and DeltaEF_0783 DeltaEF_1843 mutants towards lysozyme remains very high. Peptidoglycan structure analysis showed that EF_0783 modifies the peptidoglycan by O acetylation of N-acetyl muramic acid, while the EF_1843 deletion has no obvious effect on peptidoglycan structure under the same conditions. Moreover, the EF_0783 and EF_1843 deletions seem to significantly affect the ability of E. faecalis to survive within murine macrophages. In all, while EF_0783 is currently involved in the lysozyme resistance of E. faecalis, peptidoglycan O acetylation and de-N-acetylation are not the main mechanisms conferring high levels of lysozyme resistance to E. faecalis. | 2007 | 17785473 |
| 582 | 10 | 0.9389 | Sulfane Sulfur Is a Strong Inducer of the Multiple Antibiotic Resistance Regulator MarR in Escherichia coli. Sulfane sulfur, including persulfide and polysulfide, is produced from the metabolism of sulfur-containing organic compounds or from sulfide oxidation. It is a normal cellular component, participating in signaling. In bacteria, it modifies gene regulators to activate the expression of genes involved in sulfur metabolism. However, to determine whether sulfane sulfur is a common signal in bacteria, additional evidence is required. The ubiquitous multiple antibiotic resistance regulator (MarR) family of regulators controls the expression of numerous genes, but the intrinsic inducers are often elusive. Recently, two MarR family members, Pseudomonas aeruginosa MexR and Staphylococcus aureus MgrA, have been reported to sense sulfane sulfur. Here, we report that Escherichia coli MarR, the prototypical member of the family, also senses sulfane sulfur to form one or two disulfide or trisulfide bonds between two dimers. Although the tetramer with two disulfide bonds does not bind to its target DNA, our results suggest that the tetramer with one disulfide bond does bind to its target DNA, with reduced affinity. An MarR-repressed mKate reporter is strongly induced by polysulfide in E. coli. Further investigation is needed to determine whether sulfane sulfur is a common signal of the family members, but three members sense cellular sulfane sulfur to turn on antibiotic resistance genes. The findings offer additional support for a general signaling role of sulfane sulfur in bacteria. | 2021 | 34829649 |
| 519 | 11 | 0.9389 | The Ruegeria pomeroyi acuI gene has a role in DMSP catabolism and resembles yhdH of E. coli and other bacteria in conferring resistance to acrylate. The Escherichia coli YhdH polypeptide is in the MDR012 sub-group of medium chain reductase/dehydrogenases, but its biological function was unknown and no phenotypes of YhdH(-) mutants had been described. We found that an E. coli strain with an insertional mutation in yhdH was hyper-sensitive to inhibitory effects of acrylate, and, to a lesser extent, to those of 3-hydroxypropionate. Close homologues of YhdH occur in many Bacterial taxa and at least two animals. The acrylate sensitivity of YhdH(-) mutants was corrected by the corresponding, cloned homologues from several bacteria. One such homologue is acuI, which has a role in acrylate degradation in marine bacteria that catabolise dimethylsulfoniopropionate (DMSP) an abundant anti-stress compound made by marine phytoplankton. The acuI genes of such bacteria are often linked to ddd genes that encode enzymes that cleave DMSP into acrylate plus dimethyl sulfide (DMS), even though these are in different polypeptide families, in unrelated bacteria. Furthermore, most strains of Roseobacters, a clade of abundant marine bacteria, cleave DMSP into acrylate plus DMS, and can also demethylate it, using DMSP demethylase. In most Roseobacters, the corresponding gene, dmdA, lies immediately upstream of acuI and in the model Roseobacter strain Ruegeria pomeroyi DSS-3, dmdA-acuI were co-regulated in response to the co-inducer, acrylate. These observations, together with findings by others that AcuI has acryloyl-CoA reductase activity, lead us to suggest that YdhH/AcuI enzymes protect cells against damaging effects of intracellular acryloyl-CoA, formed endogenously, and/or via catabolising exogenous acrylate. To provide "added protection" for bacteria that form acrylate from DMSP, acuI was recruited into clusters of genes involved in this conversion and, in the case of acuI and dmdA in the Roseobacters, their co-expression may underpin an interaction between the two routes of DMSP catabolism, whereby the acrylate product of DMSP lyases is a co-inducer for the demethylation pathway. | 2012 | 22563425 |
| 6077 | 12 | 0.9389 | Brytella acorum gen. nov., sp. nov., a novel acetic acid bacterium from sour beverages. Polyphasic taxonomic and comparative genomic analyses revealed that a series of lambic beer isolates including strain LMG 32668(T) and the kombucha isolate LMG 32879 represent a novel species among the acetic acid bacteria, with Acidomonas methanolica as the nearest phylogenomic neighbor with a valid name. Overall genomic relatedness indices and phylogenomic and physiological analyses revealed that this novel species was best classified in a novel genus for which we propose the name Brytella acorum gen. nov., sp. nov., with LMG 32668(T) (=CECT 30723(T)) as the type strain. The B. acorum genomes encode a complete but modified tricarboxylic acid cycle, and complete pentose phosphate, pyruvate oxidation and gluconeogenesis pathways. The absence of 6-phosphofructokinase which rendered the glycolysis pathway non-functional, and an energy metabolism that included both aerobic respiration and oxidative fermentation are typical metabolic characteristics of acetic acid bacteria. Neither genome encodes nitrogen fixation or nitrate reduction genes, but both genomes encode genes for the biosynthesis of a broad range of amino acids. Antibiotic resistance genes or virulence factors are absent. | 2023 | 37429096 |
| 129 | 13 | 0.9388 | Evidence for vital role of endo-β-N-acetylglucosaminidase in the resistance of Arthrobacter protophormiae RKJ100 towards elevated concentrations of o-nitrobenzoate. Arthrobacter protophormiae RKJ100 was previously characterized for its ability to tolerate extremely high concentrations of o-nitrobenzoate (ONB), a toxic xenobiotic environmental pollutant. The physiological responses of strain RKJ100 to ≥30 mM ONB indicated towards a resistance mechanism manifested via alteration of cell morphology and cell wall structure. In this study, we aim to characterize gene(s) involved in the resistance of strain RKJ100 towards extreme concentrations (i.e. 150 mM) of ONB. Transposon mutagenesis was carried out to generate a mutant library of strain RKJ100, which was then screened for ONB-sensitive mutants. A sensitive mutant was defined and selected as one that could not tolerate ≥30 mM ONB. Molecular and biochemical characterization of this mutant showed that the disruption of endo-β-N-acetylglucosaminidase (ENGase) gene caused the sensitivity. ENGase is an important enzyme for oligosaccharide processing and cell wall recycling in bacteria, fungi, plants and animals. Previous reports have already indicated several possible roles of this enzyme in cellular homeostasis. Results presented here provide the first evidence for its involvement in bacterial resistance towards extreme concentrations of a toxic xenobiotic compound and also suggest that strain RKJ100 employs ENGase as an important component in osmotic shock response for resisting extreme concentrations of ONB. | 2014 | 24562786 |
| 808 | 14 | 0.9386 | Exposure of Legionella pneumophila to low-shear modeled microgravity: impact on stress response, membrane lipid composition, pathogenicity to macrophages and interrelated genes expression. Here, we studied the effect of low-shear modeled microgravity (LSMMG) on cross stress resistance (heat, acid, and oxidative), fatty acid content, and pathogenicity along with alteration in expression of stress-/virulence-associated genes in Legionella pneumophila. The stress resistance analysis result indicated that bacteria cultivated under LSMMG environments showed higher resistance with elevated D-values at 55 °C and in 1 mM of hydrogen peroxide (H(2)O(2)) conditions compared to normal gravity (NG)-grown bacteria. On the other hand, there was no significant difference in tolerance (p < 0.05) toward simulated gastric fluid (pH-2.5) acid conditions. In fatty acid analysis, our result showed that a total amount of saturated and cyclic fatty acids was increased in LSMMG-grown cells; as a consequence, they might possess low membrane fluidity. An upregulated expression level was noticed for stress-related genes (hslV, htrA, grpE, groL, htpG, clpB, clpX, dnaJ, dnaK, rpoH, rpoE, rpoS, kaiB, kaiC, lpp1114, ahpC1, ahpC2, ahpD, grlA, and gst) under LSMMG conditions. The reduced virulence (less intracellular bacteria and less % of induce apoptosis in RAW 264.7 macrophages) of L. pneumophila under LSMMG conditions may be because of downregulation related genes (dotA, dotB, dotC, dotD, dotG, dotH, dotL, dotM, dotN, icmK, icmB, icmS, icmT, icmW, ladC, rtxA, letA, rpoN, fleQ, fleR, and fliA). In the LSMMG group, the expression of inflammation-related factors, such as IL-1α, TNF-α, IL-6, and IL-8, was observed to be reduced in infected macrophages. Also, scanning electron microscopy (SEM) analysis showed less number of LSMMG-cultivated bacteria attached to the host macrophages compared to NG. Thus, our study provides understandings about the changes in lipid composition and different genes expression due to LSMMG conditions, which apparently influence the alterations of L. pneumophila' stress/virulence response. | 2024 | 38305908 |
| 8193 | 15 | 0.9383 | Sinorhizobium meliloti Functions Required for Resistance to Antimicrobial NCR Peptides and Bacteroid Differentiation. Legumes of the Medicago genus have a symbiotic relationship with the bacterium Sinorhizobium meliloti and develop root nodules housing large numbers of intracellular symbionts. Members of the nodule-specific cysteine-rich peptide (NCR) family induce the endosymbionts into a terminal differentiated state. Individual cationic NCRs are antimicrobial peptides that have the capacity to kill the symbiont, but the nodule cell environment prevents killing. Moreover, the bacterial broad-specificity peptide uptake transporter BacA and exopolysaccharides contribute to protect the endosymbionts against the toxic activity of NCRs. Here, we show that other S. meliloti functions participate in the protection of the endosymbionts; these include an additional broad-specificity peptide uptake transporter encoded by the yejABEF genes and lipopolysaccharide modifications mediated by lpsB and lpxXL, as well as rpoH1, encoding a stress sigma factor. Strains with mutations in these genes show a strain-specific increased sensitivity profile against a panel of NCRs and form nodules in which bacteroid differentiation is affected. The lpsB mutant nodule bacteria do not differentiate, the lpxXL and rpoH1 mutants form some seemingly fully differentiated bacteroids, although most of the nodule bacteria are undifferentiated, while the yejABEF mutants form hypertrophied but nitrogen-fixing bacteroids. The nodule bacteria of all the mutants have a strongly enhanced membrane permeability, which is dependent on the transport of NCRs to the endosymbionts. Our results suggest that S. meliloti relies on a suite of functions, including peptide transporters, the bacterial envelope structures, and stress response regulators, to resist the aggressive assault of NCR peptides in the nodule cells. IMPORTANCE The nitrogen-fixing symbiosis of legumes with rhizobium bacteria has a predominant ecological role in the nitrogen cycle and has the potential to provide the nitrogen required for plant growth in agriculture. The host plants allow the rhizobia to colonize specific symbiotic organs, the nodules, in large numbers in order to produce sufficient reduced nitrogen for the plants' needs. Some legumes, including Medicago spp., produce massively antimicrobial peptides to keep this large bacterial population in check. These peptides, known as NCRs, have the potential to kill the rhizobia, but in nodules, they rather inhibit the division of the bacteria, which maintain a high nitrogen-fixing activity. In this study, we show that the tempering of the antimicrobial activity of the NCR peptides in the Medicago symbiont Sinorhizobium meliloti is multifactorial and requires the YejABEF peptide transporter, the lipopolysaccharide outer membrane, and the stress response regulator RpoH1. | 2021 | 34311575 |
| 192 | 16 | 0.9382 | N-Succinyltransferase Encoded by a Cryptic Siderophore Biosynthesis Gene Cluster in Streptomyces Modifies Structurally Distinct Antibiotics. The antibiotic desertomycin A and its previously undescribed inactive N-succinylated analogue, desertomycin X, were isolated from Streptomyces sp. strain YIM 121038. Genome sequencing and analysis readily identified the desertomycin biosynthetic gene cluster (BGC), which lacked genes encoding acyltransferases that would account for desertomycin X formation. Scouting the genome for putative N-acyltransferase genes led to the identification of a candidate within a cryptic siderophore BGC (csb) encoding a putative homologue of the N6'-hydroxylysine acetyltransferase IucB. Expression of the codon-optimized gene designated csbC in Escherichia coli yielded the recombinant protein that was able to N-succinylate desertomycin A as well as several other structurally distinct antibiotics harboring amino groups. Some antibiotics were rendered antibiotically inactive due to the CsbC-catalyzed succinylation in vitro. Unlike many known N-acyltransferases involved in antibiotic resistance, CsbC could not efficiently acetylate the same antibiotics. When expressed in E. coli, CsbC provided low-level resistance to kanamycin and ampicillin, suggesting that it may play a role in antibiotic resistance in natural habitats, where the concentration of antibiotics is usually low. IMPORTANCE In their natural habitats, bacteria encounter a plethora of organic compounds, some of which may be represented by antibiotics produced by certain members of the microbial community. A number of antibiotic resistance mechanisms have been described, including those specified by distinct genes encoding proteins that degrade, modify, or expel antibiotics. In this study, we report identification and characterization of an enzyme apparently involved in the biosynthesis of a siderophore, but also having the ability of modify and thereby inactivate a wide variety of structurally diverse antibiotics. This discovery sheds light on additional capabilities of bacteria to withstand antibiotic treatment and suggests that enzymes involved in secondary metabolism may have an additional function in the natural environment. | 2022 | 36040031 |
| 546 | 17 | 0.9381 | Resistance to organic hydroperoxides requires ohr and ohrR genes in Sinorhizobium meliloti. BACKGROUND: Sinorhizobium meliloti is a symbiotic nitrogen-fixing bacterium that elicits nodules on roots of host plants Medicago sativa. During nodule formation bacteria have to withstand oxygen radicals produced by the plant. Resistance to H2O2 and superoxides has been extensively studied in S. meliloti. In contrast resistance to organic peroxides has not been investigated while S. meliloti genome encodes putative organic peroxidases. Organic peroxides are produced by plants and are highly toxic. The resistance to these oxygen radicals has been studied in various bacteria but never in plant nodulating bacteria. RESULTS: In this study we report the characterisation of organic hydroperoxide resistance gene ohr and its regulator ohrR in S. meliloti. The inactivation of ohr affects resistance to cumene and ter-butyl hydroperoxides but not to hydrogen peroxide or menadione in vitro. The expression of ohr and ohrR genes is specifically induced by organic peroxides. OhrR binds to the intergenic region between the divergent genes ohr and ohrR. Two binding sites were characterised. Binding to the operator is prevented by OhrR oxidation that promotes OhrR dimerisation. The inactivation of ohr did not affect symbiosis and nitrogen fixation, suggesting that redundant enzymatic activity exists in this strain. Both ohr and ohrR are expressed in nodules suggesting that they play a role during nitrogen fixation. CONCLUSIONS: This report demonstrates the significant role Ohr and OhrR proteins play in bacterial stress resistance against organic peroxides in S. meliloti. The ohr and ohrR genes are expressed in nodule-inhabiting bacteroids suggesting a role during nodulation. | 2011 | 21569462 |
| 339 | 18 | 0.9381 | Multiple mechanisms of resistance to cisplatin toxicity in an Escherichia coli K12 mutant. The mechanisms underlying cellular resistance to the antitumor drug cis-diamminedichloro-platinum(II) (CDDP) were studied in Escherichia coli K12. A bacterial strain (MC4100/DDP) was selected from the MC4100 wild-type strain after growth for four cycles in CDDP. MC4100/DDP bacteria showed a high level of resistance and exhibited various modifications including (1) a decrease in drug uptake and platinum/DNA binding which only partly contributed to resistance, (2) an increase in glutathione content not involved in the resistant phenotype, (3) an increase in DNA repair capacity. Resistance was unmodified by introducing a uvrA mutation which neutralizes the excision-repair pathway. In contrast, it was abolished by deletion of the recA gene which abolishes recombination and SOS repair but also by a mutation in the recA gene leading to RecA co-protease minus (no SOS induction). RecA protein was unchanged in MC4100/DDP but the expression of RecA-dependent gene(s) was required for CDDP resistance. The regulation of genes belonging to the SOS regulon was analysed in MC4100/DDP by monitoring the expression of sfiA and recA::lacZ gene fusions after UV irradiation. These gene fusions were derepressed faster and the optimal expression was obtained for a lower number of UV lesions in MC4100/DDP, suggesting a role of RecA co-protease activity in the mechanism of resistance to CDDP in this E. coli strain. | 1994 | 7974517 |
| 801 | 19 | 0.9381 | Redox-sensitive transcriptional regulator SoxR directly controls antibiotic production, development and thiol-oxidative stress response in Streptomyces avermitilis. The redox-sensitive transcriptional regulator SoxR is conserved in bacteria. Its role in mediating protective response to various oxidative stresses in Escherichia coli and related enteric bacteria has been well established. However, functions and regulatory mechanisms of SoxR in filamentous Streptomyces, which produce half of known antibiotics, are unclear. We report here that SoxR pleiotropically regulates antibiotic production, morphological development, primary metabolism and thiol-oxidative stress response in industrially important species Streptomyces avermitilis. SoxR stimulated avermectin production by directly activating ave structural genes. Four genes (sav_3956, sav_4018, sav_5665 and sav_7218) that are homologous to targets of S. coelicolor SoxR are targeted by S. avermitilis SoxR. A consensus 18-nt SoxR-binding site, 5'-VSYCNVVMHNKVKDGMGB-3', was identified in promoter regions of sav_3956, sav_4018, sav_5665, sav_7218 and target ave genes, leading to prediction of the SoxR regulon and confirmation of 11 new targets involved in development (ftsH), oligomycin A biosynthesis (olmRI), primary metabolism (metB, sav_1623, plcA, nirB, thiG, ndh2), transport (smoE) and regulatory function (sig57, sav_7278). SoxR also directly activated three key developmental genes (amfC, whiB and ftsZ) and promoted resistance of S. avermitilis to thiol-oxidative stress through activation of target trx and msh genes. Overexpression of soxR notably enhanced antibiotic production in S. avermitilis and S. coelicolor. Our findings expand our limited knowledge of SoxR and will facilitate improvement of methods for antibiotic overproduction in Streptomyces species. | 2022 | 33951287 |