LONGUM - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
604600.9783Safety Evaluations of Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI. Over the past decade, a variety of lactic acid bacteria have been commercially available to and steadily used by consumers. However, recent studies have shown that some lactic acid bacteria produce toxic substances and display properties of virulence. To establish safety guidelines for lactic acid bacteria, the Food and Agriculture Organization of the United Nations (FAO)/World Health Organization (WHO) has suggested that lactic acid bacteria be characterized and proven safe for consumers’ health via multiple experiments (e.g., antibiotic resistance, metabolic activity, toxin production, hemolytic activity, infectivity in immune-compromised animal species, human side effects, and adverse-outcome analyses). Among the lactic acid bacteria, Bifidobacterium and Lactobacillus species are probiotic strains that are most commonly commercially produced and actively studied. Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI have been used in global functional food markets (e.g., China, Germany, Jordan, Korea, Lithuania, New Zealand, Poland, Singapore, Thailand, Turkey, and Vietnam) as nutraceutical ingredients for decades, without any adverse events. However, given that the safety of some newly screened probiotic species has recently been debated, it is crucial that the consumer safety of each commercially utilized strain be confirmed. Accordingly, this paper details a safety assessment of B. bifidum BGN4 and B. longum BORI via the assessment of ammonia production, hemolysis of blood cells, biogenic amine production, antimicrobial susceptibility pattern, antibiotic resistance gene transferability, PCR data on antibiotic resistance genes, mucin degradation, genome stability, and possession of virulence factors. These probiotic strains showed neither hemolytic activity nor mucin degradation activity, and they did not produce ammonia or biogenic amines (i.e., cadaverine, histamine or tyramine). B. bifidum BGN4 and B. longum BORI produced a small amount of putrescine, commonly found in living cells, at levels similar to or lower than that found in other foods (e.g., spinach, ketchup, green pea, sauerkraut, and sausage). B. bifidum BGN4 showed higher resistance to gentamicin than the European Food Safety Authority (EFSA) cut-off. However, this paper shows the gentamicin resistance of B. bifidum BGN4 was not transferred via conjugation with L. acidophilus ATCC 4356, the latter of which is highly susceptible to gentamicin. The entire genomic sequence of B. bifidum BGN4 has been published in GenBank (accession no.: CP001361.1), documenting the lack of retention of plasmids capable of transferring an antibiotic-resistant gene. Moreover, there was little genetic mutation between the first and 25th generations of B. bifidum BGN4. Tetracycline-resistant genes are prevalent among B. longum strains; B. longum BORI has a tet(W) gene on its chromosome DNA and has also shown resistance to tetracycline. However, this research shows that its tetracycline resistance was not transferred via conjugation with L. fermentum AGBG1, the latter of which is highly sensitive to tetracycline. These findings support the continuous use of B. bifidum BGN4 and B. longum BORI as probiotics, both of which have been reported as safe by several clinical studies, and have been used in food supplements for many years.201829747442
607610.9767Isolation and identification of mucin-degrading bacteria originated from human faeces and their potential probiotic efficacy according to host-microbiome enterotype. AIM: Mucin-degrading bacteria are known to be beneficial for gut health. We aimed to isolate human-derived mucin-degrading bacteria and identify potential probiotic characteristics and their effects on the bacterial community and short-chain fatty acid (SCFA) production according to three different enterotypes of the host. METHODS AND RESULTS: Bacteria with mucin decomposition ability from human faeces were isolated and identified by 16S rRNA sequencing and MALDI-TOF. Heat resistance, acid resistance, antibiotic resistance, and antibacterial activity were analysed in the selected bacteria. Their adhesion capability to the Caco-2 cell was determined by scanning electron microscopy. Their ability to alter the bacterial community and SCFA production of the isolated bacteria was investigated in three enterotypes. The three isolated strains were Bifidobacterium(Bif.) animalis SPM01 (CP001606.1, 99%), Bif. longum SPM02 (NR_043437.1, 99%), and Limosilactobacillus(L.) reuteri SPM03 (CP000705.1, 99%) deposited in Korean Collection for Type Culture (KCTC-18958P). Among them, Bif. animalis exhibited the highest mucin degrading ability. They exhibited strong resistance to acidic conditions, moderate resistance to heat, and the ability to adhere tightly to Caco-2 cells. Three isolated mucin-degrading bacteria incubation increased Lactobacillus in the faecal bacteria from Bacteroides and Prevotella enterotypes. However, only L. reuteri elevated Lactobacillus in the faecal bacteria from the Ruminococcus enterotype. B. longum and B. animalis increased the α-diversity in the Ruminococcus enterotype, while their incubation with other intestinal types decreased the α-diversity. Bifidobacterium animalis and L. reuteri increased the butyric acid level in faecal bacteria from the Prevotella enterotype, and L. reuteri elevated the acetic acid level in those from the Ruminococcus enterotype. However, the overall SCFA changes were minimal. CONCLUSIONS: The isolated mucin-degrading bacteria act as probiotics and modulate gut microbiota and SCFA production differently according to the host's enterotypes. SIGNIFICANCE AND IMPACT OF STUDY: Probiotics need to be personalized according to the enterotypes in clinical application.202235365862
607520.9767Molecular screening of beneficial and safety determinants from bacteriocinogenic lactic acid bacteria isolated from Brazilian artisanal calabresa. Despite of the beneficial relevance of several lactic acid bacteria (LAB) in the food industry, micro-organisms belonging to this group can determine spoilage in food products and carry a number of virulence and antibiotic resistance-related genes. This study aimed on the characterization of beneficial and safety aspects of five bacteriocinogenic LAB strains (Lactobacillus curvatus 12-named L. curvatus UFV-NPAC1), L. curvatus 36, Weissela viridescens 23, W. viridescens 31 and Lactococcus garvieae 36) isolated from an artisanal Brazilian calabresa, a traditional meat sausage. Regarding their beneficial aspects, all tested isolates were positive for mub, while EF226-cbp, EF1249-fbp and EF2380-maz were detected in at least one tested strain; none of the isolates presented map, EFTu or prgB. However, evaluated strains presented a variable pattern of virulence-related genes, but none of the strains presented gelE, cylA, efsA, cpd, int-Tn or sprE. Moreover, other virulence-related genes evaluated in this study were detected at different frequencies. L. curvatus 12 was generated positive results for ace, ccf, int, ermC, tetL, aac(6')-Ie-aph(2″)-Ia, aph(2″)-Ib, aph(2″)-Ic, bcrB, vanB and vanC2; L. curvatus 36: hyl, asa1, esp, int, ermC, tetK, aph(3')-IIIa, aph(2'')-Ic and vanC2; L. garvieae 32: asa1, ant(4')-Ia, aph(2'')-Ib, catA, vanA and vanC1; W. viridescens 23: esp, cob, ermB, aph(3')-IIIa, aph(2'')-Ic, vanA, vanB and vanC2; W. viridescens 31: hyl, esp, ermC, aph(3')-IIIa, aph(2'')-Ib, aph(2'')-Ic, catA, vanA and vanB. Despite presenting some beneficial aspects, the presence of virulence and antibiotic resistance genes jeopardize their utilization as starter or biopreservatives cultures in food products. Considering the inhibitory potential of these strains, an alternative would be the use of their bacteriocins as semi-purified or pure technological preparation. SIGNIFICANCE AND IMPACT OF THE STUDY: The food industry has a particular interest in using bacteriocinogenic lactic acid bacteria (LAB) as starter, probiotics and/or biopreservatives in different food products. Characterization of additional beneficial features is important to identify new, multifunctional potential probiotic strains. However, these strains can only be applied in food products only after being properly characterized according their potential negative aspects, such as virulence and antibiotic resistance genes. A wide characterization of beneficial and safety aspects of bacteriocinogenic LAB is determinant to guide the proper utilization of these strains, or their purified bacteriocins, by the food industry.201931250457
602330.9765Bile-inducible efflux transporter from Bifidobacterium longum NCC2705, conferring bile resistance. Bifidobacteria are normal inhabitants of the human gut. Some strains of this genus are considered health promoting or probiotic, being included in numerous food products. In order to exert their health benefits, these bacteria must overcome biological barriers, including bile salts, to colonize and survive in specific parts of the intestinal tract. The role of multidrug resistance (MDR) transporters in bile resistance of probiotic bacteria and the effect of bile on probiotic gene expression are not fully understood. In the present study, the effect of subinhibitory concentrations of bile on the expression levels of predicted MDR genes from three different bifidobacterial strains, belonging to Bifidobacterium longum subsp. longum, Bifidobacterium breve, and Bifidobacterium animalis subsp. lactis, was tested. In this way, two putative MDR genes whose expression was induced by bile, BL0920 from B. longum and its homolog, Bbr0838, from B. breve, were identified. The expression of the BL0920 gene in Escherichia coli was shown to confer resistance to bile, likely to be mediated by active efflux from the cells. To the best of our knowledge, this represents the first identified bifidobacterial bile efflux pump whose expression is induced by bile.200919304838
544040.9764Molecular structure and evolution of the conjugative multiresistance plasmid pRE25 of Enterococcus faecalis isolated from a raw-fermented sausage. Plasmid pRE25 from Enterococcus faecalis transfers resistances against kanamycin, neomycin, streptomycin, clindamycin, lincomycin, azithromycin, clarithromycin, erythromycin, roxithromycin, tylosin, chloramphenicol, and nourseothricin sulfate by conjugation in vitro to E. faecalis JH2-2, Lactococcus lactis Bu2, and Listeria innocua L19. Its nucleotide sequence of 50237 base pairs represents the largest, fully sequenced conjugative multiresistance plasmid of enterococci (Plasmid 46 (2001) 170). The gene for chloramphenicol resistance (cat) was identified as an acetyltransferase identical to the one of plasmid pIP501 of Streptococcus agalactiae. Erythromycin resistance is due to a 23S ribosomal RNA methyl transferase, again as found in pIP501 (ermB). The aminoglycoside resistance genes are packed in tandem as in transposon Tn5405 of Staphylococcus aureus: an aminoglycoside 6-adenyltransferase, a streptothricin acetyl transferase, and an aminoglycoside phosphotransferase.). Identical resistance genes are known from pathogens like Streptococcus pyogenes, S. agalactiae, S. aureus, Campylobacter coli, Clostridium perfringens, and Clostridium difficile. pRE25 is composed of a 30.5-kbp segment almost identical to pIP501. Of the 15 genes involved in conjugative transfer, 10 codes for putative transmembrane proteins (e.g. trsB, traC, trsF, trsJ, and trsL). The enterococcal part is joined into the pIP501 part by insertion elements IS1216V of E. faecium Tn1545 (three copies), and homologs of IS1062 (E. faecalis) and IS1485 (E. faecium). pRE25 demonstrates that enterococci from fermented food do participate in the molecular communication between Gram-positive and Gram-negative bacteria of the human and animal microflora.200314597005
605050.9764Vancomycin resistance factor of Lactobacillus rhamnosus GG in relation to enterococcal vancomycin resistance (van) genes. Lactobacillus rhamnosus GG (ATCC 53103) is a probiotic strain used in fermented dairy products in many countries and is also used as a food supplement in the form of freeze-dried powder. The relationship of the vancomycin resistance factor in L. rhamnosus GG and the vancomycin resistance (van) genes of Enterococcus faecalis and E. faecium were studied using polymerase chain reaction (PCR), Southern hybridization and conjugation methods. Our results show that the vancomycin resistance determinant in L. rhamnosus GG is not closely related to enterococcal van genes, since no PCR product was amplified in L. rhamnosus GG with any of the three sets of vanA primers used, and enterococcal vanA, vanB, vnH, vanX, vanZ, vanY, vanS and vanR genes did not hybridize with DNA of L. rhamnosus GG. This strain does not contain plasmids and transfer of chromosomal vancomycin resistance determinant from L. rhamnosus GG to enterococcal species was not detected. Our results are in accordance with previous findings of intrinsically vancomycin-resistant lactic acid bacteria.19989706787
588760.9761Safety assessment of Bifidobacterium longum JDM301 based on complete genome sequences. AIM: To assess the safety of Bifidobacterium longum (B. longum) JDM301 based on complete genome sequences. METHODS: The complete genome sequences of JDM301 were determined using the GS 20 system. Putative virulence factors, putative antibiotic resistance genes and genes encoding enzymes responsible for harmful metabolites were identified by blast with virulence factors database, antibiotic resistance genes database and genes associated with harmful metabolites in previous reports. Minimum inhibitory concentration of 16 common antimicrobial agents was evaluated by E-test. RESULTS: JDM301 was shown to contain 36 genes associated with antibiotic resistance, 5 enzymes related to harmful metabolites and 162 nonspecific virulence factors mainly associated with transcriptional regulation, adhesion, sugar and amino acid transport. B. longum JDM301 was intrinsically resistant to ciprofloxacin, amikacin, gentamicin and streptomycin and susceptible to vancomycin, amoxicillin, cephalothin, chloramphenicol, erythromycin, ampicillin, cefotaxime, rifampicin, imipenem and trimethoprim-sulphamethoxazol. JDM301 was moderately resistant to bacitracin, while an earlier study showed that bifidobacteria were susceptible to this antibiotic. A tetracycline resistance gene with the risk of transfer was found in JDM301, which needs to be experimentally validated. CONCLUSION: The safety assessment of JDM301 using information derived from complete bacterial genome will contribute to a wider and deeper insight into the safety of probiotic bacteria.201222346255
514270.9760Comparative genomics of Clostridium bolteae and Clostridium clostridioforme reveals species-specific genomic properties and numerous putative antibiotic resistance determinants. BACKGROUND: Clostridium bolteae and Clostridium clostridioforme, previously included in the complex C. clostridioforme in the group Clostridium XIVa, remain difficult to distinguish by phenotypic methods. These bacteria, prevailing in the human intestinal microbiota, are opportunistic pathogens with various drug susceptibility patterns. In order to better characterize the two species and to obtain information on their antibiotic resistance genes, we analyzed the genomes of six strains of C. bolteae and six strains of C. clostridioforme, isolated from human infection. RESULTS: The genome length of C. bolteae varied from 6159 to 6398 kb, and 5719 to 6059 CDSs were detected. The genomes of C. clostridioforme were smaller, between 5467 and 5927 kb, and contained 5231 to 5916 CDSs. The two species display different metabolic pathways. The genomes of C. bolteae contained lactose operons involving PTS system and complex regulation, which contribute to phenotypic differentiation from C. clostridioforme. The Acetyl-CoA pathway, similar to that of Faecalibacterium prausnitzii, a major butyrate producer in the human gut, was only found in C. clostridioforme. The two species have also developed diverse flagella mobility systems contributing to gut colonization. Their genomes harboured many CDSs involved in resistance to beta-lactams, glycopeptides, macrolides, chloramphenicol, lincosamides, rifampin, linezolid, bacitracin, aminoglycosides and tetracyclines. Overall antimicrobial resistance genes were similar within a species, but strain-specific resistance genes were found. We discovered a new group of genes coding for rifampin resistance in C. bolteae. C. bolteae 90B3 was resistant to phenicols and linezolide in producing a 23S rRNA methyltransferase. C. clostridioforme 90A8 contained the VanB-type Tn1549 operon conferring vancomycin resistance. We also detected numerous genes encoding proteins related to efflux pump systems. CONCLUSION: Genomic comparison of C. bolteae and C. clostridiofrome revealed functional differences in butyrate pathways and in flagellar systems, which play a critical role within human microbiota. Most of the resistance genes detected in both species were previously characterized in other bacterial species. A few of them were related to antibiotics inactive against Clostridium spp. Some were part of mobile genetic elements suggesting that these commensals of the human microbiota act as reservoir of antimicrobial resistances.201627769168
539280.9758Characterization and transfer of antibiotic resistance in lactic acid bacteria from fermented food products. The study provides phenotypic and molecular analyses of the antibiotic resistance in lactic acid bacteria (LAB) from fermented foods in Xi'an, China. LAB strains (n = 84) belonging to 16 species of Lactobacillus (n = 73), and Streptococcus thermophilus (n = 11) were isolated and identified by sequencing their 16S rRNA gene. All strains were susceptible to ampicillin, bacitracin, and cefsulodin, and intrinsically resistant to nalidixic acid, kanamycin, and vancomycin (except L. bulgaricus, L. acidophilus, and S. thermophilus, which were susceptible to vancomycin). Some strains had acquired resistance for penicillin (n = 2), erythromycin (n = 9), clindamycin (n = 5), and tetracycline (n = 14), while resistance to gentamycin, ciprofloxacin, streptomycin, and chloramphenicol was species dependent. Minimum inhibitory concentrations presented in this study will help to review microbiological breakpoints for some of the species of Lactobacillus. The erm(B) gene was detected from two strains of each of L. fermentum and L. vaginalis, and one strain of each of L. plantarum, L. salivarius, L. acidophilus, L. animalis, and S. thermophilus. The tet genes were identified from 12 strains of lactobacilli from traditional foods. This is the first time, the authors identified tet(S) gene from L. brevis and L. kefiri. The erm(B) gene from L. fermentum NWL24 and L. salivarius NWL33, and tet(M) gene from L. plantarum NWL22 and L. brevis NWL59 were successfully transferred to Enterococcus faecalis 181 by filter mating. It was concluded that acquired antibiotic resistance is well dispersed in fermented food products in Xi'an, China and its transferability to other genera should be monitored closely.201121212956
302290.9758Sequencing and characterization of pBM400 from Bacillus megaterium QM B1551. Bacillus megaterium QM B1551 plasmid pBM400, one of seven indigenous plasmids, has been labeled with a selectable marker, isolated, completely sequenced, and partially characterized. A sequence of 53,903 bp was generated, revealing a total of 50 predicted open reading frames (ORFs); 33 were carried on one strand and 17 were carried on the other. These ORFs comprised 57% of the pBM400 sequence. Besides the replicon region and a complete rRNA operon that have previously been described, several interesting genes were found, including genes for predicted proteins for cell division (FtsZ and FtsK), DNA-RNA interaction (FtsK, Int/Rec, and reverse transcriptase), germination (CwlJ), styrene degradation (StyA), and heavy metal resistance (Cu-Cd export and ATPase). Three of the ORF products had high similarities to proteins from the Bacillus anthracis virulence plasmid pXO1. An insertion element with similarity to the IS256 family and several hypothetical proteins similar to those from the chromosomes of other Bacillus and Lactococcus species were present. This study provides a basis for isolation and sequencing of other high-molecular-weight plasmids from QM B1551 and for understanding the role of megaplasmids in gram-positive bacteria. The genes carried by pBM400 suggest a possible role of this plasmid in the survival of B. megaterium in hostile environments with heavy metals or styrene and also suggest that there has been an exchange of genes within the gram-positive bacteria, including pathogens.200314602653
5397100.9757Antimicrobial Resistance of Seventy Lactic Acid Bacteria Isolated from Commercial Probiotics in Korea. In this study, lactic acid bacteria were isolated from 21 top-selling probiotic products on Korean market and their antimicrobial resistance were analyzed. A total 152 strains were claimed to be contained in these products and 70 isolates belonging to three genera (Bifidobacterium, Lactobacillus, and Lactococcus) were obtained from these products. RAPD-PCR showed diversity among isolates of the same species except for two isolates of Lacticaibacillus rhamnosus from two different products. The agar dilution method and the broth dilution method produced different MICs for several antimicrobials. With the agar dilution method, five isolates (three isolates of Bifidobacterium animalis subsp. lactis, one isolate of B. breve, one isolate of B. longum) were susceptible to all nine antimicrobials and 15 isolates were multi-drug resistant. With the broth microdilution method, only two isolates (one isolate of B. breve and one isolate of B. longum) were susceptible while 16 isolates were multi-drug resistant. In this study, only two AMR genes were detected: 1) lnu(A) in one isolate of clindamycin-susceptible and lincomycin-resistant Limosilactobacillus reuteri; and 2) tet(W) in one tetracycline-susceptible isolate of B. longum B1-1 and two tetracycline-susceptible isolates and three tetracycline resistant isolates of B. animalis subsp. lactis. Transfer of these two genes via conjugation with a filter mating technique was not observed. These results suggest a need to monitor antimicrobial resistance in newly registered probiotics as well as probiotics with a long history of use.202336746921
6135110.9757Complete genome sequence of Bifidobacterium animalis subsp. lactis KLDS 2.0603, a probiotic strain with digestive tract resistance and adhesion to the intestinal epithelial cells. Bifidobacterium animalis subsp. lactis KLDS 2.0603 (abbreviated as KLDS 2.0603) is a probiotic strain isolated from the feces of an adult human. Previous studies showed that KLDS 2.0603 has a high resistance to simulated digestive tract conditions and a high ability to adhere to intestinal epithelial cells (Caco-2). These two characteristics are essential requirements for the selection of probiotic bacteria. To explore the stress resistance mechanism to the digestive tract environment and the adhesive proteins of this strain, in this paper, we reported the complete genome sequence of KLDS 2.0603, which contains 19,469bp and encodes 1614 coding sequences(CDSs), 15 rRNA genes, 52 tRNA genes with 1678 open reading frames.201626795356
8438120.9757Virulence of Bacteria Colonizing Vascular Bundles in Ischemic Lower Limbs. BACKGROUND: We documented previously the presence of bacterial flora in vascular bundles, lymphatics, and lymph nodes of ischemic lower limbs amputated because of multifocal atheromatic changes that made them unsuitable for reconstructive surgery and discussed their potential role in tissue destruction. The question arose why bacterial strains inhabiting lower limb skin and considered to be saprophytes become pathogenic once they colonize deep tissues. Bacterial pathogenicity is evoked by activation of multiple virulence factors encoded by groups of genes. METHODS: We identified virulence genes in bacteria cultured from deep tissue of ischemic legs of 50 patients using a polymerase chain reaction technique. RESULTS: The staphylococcal virulence genes fnbA (fibronectin-binding protein A), cna (collagen adhesin precursor), and ica (intercellular adhesion) were present in bacteria isolated from both arteries and, to a lesser extent, skin. The IS256 gene, whose product is responsible for biofilm formation, was more frequent in bacteria retrieved from the arteries than skin bacteria. Among the virulence genes of Staphylococcus epidermidis encoding autolysin atlE, icaAB (intercellular adhesion), and biofilm insert IS256, only the latter was detected in arterial specimens. Bacteria cultured from the lymphatics did not reveal expression of eta and IS256 in arteries. The Enterococcus faecalis asa 373 (aggregation substance) and cylA (cytolysin activator) frequency was greater in arteries than in skin bacteria, as were the E. faecium cyl A genes. All Pseudomonas aeruginosa virulence genes were present in bacteria cultured from both the skin and arteries. Staphylococci colonizing arterial bundles and transported to tissues via ischemic limb lymphatics expressed virulence genes at greater frequency than did those dwelling on the skin surface. Moreover, enterococci and Pseudomonas isolated from arterial bundles expressed many virulence genes. CONCLUSIONS: These findings may add to the understanding of the mechanism of development of destructive changes in lower limb ischemic tissues by the patient's, but not hospital-acquired, bacteria, as well as the generally unsatisfactory results of antibiotic administration in these cases. More aggressive antibiotic therapy targeted at the virulent species should be applied.201626431369
6049130.9757Probiotic Properties and Antioxidant Activity In Vitro of Lactic Acid Bacteria. The properties of probiotics such as lactic acid bacteria (LAB) have been widely studied over the last decades. In the present study, four different LAB species, namely Lactobacillus gasseri ATCC 33323, Lacticaseibacillus rhamnosus GG ATCC 53103, Levilactobacillus brevis ATCC 8287, and Lactiplantibacillus plantarum ATCC 14917, were investigated in order to determine their ability to survive in the human gut. They were evaluated based on their tolerance to acids, resistance to simulated gastrointestinal conditions, antibiotic resistance, and the identification of genes encoding bacteriocin production. All four tested strains demonstrated high resistance to simulated gastric juice after 3 h, and the viable counts revealed declines in cell concentrations of less than 1 log cycle. L. plantarum showed the highest level of survival in the human gut, with counts of 7.09 log CFU/mL. For the species L. rhamnosus and L. brevis, the values were 6.97 and 6.52, respectively. L. gasseri, after 12 h, showed a 3.96 log cycle drop in viable counts. None of the evaluated strains inhibited resistance to ampicillin, gentamicin, kanamycin, streptomycin, erythromycin, clindamycin, tetracycline, or chloramphenicol. With regard to bacteriocin genes, the Pediocin PA gene was identified in Lactiplantibacillus plantarum ATCC 14917, Lacticaseibacillus rhamnosus GG ATCC 53103, and Lactobacillus gasseri ATCC 33323. The PlnEF gene was detected in Lactiplantibacillus plantarum ATCC 14917 and Lacticaseibacillus rhamnosus GG ATCC 53103. The Brevicin 174A and PlnA genes were not detected in any bacteria. Moreover, the potential antioxidant activity of LAB's metabolites was evaluated. At the same time, the possible antioxidant activity of metabolites of LAB was first tested using the free radical DDPH(•) (a, a-Diphenyl-β-Picrylhydrazyl) and then evaluated with regard to their radical scavenging activity and inhibition against peroxyl radical induced DNA scission. All strains showed antioxidant activity; however, the best antioxidant activity was achieved by L. brevis (94.47%) and L. gasseri (91.29%) at 210 min. This study provides a comprehensive approach to the action of these LAB and their use in the food industry.202337317238
5389140.9756Identification and characterization of potential probiotic lactic acid bacteria isolated from pig feces at various production stages. Lactic acid bacteria (LAB) were isolated, identified, and characterized from pig feces at various growth stages and feed rations in order to be used as probiotic feed additives. Lactic acid bacteria numbers ranged from 7.10 ± 1.50 to 9.40 log CFUs/g for growing and lactating pigs, respectively. Isolates (n = 230) were identified by (GTG)5-polymerase chain reaction and partial sequence analysis of 16S rRNA. Major LAB populations were Limosilactobacillus reuteri (49.2%), Pediococcus pentosaceus (20%), Lactobacillus amylovorus (11.4%), and L. johnsonii (8.7%). In-vitro assays were performed, including surface characterization and tolerance to acid and bile salts. Several lactobacilli exhibited hydrophobic and aggregative characteristics and were able to withstand gastrointestinal tract conditions. In addition, lactobacilli showed starch- and phytate-degrading ability, as well as antagonistic activity against Gram-negative pathogens and the production of bacteriocin-like inhibitory substances. When resistance or susceptibility to antibiotics was evaluated, high phenotypic resistance to ampicillin, gentamicin, kanamycin, streptomycin, and tetracycline and susceptibility towards clindamycin and chloramphenicol was observed in the assayed LAB. Genotypic characterization showed that 5 out of 15 resistance genes were identified in lactobacilli; their presence did not correlate with phenotypic traits. Genes erm(B), strA, strB, and aadE conferring resistance to erythromycin and streptomycin were reported among all lactobacilli, whereas tet(M) gene was harbored by L. reuteri and L. amylovorus strains. Based on these results, 6 probiotic LAB strains (L. reuteri F207R/G9R/B66R, L. amylovorus G636T/S244T, and L. johnsonii S92R) can be selected to explore their potential as direct feed additives to promote swine health and replace antibiotics.202337020571
5388150.9756Molecular identification and antibiotic resistance of bacteriocinogenic lactic acid bacteria isolated from table olives. In the present study, lactic acid bacteria were isolated from table olive in Morocco. Random Amplified Polymorphic DNA fingerprinting with (GTG)'(5) primer revealed a remarquable variability within isolates. According to the molecular identification, Enterococcus faecium was the most dominant species isolated with 32 strains (84.21%), followed by 4 strains of Weissella paramesenteroides (10.52%), 1 strain of Leuconostoc mesenteroides (2.63%) and Lactobacillus plantarum (2.63%). All of the strains that were identified showed occurrence of more than one bacteriocin-encoding gene. Based on the results obtained, L. plantarum 11 showed a mosaic of loci coding for nine bacteriocins (pln A, pln D, pln K, pln G, pln B, pln C, pln N, pln J, ent P). A phenotypic and genotypic antibiotic resistance was also examined. L. plantarum 11, L. mesenteroides 62, W. paramesenteroides 9 and W. paramesenteroides 36 as well as all the strains of E. faecium were susceptible to ampicillin, clindamycin and teicoplanin; however, isolates showed a resistance profile against tetracycline and erythromycin. Except E. faecium 114, E. faecium 130 and L. plantarum 11, no antibiotic resistance genes were detected in all of the strains, which might be due to resistances resulting from non-transferable or non-acquired resistance determinants (intrinsic mechanism).202132995979
6056160.9756Virulence, antibiotic resistance and biogenic amines of bacteriocinogenic lactococci and enterococci isolated from goat milk. The present study aimed to investigate the virulence, antibiotic resistance and biogenic amine production in bacteriocinogenic lactococci and enterococci isolated from goat milk in order to evaluate their safety. Twenty-nine bacteriocinogenic lactic acid bacteria (LAB: 11 Lactococcus spp., and 18 Enterococcus spp.) isolated from raw goat milk were selected and subjected to PCR to identify gelE, cylA, hyl, asa1, esp, efaA, ace, vanA, vanB, hdc1, hdc2, tdc and odc genes. The expression of virulence factors (gelatinase, hemolysis, lipase, DNAse, tyramine, histamine, putrescine) in different incubation temperatures was assessed by phenotypic methods, as well as the resistance to vancomycin, gentamicin, chloramphenicol, ampicillin and rifampicin (using Etest®). The tested isolates presented distinct combinations of virulence related genes, but not necessarily the expression of such factors. The relevance of identifying virulence-related genes in bacteriocinogenic LAB was highlighted, demanding for care in their usage as starter cultures or biopreservatives due to the possibility of horizontal gene transfer to other bacteria in food systems.201424960293
6136170.9756Complete genome sequences of Lacticaseibacillus paracasei INIA P272 (CECT 8315) and Lacticaseibacillus rhamnosus INIA P344 (CECT 8316) isolated from breast-fed infants reveal probiotic determinants. Lacticaseibacillus paracasei INIA P272 and Lacticaseibacillus rhamnosus INIA P344, isolated from breast-fed infants, are two promising bacterial strains for their use in functional foods according to their demonstrated probiotic and technological characteristics. To better understand their probiotic characteristics and evaluate their safety, here we report the draft genome sequences of both strains as well as the analysis of their genetical content. The draft genomes of L. paracasei INIA P272 and L. rhamnosus INIA P344 comprise 3.01 and 3.26 Mb, a total of 2994 and 3166 genes and a GC content of 46.27 % and 46.56 %, respectively. Genomic safety was assessed following the EFSA guidelines: the identification of both strains was confirmed through Average Nucleotide Identity, and the absence of virulence, pathogenic and antibiotic resistance genes was demonstrated. The genome stability analysis revealed the presence of plasmids and phage regions in both genomes, however, CRISPR sequences and other mechanisms to fight against phage infections were encoded. The probiotic abilities of both strains were supported by the presence of genes for the synthesis of SCFA, genes involved in resistance to acid and bile salts or a thiamine production cluster. Moreover, the encoded exopolysaccharide biosynthesis genes could provide additional protection against the deleterious gastrointestinal conditions, besides which, playing a key role in adherence and coaggregation of pathogenic bacteria together with the high number of adhesion proteins and domains encoded by both genomes. Additionally, the bacteriocin cluster genes found in both strains, could provide an advantageous ability to compete against pathogenic bacteria. This genomic study supports the probiotic characteristics described previously for these two strains and satisfies the safety requirements to be used in food products.202235868412
5213180.9755Draft genome sequences of Limosilactobacillus fermentum IJAL 01 335, isolated from a traditional cereal fermented dough. Limosilactobacillus fermentum IJAL 01 335 was isolated from mawè, a spontaneously fermented cereal dough from Benin. The 1.83 Mb draft genome sequence (52.37% GC) comprises 154 contigs, 1,836 coding sequences, and 23 predicted antibiotic resistance genes, providing insights into its genetic features and potential application in food fermentation.202541170963
6051190.9755Antibiotic susceptibility of different lactic acid bacteria strains. Five lactic acid bacteria (LAB) strains belonging to species Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus delbrueckii subsp. lactis and Streptococcus thermophilus were tested for their susceptibility to 27 antibiotics. The minimum inhibitory concentrations of each antimicrobial were determined using a microdilution test. Among the strains a high susceptibility was detected for most of the cell-wall synthesis inhibitors (penicillins, cefoxitin and vancomycin) and resistance toward inhibitors of DNA synthesis (trimethoprim/sulfonamides and fluoroquinolones). Generally, the Lactobacillus strains were inhibited by antibiotics such as chloramphenicol, erythromycin and tetracycline at breakpoint levels lower or equal to the levels defined by the European Food Safety Authority. Despite the very similar profile of S. thermophilus LC201 to lactobacilli, the detection of resistance toward erythromycin necessitates the performance of additional tests in order to prove the absence of transferable resistance genes.201122146692