LOSS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
58900.9978Insulin Signaling and Insulin Resistance Facilitate Trained Immunity in Macrophages Through Metabolic and Epigenetic Changes. Adaptation of the innate immune system has been recently acknowledged, explaining sustained changes of innate immune responses. Such adaptation is termed trained immunity. Trained immunity is initiated by extracellular signals that trigger a cascade of events affecting cell metabolism and mediating chromatin changes on genes that control innate immune responses. Factors demonstrated to facilitate trained immunity are pathogenic signals (fungi, bacteria, viruses) as well non-pathogenic signals such as insulin, cytokines, adipokines or hormones. These signals initiate intracellular signaling cascades that include AKT kinases and mTOR as well as histone methylases and demethylases, resulting in metabolic changes and histone modifications. In the context of insulin resistance, AKT signaling is affected resulting in sustained activation of mTORC1 and enhanced glycolysis. In macrophages elevated glycolysis readily impacts responses to pathogens (bacteria, fungi) or danger signals (TLR-driven signals of tissue damage), partly explaining insulin resistance-related pathologies. Thus, macrophages lacking insulin signaling exhibit reduced responses to pathogens and altered metabolism, suggesting that insulin resistance is a state of trained immunity. Evidence from Insulin Receptor as well as IGF1Receptor deficient macrophages support the contribution of insulin signaling in macrophage responses. In addition, clinical evidence highlights altered macrophage responses to pathogens or metabolic products in patients with systemic insulin resistance, being in concert with cell culture and animal model studies. Herein, we review the current knowledge that supports the impact of insulin signaling and other insulin resistance related signals as modulators of trained immunity.201931244863
7810.9975Bacterial non-host resistance: interactions of Arabidopsis with non-adapted Pseudomonas syringae strains. Although interactions of plants with virulent and avirulent host pathogens are under intensive study, relatively little is known about plant interactions with non-adapted pathogens and the molecular events underlying non-host resistance. Here we show that two Pseudomonas syringae strains for which Arabidopsis is a non-host plant, P. syringae pathovar (pv.) glycinea (Psg) and P. syringae pv. phaseolicola (Psp),induce salicylic acid (SA) accumulation and pathogenesis-related gene expression at inoculation sites, and that induction of these defences is largely dependent on bacterial type III secretion. The defence signalling components activated by non-adapted bacteria resemble those initiated by host pathogens, including SA, non-expressor of PR-1, non-race specific disease resistance 1, phytoalexin-deficient 4 and enhanced disease susceptibility 1. However, some differences in individual defence pathways induced by Psg and Psp exist, suggesting that for each strain, distinct sets of type III effectors are recognized by the plant. Although induction of SA-related defences occurs, it does not directly contribute to bacterial non-host resistance, because Arabidopsis mutants compromised in SA signalling and other classical defence pathways do not permit enhanced survival of Psg or Psp in leaves. The finding that numbers of non-adapted bacteria in leaf extracellular spaces rapidly decline after inoculation suggests that they fail to overcome toxic or structural defence barriers preceding SA-related responses. Consistent with this hypothesis, rapid, type III secretion system-independent upregulation of the lignin biosynthesis genes, PAL1 and BCB, which might contribute to an early induced, cell wall-based defence mechanism, occurs in response to non-adapted bacteria. Moreover, knockout of PAL1 permits increased leaf survival of non-host bacteria. In addition, different survival rates of non-adapted bacteria in leaves from Arabidopsis accessions and mutants with distinct glucosinolate composition or hydrolysis exist. Possible roles for early inducible, cell wall-based defences and the glucosinolate/myrosinase system in bacterial non-host resistance are discussed.200718251883
826820.9975Sustained coevolution of phage Lambda and Escherichia coli involves inner- as well as outer-membrane defences and counter-defences. Bacteria often evolve resistance to phage through the loss or modification of cell surface receptors. In Escherichia coli and phage λ, such resistance can catalyze a coevolutionary arms race focused on host and phage structures that interact at the outer membrane. Here, we analyse another facet of this arms race involving interactions at the inner membrane, whereby E. coli evolves mutations in mannose permease-encoding genes manY and manZ that impair λ's ability to eject its DNA into the cytoplasm. We show that these man mutants arose concurrently with the arms race at the outer membrane. We tested the hypothesis that λ evolved an additional counter-defence that allowed them to infect bacteria with deleted man genes. The deletions severely impaired the ancestral λ, but some evolved phage grew well on the deletion mutants, indicating that they regained infectivity by evolving the ability to infect hosts independently of the mannose permease. This coevolutionary arms race fulfils the model of an inverse gene-for-gene infection network. Taken together, the interactions at both the outer and inner membranes reveal that coevolutionary arms races can be richer and more complex than is often appreciated.202134032565
814530.9975Emerging role for RNA-based regulation in plant immunity. Infection by phytopathogenic bacteria triggers massive changes in plant gene expression, which are thought to be mostly a result of transcriptional reprogramming. However, evidence is accumulating that plants additionally use post-transcriptional regulation of immune-responsive mRNAs as a strategic weapon to shape the defense-related transcriptome. Cellular RNA-binding proteins regulate RNA stability, splicing or mRNA export of immune-response transcripts. In particular, mutants defective in alternative splicing of resistance genes exhibit compromised disease resistance. Furthermore, detection of bacterial pathogens induces the differential expression of small non-coding RNAs including microRNAs that impact the host defense transcriptome. Phytopathogenic bacteria in turn have evolved effector proteins to inhibit biogenesis and/or activity of cellular microRNAs. Whereas RNA silencing has long been known as an antiviral defense response, recent findings also reveal a major role of this process in antibacterial defense. Here we review the function of RNA-binding proteins and small RNA-directed post-transcriptional regulation in antibacterial defense. We mainly focus on studies that used the model system Arabidopsis thaliana and also discuss selected examples from other plants.201323163405
20040.9973Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Microbial infection activates two distinct intracellular signalling cascades in the immune-responsive fat body of Drosophila. Gram-positive bacteria and fungi predominantly induce the Toll signalling pathway, whereas Gram-negative bacteria activate the Imd pathway. Loss-of-function mutants in either pathway reduce the resistance to corresponding infections. Genetic screens have identified a range of genes involved in these intracellular signalling cascades, but how they are activated by microbial infection is largely unknown. Activation of the transmembrane receptor Toll requires a proteolytically cleaved form of an extracellular cytokine-like polypeptide, Spätzle, suggesting that Toll does not itself function as a bona fide recognition receptor of microbial patterns. This is in apparent contrast with the mammalian Toll-like receptors and raises the question of which host molecules actually recognize microbial patterns to activate Toll through Spätzle. Here we present a mutation that blocks Toll activation by Gram-positive bacteria and significantly decreases resistance to this type of infection. The mutation semmelweis (seml) inactivates the gene encoding a peptidoglycan recognition protein (PGRP-SA). Interestingly, seml does not affect Toll activation by fungal infection, indicating the existence of a distinct recognition system for fungi to activate the Toll pathway.200111742401
7050.9972A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria. Transcription activator-like effectors (TALEs) are sequence-specific DNA binding proteins found in a range of plant pathogenic bacteria, where they play important roles in host-pathogen interactions. However, it has been unclear how TALEs, after they have been injected into the host cells, activate transcription of host genes required for infection success. Here, we show that the basal transcription factor IIA gamma subunit TFIIAγ5 from rice is a key component for infection by the TALE-carrying bacterium Xanthomonas oryzae pv. oryzae, the causal agent for bacterial blight. Direct interaction of several TALEs with TFIIAγ5 is required for activation of disease susceptibility genes. Conversely, reduced expression of the TFIIAγ5 host gene limits the induction of susceptibility genes and thus decreases bacterial blight symptoms. Suppression or mutation of TFIIAγ5 can also reduce bacterial streak, another devastating disease of rice caused by TALE-carrying X. oryzae pv. oryzicola. These results have important implications for formulating a widely applicable strategy with which to improve resistance of plants to TALE-carrying pathogens.201627472897
60660.9972Coexistence of SOS-Dependent and SOS-Independent Regulation of DNA Repair Genes in Radiation-Resistant Deinococcus Bacteria. Deinococcus bacteria are extremely resistant to radiation and able to repair a shattered genome in an essentially error-free manner after exposure to high doses of radiation or prolonged desiccation. An efficient, SOS-independent response mechanism to induce various DNA repair genes such as recA is essential for radiation resistance. This pathway, called radiation/desiccation response, is controlled by metallopeptidase IrrE and repressor DdrO that are highly conserved in Deinococcus. Among various Deinococcus species, Deinococcus radiodurans has been studied most extensively. Its genome encodes classical DNA repair proteins for error-free repair but no error-prone translesion DNA polymerases, which may suggest that absence of mutagenic lesion bypass is crucial for error-free repair of massive DNA damage. However, many other radiation-resistant Deinococcus species do possess translesion polymerases, and radiation-induced mutagenesis has been demonstrated. At least dozens of Deinococcus species contain a mutagenesis cassette, and some even two cassettes, encoding error-prone translesion polymerase DnaE2 and two other proteins, ImuY and ImuB-C, that are probable accessory factors required for DnaE2 activity. Expression of this mutagenesis cassette is under control of the SOS regulators RecA and LexA. In this paper, we review both the RecA/LexA-controlled mutagenesis and the IrrE/DdrO-controlled radiation/desiccation response in Deinococcus.202133923690
815070.9972ROS production during symbiotic infection suppresses pathogenesis-related gene expression. Leguminous plants have exclusive ability to form symbiotic relationship with soil bacteria of the genus Rhizobium. Symbiosis is a complex process that involves multiple molecular signaling activities, such as calcium fluxes, production of reactive oxygen species (ROS) and synthesis of nodulation genes. We analyzed the role of ROS in defense gene expression in Medicago truncatula during symbiosis and pathogenesis. Studies in Arabidopsis thaliana showed that the induction of pathogenesis-related (PR) genes during systemic acquired resistance (SAR) is regulated by NPR1 protein, which resides in the cytoplasm as an oligomer. After oxidative burst and return of reducing conditions, the NPR1 undergoes monomerization and becomes translocated to the nucleus, where it functions in PR genes induction. We show that ROS production is both stronger and longer during symbiotic interactions than during interactions with pathogenic, nonhost or common nonpathogenic soil bacteria. Moreover, root cells inoculated with Sinorhizobium meliloti accumulated ROS in the cytosol but not in vacuoles, as opposed to Pseudomonas putida inoculation or salt stress treatment. Furthermore, increased ROS accumulation by addition of H₂O₂ reduced the PR gene expression, while catalase had an opposite effect, establishing that the PR gene expression is opposite to the level of cytoplasmic ROS. In addition, we show that salicylic acid pretreatment significantly reduced ROS production in root cells during symbiotic interaction.201222499208
58780.9972The Nramp (Slc11) proteins regulate development, resistance to pathogenic bacteria and iron homeostasis in Dictyostelium discoideum. The Dictyostelium discoideum genome harbors two genes encoding members of the Nramp superfamily, which is conserved from bacteria (MntH proteins) to humans (Slc11 proteins). Nramps are proton-driven metal ion transporters with a preference for iron and manganese. Acquisition of these metal cations is vital for all cells, as they act as redox cofactors and regulate key cellular processes, such as DNA synthesis, electron transport, energy metabolism and oxidative stress. Dictyostelium Nramp1 (Slc11a1), like its mammalian ortholog, mediates resistance to infection by invasive bacteria. We have extended the analysis to the nramp2 gene, by generating single and double nramp1/nramp2 knockout mutants and cells expressing GFP fusion proteins. In contrast to Nramp1, which is recruited to phagosomes and macropinosomes, the Nramp2 protein is localized exclusively in the membrane of the contractile vacuole, a vesicular tubular network regulating cellular osmolarity. Both proteins colocalize with the V-H(+)-ATPase, which can provide the electrogenic force for vectorial transport. Like nramp1, nramp2 gene disruption affects resistance to Legionella pneumophila. Disrupting both genes additionally leads to defects in development, with strong delay in cell aggregation, formation of large streams and multi-tipped aggregates. Single and double mutants display differential sensitivity to cell growth under conditions of iron overload or depletion. The data favor the hypothesis that Nramp1 and Nramp2, under control of the V-H(+)-ATPase, synergistically regulate iron homeostasis, with the contractile vacuole possibly acting as a store for metal cations.201322992462
73090.9972How intracellular bacteria survive: surface modifications that promote resistance to host innate immune responses. Bacterial pathogens regulate the expression of virulence factors in response to environmental signals. In the case of salmonellae, many virulence factors are regulated via PhoP/PhoQ, a two-component signal transduction system that is repressed by magnesium and calcium in vitro. PhoP/PhoQ-activated genes promote intracellular survival within macrophages, whereas PhoP-repressed genes promote entrance into epithelial cells and macrophages by macropinocytosis and stimulate epithelial cell cytokine production. PhoP-activated genes include those that alter the cell envelope through structural alterations of lipopolysaccharide and lipid A, the bioactive component of lipopolysaccharide. PhoP-activated changes in the bacterial envelope likely promote intracellular survival by increasing resistance to host cationic antimicrobial peptides and decreasing host cell cytokine production.199910081503
68100.9972Designer TALEs enable discovery of cell death-inducer genes. Transcription activator-like effectors (TALEs) in plant-pathogenic Xanthomonas bacteria activate expression of plant genes and support infection or cause a resistance response. PthA4AT is a TALE with a particularly short DNA-binding domain harboring only 7.5 repeats which triggers cell death in Nicotiana benthamiana; however, the genetic basis for this remains unknown. To identify possible target genes of PthA4AT that mediate cell death in N. benthamiana, we exploited the modularity of TALEs to stepwise enhance their specificity and reduce potential target sites. Substitutions of individual repeats suggested that PthA4AT-dependent cell death is sequence specific. Stepwise addition of repeats to the C-terminal or N-terminal end of the repeat region narrowed the sequence requirements in promoters of target genes. Transcriptome profiling and in silico target prediction allowed the isolation of two cell death inducer genes, which encode a patatin-like protein and a bifunctional monodehydroascorbate reductase/carbonic anhydrase protein. These two proteins are not linked to known TALE-dependent resistance genes. Our results show that the aberrant expression of different endogenous plant genes can cause a cell death reaction, which supports the hypothesis that TALE-dependent executor resistance genes can originate from various plant processes. Our strategy further demonstrates the use of TALEs to scan genomes for genes triggering cell death and other relevant phenotypes.202438723194
725110.9971The Bacillus subtilis extracytoplasmic function σ factor σ(V) is induced by lysozyme and provides resistance to lysozyme. Bacteria encounter numerous environmental stresses which can delay or inhibit their growth. Many bacteria utilize alternative σ factors to regulate subsets of genes required to overcome different extracellular assaults. The largest group of these alternative σ factors are the extracytoplasmic function (ECF) σ factors. In this paper, we demonstrate that the expression of the ECF σ factor σ(V) in Bacillus subtilis is induced specifically by lysozyme but not other cell wall-damaging agents. A mutation in sigV results in increased sensitivity to lysozyme killing, suggesting that σ(V) is required for lysozyme resistance. Using reverse transcription (RT)-PCR, we show that the previously uncharacterized gene yrhL (here referred to as oatA for O-acetyltransferase) is in a four-gene operon which includes sigV and rsiV. In quantitative RT-PCR experiments, the expression of oatA is induced by lysozyme stress. Lysozyme induction of oatA is dependent upon σ(V). Overexpression of oatA in a sigV mutant restores lysozyme resistance to wild-type levels. This suggests that OatA is required for σ(V)-dependent resistance to lysozyme. We also tested the ability of lysozyme to induce the other ECF σ factors and found that only the expression of sigV is lysozyme inducible. However, we found that the other ECF σ factors contributed to lysozyme resistance. We found that sigX and sigM mutations alone had very little effect on lysozyme resistance but when combined with a sigV mutation resulted in significantly greater lysozyme sensitivity than the sigV mutation alone. This suggests that sigV, sigX, and sigM may act synergistically to control lysozyme resistance. In addition, we show that two ECF σ factor-regulated genes, dltA and pbpX, are required for lysozyme resistance. Thus, we have identified three independent mechanisms which B. subtilis utilizes to avoid killing by lysozyme.201121856855
728120.9971Surviving Reactive Chlorine Stress: Responses of Gram-Negative Bacteria to Hypochlorous Acid. Sodium hypochlorite (NaOCl) and its active ingredient, hypochlorous acid (HOCl), are the most commonly used chlorine-based disinfectants. HOCl is a fast-acting and potent antimicrobial agent that interacts with several biomolecules, such as sulfur-containing amino acids, lipids, nucleic acids, and membrane components, causing severe cellular damage. It is also produced by the immune system as a first-line of defense against invading pathogens. In this review, we summarize the adaptive responses of Gram-negative bacteria to HOCl-induced stress and highlight the role of chaperone holdases (Hsp33, RidA, Cnox, and polyP) as an immediate response to HOCl stress. We also describe the three identified transcriptional regulators (HypT, RclR, and NemR) that specifically respond to HOCl. Besides the activation of chaperones and transcriptional regulators, the formation of biofilms has been described as an important adaptive response to several stressors, including HOCl. Although the knowledge on the molecular mechanisms involved in HOCl biofilm stimulation is limited, studies have shown that HOCl induces the formation of biofilms by causing conformational changes in membrane properties, overproducing the extracellular polymeric substance (EPS) matrix, and increasing the intracellular concentration of cyclic-di-GMP. In addition, acquisition and expression of antibiotic resistance genes, secretion of virulence factors and induction of the viable but nonculturable (VBNC) state has also been described as an adaptive response to HOCl. In general, the knowledge of how bacteria respond to HOCl stress has increased over time; however, the molecular mechanisms involved in this stress response is still in its infancy. A better understanding of these mechanisms could help understand host-pathogen interactions and target specific genes and molecules to control bacterial spread and colonization.202032796669
8315130.9971The Induction and Modulation of Plant Defense Responses by Bacterial Lipopolysaccharides. Lipopolysaccharides (LPSs) are ubiquitous, indispensable components of the cell surface of Gram-negative bacteria that apparently have diverse roles in bacterial pathogenesis of plants. As an outer membrane component, LPS may contribute to the exclusion of plant-derived antimicrobial compounds promoting the ability of a bacterial plant pathogen to infect plants. In contrast, LPS can be recognized by plants to directly trigger some plant defense-related responses. LPS can also alter the response of plants to subsequent bacterial inoculation; these delayed effects include alterations in the expression patterns of genes coding for some pathogenesis-related (PR) proteins, promotion of the synthesis of antimicrobial hydroxycinnamoyl-tyramine conjugates, and prevention of the hypersensitive reaction caused by avirulent bacteria. Prevention of the response may allow expression of resistance in the absence of catastrophic tissue damage. Recognition of LPS (and other nonspecific determinants) may initiate responses in plants that restrict the growth of nonpathogenic bacteria, whereas plant pathogens may possess hrp gene-dependent mechanisms to suppress such responses.200011701843
722140.9971Evolution of Escherichia coli for maximum HOCl resistance through constitutive expression of the OxyR regulon. Exposure of cells to stress impairs cellular functions and may cause killing or adaptation. Adaptation can be facilitated by stress-induced mutagenesis or epigenetic changes, i.e. phenotypic variation without mutations. Upon exposure to HOCl, which is produced by the innate immune system upon bacterial infection, bacteria trigger stress responses that enable increased survival against the stress. Here, we addressed the question whether bacteria can adapt to high HOCl doses and if so, how the acquired resistance is facilitated. We evolved Escherichia coli cells for maximum HOCl resistance by successively increasing the HOCl concentration in the cultivation medium. HOCl-resistant cells showed broad stress resistance but did not carry any chromosomal mutations as revealed by whole-genome sequencing. According to proteome analysis and analysis of transcript levels of stress-related genes, HOCl resistance was accompanied by altered levels of outer-membrane proteins A, C, F and W, and, most prominently, a constitutively expressed OxyR regulon. Induction of the OxyR regulon is facilitated by a partially oxidized OxyR leading to increased levels of antioxidant proteins such as Dps, AhpC/AhpF and KatG. These changes were maintained in evolved strains even when they were cultivated without stress for a prolonged time, indicating epigenetic changes contributed to stress resistance. This indicated that maximum HOCl resistance was conferred by the accumulated action of the OxyR stress response and other factors such as altered levels of outer-membrane proteins.201424899627
8200150.9971Precisely modulated pathogenicity island interference with late phage gene transcription. Having gone to great evolutionary lengths to develop resistance to bacteriophages, bacteria have come up with resistance mechanisms directed at every aspect of the bacteriophage life cycle. Most genes involved in phage resistance are carried by plasmids and other mobile genetic elements, including bacteriophages and their relatives. A very special case of phage resistance is exhibited by the highly mobile phage satellites, staphylococcal pathogenicity islands (SaPIs), which carry and disseminate superantigen and other virulence genes. Unlike the usual phage-resistance mechanisms, the SaPI-encoded interference mechanisms are carefully crafted to ensure that a phage-infected, SaPI-containing cell will lyse, releasing the requisite crop of SaPI particles as well as a greatly diminished crop of phage particles. Previously described SaPI interference genes target phage functions that are not required for SaPI particle production and release. Here we describe a SaPI-mediated interference system that affects expression of late phage gene transcription and consequently is required for SaPI and phage. Although when cloned separately, a single SaPI gene totally blocks phage production, its activity in situ is modulated accurately by a second gene, achieving the required level of interference. The advantage for the host bacteria is that the SaPIs curb excessive phage growth while enhancing their gene transfer activity. This activity is in contrast to that of the clustered regularly interspaced short palindromic repeats (CRISPRs), which totally block phage growth at the cost of phage-mediated gene transfer. In staphylococci the SaPI strategy seems to have prevailed during evolution: The great majority of Staphylococcus aureus strains carry one or more SaPIs, whereas CRISPRs are extremely rare.201425246539
8144160.9970Fungal Priming: Prepare or Perish. Priming (also referred to as acclimation, acquired stress resistance, adaptive response, or cross-protection) is defined as an exposure of an organism to mild stress that leads to the development of a subsequent stronger and more protective response. This memory of a previously encountered stress likely provides a strong survival advantage in a rapidly shifting environment. Priming has been identified in animals, plants, fungi, and bacteria. Examples include innate immune priming and transgenerational epigenetic inheritance in animals and biotic and abiotic stress priming in plants, fungi, and bacteria. Priming mechanisms are diverse and include alterations in the levels of specific mRNAs, proteins, metabolites, and epigenetic changes such as DNA methylation and histone acetylation of target genes.202235628704
586170.9970Iron metabolism and resistance to infection by invasive bacteria in the social amoeba Dictyostelium discoideum. Dictyostelium cells are forest soil amoebae, which feed on bacteria and proliferate as solitary cells until bacteria are consumed. Starvation triggers a change in life style, forcing cells to gather into aggregates to form multicellular organisms capable of cell differentiation and morphogenesis. As a soil amoeba and a phagocyte that grazes on bacteria as the obligate source of food, Dictyostelium could be a natural host of pathogenic bacteria. Indeed, many pathogens that occasionally infect humans are hosted for most of their time in protozoa or free-living amoebae, where evolution of their virulence traits occurs. Due to these features and its amenability to genetic manipulation, Dictyostelium has become a valuable model organism for studying strategies of both the host to resist infection and the pathogen to escape the defense mechanisms. Similarly to higher eukaryotes, iron homeostasis is crucial for Dictyostelium resistance to invasive bacteria. Iron is essential for Dictyostelium, as both iron deficiency or overload inhibit cell growth. The Dictyostelium genome shares with mammals many genes regulating iron homeostasis. Iron transporters of the Nramp (Slc11A) family are represented with two genes, encoding Nramp1 and Nramp2. Like the mammalian ortholog, Nramp1 is recruited to phagosomes and macropinosomes, whereas Nramp2 is a membrane protein of the contractile vacuole network, which regulates osmolarity. Nramp1 and Nramp2 localization in distinct compartments suggests that both proteins synergistically regulate iron homeostasis. Rather than by absorption via membrane transporters, iron is likely gained by degradation of ingested bacteria and efflux via Nramp1 from phagosomes to the cytosol. Nramp gene disruption increases Dictyostelium sensitivity to infection, enhancing intracellular growth of Legionella or Mycobacteria. Generation of mutants in other "iron genes" will help identify genes essential for iron homeostasis and resistance to pathogens.201324066281
8233180.9970Local early induced resistance of plants as the first line of defence against bacteria. This paper is an overview of a non-specific local early induced resistance (EIR) mechanism, distinct from the incompatible-specific hypersensitive reaction (HR). We have shown that the local induced resistance (LIR) described earlier is not a single and uniform response to pathogen infection, because an early (EIR) and a late form can be distinguished. EIR operates from 3-6 h post-inoculation (hpi) until about 20 hpi, and is inhibited by a short heat-shock or the eukaryotic protein synthesis inhibitor, cycloheximide. In contrast, LIR, which corresponds to the induced resistance forms discovered earlier, requires more time (about 24 h) and intensive illumination to develop, and is effective for a longer period. EIR develops parallel with HR and is sometimes able to prevent it when the induction time of HR is longer than the time required for the development of EIR. It seems that EIR inhibits the metabolism of bacteria and the activity of hrp genes which otherwise are required for the induction of HR. In a compatible host-pathogen relationship the effect of EIR fails to take place. The rapid development of EIR is greatly influenced by temperature and the physiological state of the plant. EIR activates the accumulation of hydrogen peroxide at the bacterial attachment, expressing new peroxidase isoenzymes in the initiated plant tissue. It seems that this is a native general local defence mechanism which can localise foreign organisms even at the penetration site.200312701709
8234190.9970Contradictory roles for antibody and complement in the interaction of Brucella abortus with its host. The ability of serum complement to kill bacteria has been linked to host resistance to Gram-negative bacteria. A mechanism for killing extracellular organisms during early invasion, following release from infected phagocytic cells, or during bacteremia would contribute to a host's ability to resist disease. In fact, the ability of serum complement to kill bacteria has been linked to disease resistance. Brucella abortus are Gram-negative intracellular pathogens. Resistance to these bacteria involves the coordinated activities of the cellular and humoral immune systems. The existence of serum-resistant forms of B. abortus has been established, and it has been shown that these bacteria can resist the killing action of complement even in the presence of specific antibody. Antibody is usually necessary for complement-mediated killing of smooth (virulent) forms of Gram-negative bacteria. An anomolous situation exists with some isolates of smooth B. abortus. Sera containing high titers of specific antibody do not support killing unless they are diluted. In the bovine, this phenomenon is associated with IgG1 and IgG2 antibodies. This finding may account for the lack of positive correlation between antibody levels and resistance to disease, which has led, perhaps wrongly, to the idea that antibody and complement are not important in resistance to brucellosis. Available evidence suggests that antibody may have contradictory roles in the interactions between a host and bacteria. Avirulent (rough) forms of the organism would be rapidly killed by complement shortly after invasion, but serum-resistant smooth forms of the organism would survive and invade resident phagocytic cells. During the process of invasion and phagocytosis, the bacteria would initiate an immune response. With time, some B. abortus organisms would be released from infected phagocytic cells. In the early stages of this process, the bacteria would encounter IgM antibody and low concentrations of IgG antibody. These would cause complement-mediated killing, and infection would be restricted to resident phagocytic cells. However, the immune response to B. abortus antigens would be intensified, and IgG antibody levels would increase. High concentrations of antibody do no support complement-mediated killing of extracellular B. abortus, but the bacteria would be opsonized by antibody and complement component fragments. This would lead to increased phagocytosis of extracellular B. abortus as they appear, and concomitant extension of disease. Because of high levels of antibody would block complement-mediated killing of B. abortus, resistance to disease at this point would be dependent on cell-mediated immunity.19958845060