# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3069 | 0 | 0.9930 | The hospital sink drain biofilm resistome is independent of the corresponding microbiota, the environment and disinfection measures. In hospitals, the transmission of antibiotic-resistant bacteria (ARB) may occur via biofilms present in sink drains, which can lead to infections. Despite the potential role of sink drains in the transmission of ARB in nosocomial infections, routine surveillance of these drains is lacking in most hospitals. As a result, there is currently no comprehensive understanding of the transmission of ARB and the dissemination of antimicrobial resistance genes (ARGs) and associated mobile genetic elements (MGEs) via sink drains. This study employed a multifaceted approach to monitor the total aerobic bacteria as well as the presence of carbapenemase-producing Enterobacterales (CPEs), the microbiota and the resistome of sink drain biofilms (SDBs) and hospital wastewater (WW) of two separate intensive care units (ICUs) in the same healthcare facility in France. Samples of SDB and WW were collected on a monthly basis, from January to April 2023, in the neonatal (NICU) and the adult (AICU) ICUs of Grenoble Alpes University Hospital. In the NICU, sink drain disinfection with surfactants was performed routinely. In the AICU, routine disinfection is not carried out. Culturable aerobic bacteria were quantified on non-selective media, and CPEs were screened using two selective agars. Isolates were identified by MALDI-TOF MS, and antibiotic susceptibility testing (AST) was performed on Enterobacterales and P. aeruginosa. The resistome was analyzed by high-throughput qPCR targeting >80 ARGs and MGEs. The overall bacterial microbiota was assessed via full-length 16S rRNA sequencing. No CPEs were isolated from SDBs in either ICU by bacterial culture. Culture-independent approaches revealed an overall distinct microbiota composition of the SDBs in the two ICUs. The AICU SDBs were dominated by pathogens containing Gram-negative bacterial genera including Pseudomonas, Stenotrophomona, Klebsiella, and Gram-positive Staphylococcus, while the NICU SDBs were dominated by the Gram-negative genera Achromobacter, Serratia, and Acidovorax, as well as the Gram-positive genera Weisella and Lactiplantibacillus. In contrast, the resistome of the SDBs exhibited no significant differences between the two ICUs, indicating that the abundance of ARGs and MGEs is independent of microbiota composition and disinfection practices. The AICU WW exhibited more distinct aerobic bacteria than the NICU WW. In addition, the AICU WW yielded 15 CPEs, whereas the NICU WW yielded a single CPE. All the CPEs were characterized at the species level. The microbiota of the NICU and AICU WW samples differed from their respective SDBs and exhibited distinct variations over the four-month period:the AICU WW contained a greater number of genes conferring resistance to quinolones and integron integrase genes, whereas the NICU WW exhibited a higher abundance of streptogramin resistance genes. Our study demonstrated that the resistome of the hospital SDBs in the two ICUs of the investigated healthcare institute is independent of the microbiota, the environment, and the local disinfection measures. However, the prevalence of CPEs in the WW pipes collecting the waste from the investigated drains differed. These findings offer valuable insights into the resilience of resistance genes in SDBs in ICUs, underscoring the necessity for innovative strategies to combat antimicrobial resistance in clinical environments. | 2025 | 40483807 |
| 7131 | 1 | 0.9928 | Longitudinal study of the short- and long-term effects of hospitalisation and oral trimethoprim-sulfadiazine administration on the equine faecal microbiome and resistome. BACKGROUND: Hospitalisation and antimicrobial treatment are common in horses and significantly impact the intestinal microbiota. Antimicrobial treatment might also increase levels of resistant bacteria in faeces, which could spread to other ecological compartments, such as the environment, other animals and humans. In this study, we aimed to characterise the short- and long-term effects of transportation, hospitalisation and trimethoprim-sulfadiazine (TMS) administration on the faecal microbiota and resistome of healthy equids. METHODS: In a longitudinal experimental study design, in which the ponies served as their own control, faecal samples were collected from six healthy Welsh ponies at the farm (D0-D13-1), immediately following transportation to the hospital (D13-2), during 7 days of hospitalisation without treatment (D14-D21), during 5 days of oral TMS treatment (D22-D26) and after discharge from the hospital up to 6 months later (D27-D211). After DNA extraction, 16S rRNA gene sequencing was performed on all samples. For resistome analysis, shotgun metagenomic sequencing was performed on selected samples. RESULTS: Hospitalisation without antimicrobial treatment did not significantly affect microbiota composition. Oral TMS treatment reduced alpha-diversity significantly. Kiritimatiellaeota, Fibrobacteres and Verrucomicrobia significantly decreased in relative abundance, whereas Firmicutes increased. The faecal microbiota composition gradually recovered after discontinuation of TMS treatment and discharge from the hospital and, after 2 weeks, was more similar to pre-treatment composition than to composition during TMS treatment. Six months later, however, microbiota composition still differed significantly from that at the start of the study and Spirochaetes and Verrucomicrobia were less abundant. TMS administration led to a significant (up to 32-fold) and rapid increase in the relative abundance of resistance genes sul2, tetQ, ant6-1a, and aph(3")-lb. lnuC significantly decreased directly after treatment. Resistance genes sul2 (15-fold) and tetQ (six-fold) remained significantly increased 6 months later. CONCLUSIONS: Oral treatment with TMS has a rapid and long-lasting effect on faecal microbiota composition and resistome, making the equine hindgut a reservoir and potential source of resistant bacteria posing a risk to animal and human health through transmission. These findings support the judicious use of antimicrobials to minimise long-term faecal presence, excretion and the spread of antimicrobial resistance in the environment. Video Abstract. | 2023 | 36850017 |
| 2541 | 2 | 0.9927 | Increased antibiotic resistance in preterm neonates under early antibiotic use. The standard use of antibiotics in newborns to empirically treat early-onset sepsis can adversely affect the neonatal gut microbiome, with potential long-term health impacts. Research into the escalating issue of antimicrobial resistance in preterm infants and antibiotic practices in neonatal intensive care units is limited. A deeper understanding of the effects of early antibiotic intervention on antibiotic resistance in preterm infants is crucial. This retrospective study employed metagenomic sequencing to evaluate antibiotic resistance genes (ARGs) in the meconium and subsequent stool samples of preterm infants enrolled in the Routine Early Antibiotic Use in Symptomatic Preterm Neonates study. Microbial metagenomics was conducted using a subset of fecal samples from 30 preterm infants for taxonomic profiling and ARG identification. All preterm infants exhibited ARGs, with 175 unique ARGs identified, predominantly associated with beta-lactam, tetracycline, and aminoglycoside resistance. Notably, 23% of ARGs was found in preterm infants without direct or intrapartum antibiotic exposure. Post-natal antibiotic exposure increases beta-lactam/tetracycline resistance while altering mechanisms that aid bacteria in withstanding antibiotic pressure. Microbial profiling revealed 774 bacterial species, with antibiotic-naive infants showing higher alpha diversity (P = 0.005) in their microbiota and resistome compared with treated infants, suggesting a more complex ecosystem. High ARG prevalence in preterm infants was observed irrespective of direct antibiotic exposure and intensifies with age. Prolonged membrane ruptures and maternal antibiotic use during gestation and delivery are linked to alterations in the preterm infant resistome and microbiome, which are pivotal in shaping the ARG profiles in the neonatal gut.This study is registered with ClinicalTrials.gov as NCT02784821. IMPORTANCE: A high burden of antibiotic resistance in preterm infants poses significant challenges to neonatal health. The presence of antibiotic resistance genes, along with alterations in signaling, energy production, and metabolic mechanisms, complicates treatment strategies for preterm infants, heightening the risk of ineffective therapy and exacerbating outcomes for these vulnerable neonates. Despite not receiving direct antibiotic treatment, preterm infants exhibit a concerning prevalence of antibiotic-resistant bacteria. This underscores the complex interplay of broader influences, including maternal antibiotic exposure during and beyond pregnancy and gestational complications like prolonged membrane ruptures. Urgent action, including cautious antibiotic practices and enhanced antenatal care, is imperative to protect neonatal health and counter the escalating threat of antimicrobial resistance in this vulnerable population. | 2024 | 39373498 |
| 3112 | 3 | 0.9927 | Farm-to-fork changes in poultry microbiomes and resistomes in Maputo City, Mozambique. Increasing demand for poultry has spurred poultry production in low- and middle-income countries like Mozambique. Poultry may be an important source of foodborne, antimicrobial-resistant bacteria to consumers in settings with limited water, sanitation, and hygiene infrastructure. The Chicken Exposures and Enteric Pathogens in Children Exposed through Environmental Pathways (ChEEP ChEEP) study was conducted in Maputo City, Mozambique from 2019 to 2021 to quantify enteric pathogen exposures along the supply chain for commercial and local (i.e., scavenger) chicken breeds. Here, we performed metagenomic sequencing of total DNA from banked ChEEP ChEEP samples to characterize fecal and carcass microbiomes and resistome diversity between chicken breeds and along the supply chain. Fecal samples (n = 26) were collected from commercial and local chickens at production sites and markets and carcass (n = 49) and rinse bucket samples (n = 26) from markets. We conducted taxonomic profiling and identified antimicrobial resistance genes (ARGs) from metagenomic sequence data, focusing especially on potential human pathogens and "high-risk" ARGs. We estimated alpha diversity for each sample and compared by site and breed. We estimated Bray-Curtis dissimilarity between samples and examined clustering. We found that commercial and local chickens harbored distinct fecal potential pathogens and resistomes at production and market sites. Many potentially pathogenic bacteria and ARGs present in chicken fecal samples are also present on carcasses sold to consumers. Finally, commercial chicken carcasses contain high-risk ARGs that are not necessarily introduced from chicken feces. These results indicate markets are an important site of exposure to potentially pathogenic bacteria and high-risk ARGs. IMPORTANCE: While chicken eggs and meat are a critical protein source in low-income settings, antibiotics are routinely fed to chickens with consequences for selection of antimicrobial resistance. Evaluating how poultry gut bacterial communities, including potential human pathogens and high-risk antimicrobial resistance genes, differ from farm to market could help identify where to target interventions to minimize transmission risks to human populations. In this study in Maputo City, Mozambique, we found compositional differences between commercial and local chicken breeds at production and market sites. We also found that while all potentially pathogenic bacteria and many high-risk antimicrobial resistance genes persisted from production and market through processing, some resistance genes were detected on carcass samples only after processing, suggesting human or environmental contamination is occurring within markets. Overall, our findings indicate that open-air markets may represent a critical juncture for human exposures to pathogens and antimicrobial resistance genes from poultry and poultry products. | 2025 | 39699181 |
| 2542 | 4 | 0.9925 | Bacterial colonization and antimicrobial resistance genes in neonatal enteral feeding tubes. Enteral feeding is a key component of care in neonatal intensive care units (NICUs); however, feeding tubes harbor microbes. These microbes have the potential to cause disease, yet their source remains controversial and clinical recommendations to reduce feeding tube colonization are lacking. This study aims to improve our understanding of the bacteria in neonatal feeding tubes and to evaluate factors that may affect these bacteria. 16S rRNA gene sequencing was used to characterize the bacteria present in pharyngeal, esophageal, and gastric portions of feeding tubes, residual fluid of the tubes, and infant stool using samples from 47 infants. Similar distributions of taxa were observed in all samples, although beta diversity differed by sample type. Feeding tube samples had lower alpha diversity than stool samples, and alpha diversity increased with gestational age, day of life, and tube dwell time. In a subset of samples from 6 infants analyzed by whole metagenome sequencing, there was greater overlap in transferable antimicrobial resistance genes between tube and fecal samples in breast milk fed infants than in formula fed infants. These findings develop our understanding of neonatal feeding tube colonization, laying a foundation for research into methods for minimizing NICU patients' exposure to antimicrobial resistant microbes. | 2019 | 30915455 |
| 5803 | 5 | 0.9925 | Face mask sampling reveals antimicrobial resistance genes in exhaled aerosols from patients with chronic obstructive pulmonary disease and healthy volunteers. INTRODUCTION: The degree to which bacteria in the human respiratory tract are aerosolised by individuals is not established. Building on our experience sampling bacteria exhaled by individuals with pulmonary tuberculosis using face masks, we hypothesised that patients with conditions frequently treated with antimicrobials, such as chronic obstructive pulmonary disease (COPD), might exhale significant numbers of bacteria carrying antimicrobial resistance (AMR) genes and that this may constitute a previously undefined risk for the transmission of AMR. METHODS: Fifteen-minute mask samples were taken from 13 patients with COPD (five paired with contemporaneous sputum samples) and 10 healthy controls. DNA was extracted from cell pellets derived from gelatine filters mounted within the mask. Quantitative PCR analyses directed to the AMR encoding genes: blaTEM (β-lactamase), ErmB (target methylation), mefA (macrolide efflux pump) and tetM (tetracycline ribosomal protection protein) and six additional targets were investigated. Positive signals above control samples were obtained for all the listed genes; however, background signals from the gelatine precluded analysis of the additional targets. RESULTS: 9 patients with COPD (69%), aerosolised cells containing, in order of prevalence, mefA, tetM, ErmB and blaTEM, while three healthy controls (30%) gave weak positive signals including all targets except blaTEM. Maximum estimated copy numbers of AMR genes aerosolised per minute were mefA: 3010, tetM: 486, ErmB: 92 and blaTEM: 24. The profile of positive signals found in sputum was not concordant with that in aerosol in multiple instances. DISCUSSION: We identified aerosolised AMR genes in patients repeatedly exposed to antimicrobials and in healthy volunteers at lower frequencies and levels. The discrepancies between paired samples add weight to the view that sputum content does not define aerosol content. Mask sampling is a simple approach yielding samples from all subjects and information distinct from sputum analysis. Our results raise the possibility that patient-generated aerosols may be a significant means of AMR dissemination that should be assessed further and that consideration be given to related control measures. | 2018 | 30271606 |
| 2720 | 6 | 0.9924 | Phenotypic and genotypic characterization of antimicrobial resistance in Enterococcus spp. Isolated from the skin microbiota of channel catfish (Ictalurus punctatus) in Southeastern United States. BACKGROUND: Aquaculture systems may contribute to the emergence and persistence of antimicrobial-resistant (AMR) bacteria, posing risks to animal, environmental, and human health. This study characterized the phenotypic and genotypic antimicrobial resistance profiles of Enterococcus spp. isolated from the skin microbiota of 125 channel catfish (Ictalurus punctatus) harvested from two earthen ponds in Alabama, USA. METHODS: Skin swabs from the body of channel catfish were enriched in Enterococcosel broth and cultured on Enterococcosel agar at 28 °C for 24 h. Isolates were confirmed using Biolog Gen III and VITEK(®)2, and antimicrobial susceptibility was determined using the Kirby-Bauer disk diffusion method. Thirty-five randomly sampled isolates underwent whole-genome sequencing for genotypic characterization. RESULTS: 36% of isolates exhibited multidrug resistance (resistance to ≥ 3 antimicrobial classes), with the highest resistance rates observed for ampicillin (44.8%), rifampicin (42.4%), and tetracycline (38.4%). The most prevalent resistance genes were aac(6')-Iid (65.7%), aac(6')-Ii (22.9%), efmA, and msr(C) (20.0% each). Plasmid replicons rep1 and repUS15 frequently co-occurred with resistance genes. Biofilm-associated genes, including efaA, fsrA, fsrB, sprE, ebpABC, ace, and scm, were commonly detected. Multivariate analyses (PERMANOVA, PCA) revealed no significant species-level differences in resistance burden or biofilm gene carriage, indicating similar resistance and virulence gene carriage across species in this dataset. CONCLUSIONS: The skin microbiota of pond-raised catfish harbors antimicrobial-resistant Enterococcus spp. with mobile resistance elements and biofilm-associated virulence factors, suggesting a potential role in AMR persistence within aquaculture settings. These findings support the need for targeted AMR surveillance in fish-associated microbiota as part of integrated One Health strategies. | 2025 | 40760424 |
| 3072 | 7 | 0.9924 | Faecal microbiota and antibiotic resistance genes in migratory waterbirds with contrasting habitat use. Migratory birds may have a vital role in the spread of antimicrobial resistance across habitats and regions, but empirical data remain scarce. We investigated differences in the gut microbiome composition and the abundance of antibiotic resistance genes (ARGs) in faeces from four migratory waterbirds wintering in South-West Spain that differ in their habitat use. The white stork Ciconia ciconia and lesser black-backed gull Larus fuscus are omnivorous and opportunistic birds that use highly anthropogenic habitats such as landfills and urban areas. The greylag goose Anser anser and common crane Grus grus are herbivores and use more natural habitats. Fresh faeces from 15 individuals of each species were analysed to assess the composition of bacterial communities using 16S rRNA amplicon-targeted sequencing, and to quantify the abundance of the Class I integron integrase gene (intI1) as well as genes encoding resistance to sulfonamides (sul1), beta-lactams (bla(TEM), bla(KPC) and bla(NDM)), tetracyclines (tetW), fluoroquinolones (qnrS), and colistin (mcr-1) using qPCR. Bacterial communities in gull faeces were the richest and most diverse. Beta diversity analysis showed segregation in faecal communities between bird species, but those from storks and gulls were the most similar, these being the species that regularly feed in landfills. Potential bacterial pathogens identified in faeces differed significantly between bird species, with higher relative abundance in gulls. Faeces from birds that feed in landfills (stork and gull) contained a significantly higher abundance of ARGs (sul1, bla(TEM), and tetW). Genes conferring resistance to last resort antibiotics such as carbapenems (bla(KPC)) and colistin (mcr-1) were only observed in faeces from gulls. These results show that these bird species are reservoirs of antimicrobial resistant bacteria and suggest that waterbirds may disseminate antibiotic resistance across environments (e.g., from landfills to ricefields or water supplies), and thus constitute a risk for their further spread to wildlife and humans. | 2021 | 33872913 |
| 3223 | 8 | 0.9924 | A cross-sectional comparison of gut metagenomes between dairy workers and community controls. BACKGROUND: As a nexus of routine antibiotic use and zoonotic pathogen presence, the livestock farming environment is a potential hotspot for the emergence of zoonotic diseases and antibiotic resistant bacteria. Livestock can further facilitate disease transmission by serving as intermediary hosts for pathogens before a spillover event. In light of this, we aimed to characterize the microbiomes and resistomes of dairy workers, whose exposure to the livestock farming environment places them at risk for facilitating community transmission of antibiotic resistant genes and emerging zoonotic diseases. RESULTS: Using shotgun sequencing, we investigated differences in the taxonomy, diversity and gene presence of 10 dairy farm workers and 6 community controls' gut metagenomes, contextualizing these samples with additional publicly available gut metagenomes. We found no significant differences in the prevalence of resistance genes, virulence factors, or taxonomic composition between the two groups. The lack of statistical significance may be attributed, in part, to the limited sample size of our study or the potential similarities in exposures between the dairy workers and community controls. We did, however, observe patterns warranting further investigation including greater abundance of tetracycline resistance genes and prevalence of cephamycin resistance genes as well as lower average gene diversity (even after accounting for differential sequencing depth) in dairy workers' metagenomes. We also found evidence of commensal organism association with tetracycline resistance genes in both groups (including Faecalibacterium prausnitzii, Ligilactobacillus animalis, and Simiaoa sunii). CONCLUSIONS: This study highlights the utility of shotgun metagenomics in examining the microbiomes and resistomes of livestock workers, focusing on a cohort of dairy workers in the United States. While our study revealed no statistically significant differences between groups in taxonomy, diversity and gene presence, we observed patterns in antibiotic resistance gene abundance and prevalence that align with findings from previous studies of livestock workers in China and Europe. Our results lay the groundwork for future research involving larger cohorts of dairy and non-dairy workers to better understand the impact of occupational exposure to livestock farming on the microbiomes and resistomes of workers. | 2024 | 39033279 |
| 2547 | 9 | 0.9923 | Antimicrobial resistance monitoring in the Danish swine production by phenotypic methods and metagenomics from 1999 to 2018. BackgroundIn Denmark, antimicrobial resistance (AMR) in pigs has been monitored since 1995 by phenotypic approaches using the same indicator bacteria. Emerging methodologies, such as metagenomics, may allow novel surveillance ways.AimThis study aimed to assess the relevance of indicator bacteria (Escherichia coli and Enterococcus faecalis) for AMR surveillance in pigs, and the utility of metagenomics.MethodsWe collated existing data on AMR and antimicrobial use (AMU) from the Danish surveillance programme and performed metagenomics sequencing on caecal samples that had been collected/stored through the programme during 1999-2004 and 2015-2018. We compared phenotypic and metagenomics results regarding AMR, and the correlation of both with AMU.ResultsVia the relative abundance of AMR genes, metagenomics allowed to rank these genes as well as the AMRs they contributed to, by their level of occurrence. Across the two study periods, resistance to aminoglycosides, macrolides, tetracycline, and beta-lactams appeared prominent, while resistance to fosfomycin and quinolones appeared low. In 2015-2018 sulfonamide resistance shifted from a low occurrence category to an intermediate one. Resistance to glycopeptides consistently decreased during the entire study period. Outcomes of both phenotypic and metagenomics approaches appeared to positively correlate with AMU. Metagenomics further allowed to identify multiple time-lagged correlations between AMU and AMR, the most evident being that increased macrolide use in sow/piglets or fatteners led to increased macrolide resistance with a lag of 3-6 months.ConclusionWe validated the long-term usefulness of indicator bacteria and showed that metagenomics is a promising approach for AMR surveillance. | 2023 | 37199989 |
| 5609 | 10 | 0.9923 | Antimicrobial Resistance in Commensal Bacteria from Large-Scale Chicken Flocks in the Dél-Alföld Region of Hungary. Background: Antimicrobial resistance (AMR) is increasingly acknowledged as a critical global challenge, posing serious risks to human and animal health and potentially disrupting poultry production systems. Commensal bacteria such as Staphylococcus spp., Enterococcus spp., and Escherichia coli may serve as important reservoirs and vectors of resistance genes. Objectives: This study aimed to assess the AMR profiles of bacterial strains isolated from industrial chicken farms in the Dél-Alföld region of Hungary, providing region-specific insights into resistance dynamics. Methods: A total of 145 isolates, including Staphylococcus spp., Enterococcus spp., and E. coli isolates, were subjected to minimum inhibitory concentration (MIC) testing against 15 antimicrobial agents, following Clinical and Laboratory Standards Institute (CLSI) guidelines. Advanced multivariate statistics, machine learning algorithms, and network-based approaches were employed to analyze resistance patterns and co-resistance associations. Results Multidrug resistance (MDR) was identified in 43.9% of Staphylococcus spp. isolates, 28.8% of Enterococcus spp. isolates, and 75.6% of E. coli isolates. High levels of resistance to florfenicol, enrofloxacin, and potentiated sulfonamides were observed, whereas susceptibility to critical antimicrobials such as imipenem and vancomycin remained largely preserved. Discussion: Our findings underscore the necessity of implementing region-specific AMR monitoring programs and strengthening multidisciplinary collaboration within the "One Health" framework with proper animal hygiene and biosecurity measures to limit the spread of antimicrobial resistance and protect both animal and human health. | 2025 | 40872642 |
| 1811 | 11 | 0.9923 | Abundance of clinically relevant antimicrobial resistance genes in the golden jackal (Canis aureus) gut. The spread of antimicrobial resistance (AMR) is a critical One Health issue. Wildlife could act as reservoirs or vehicles of AMR bacteria (ARBs) and AMR genes (ARGs) but are relatively understudied. We sought to investigate clinically relevant ARGs in golden jackals (Canis aureus) thriving near human settlements in Israel. Fecal samples were collected from 111 jackals across four regions over a 10-month period. Various animal and spatio-temporal metadata were collected. Samples were analyzed by quantitative PCR (qPCR) for beta-lactamases (blaTEM, blaCTX-M15, and blaSHV), qnrS and int1. A subset of samples was subject to shotgun metagenomic sequencing followed by resistome and microbiome analyses. qPCR detected a high prevalence of ARGs, including beta-lactamases (blaTEM-1, 96.4%; blaCTX-M-15, 51.4%, blaSHV, 15.3%), fluoroquinolone resistance (qnrS, 87.4%), and class 1 integrons (Int1, 94.6%). The blaTEM-1 gene was found to be more prevalent in adult jackals compared to younger ones. Metagenomic analysis of a subset of samples revealed a diverse gut microbiome harboring a rich resistome with tetracycline resistance genes being the most prevalent. Metagenome-assembled genome analysis further identified several ARGs associated with clinically relevant bacteria. These findings highlight the potential role of golden jackals as reservoirs for AMR and emphasize the need for ongoing surveillance to better understand AMR transmission dynamics at the wildlife-human interface. IMPORTANCE: The research highlights the potential role of the golden jackals as reservoirs for antimicrobial resistance (AMR). The high prevalence of clinically relevant AMR genes in these jackals emphasizes the need for ongoing surveillance and monitoring to better understand AMR transmission dynamics at the wildlife-human interface. | 2025 | 39945541 |
| 2591 | 12 | 0.9923 | What samples are suitable for monitoring antimicrobial-resistant genes? Using NGS technology, a comparison between eDNA and mrDNA analysis from environmental water. INTRODUCTION: The rise in antimicrobial resistance (AMR) that is affecting humans, animals, and the environment, compromises the human immune system and represents a significant threat to public health. Regarding the impact on water sanitation, the risk that antimicrobial-resistant genes (ARGs) and antimicrobial-resistant bacteria in surface water in cities pose to human health remains unclear. To determine the prevalence of AMR in environmental surface water in Japan, we used DNA sequencing techniques on environmental water DNA (eDNA) and the DNA of multidrug-resistant bacteria (mrDNA). METHODS: The eDNA was extracted from four surface water samples obtained from the Tokyo area and subjected to high- throughput next-generation DNA sequencing using Illumina-derived shotgun metagenome analysis. The sequence data were analyzed using the AmrPlusPlus pipeline and the MEGARes database. Multidrug-resistant bacteria were isolated using a culture-based method from water samples and were screened by antimicrobial susceptibility testing (for tetracycline, ampicillin-sulbactam, amikacin, levofloxacin, imipenem, and clarithromycin). Of the 284 isolates, 22 were identified as multidrug-resistant bacteria. The mrDNA was sequenced using the Oxford nanopore MinION system and analyzed by NanoARG, a web service for detecting and contextualizing ARGs. RESULTS AND DISCUSSION: The results from eDNA and mrDNA revealed that ARGs encoding beta-lactams and multidrug resistance, including multidrug efflux pump genes, were frequently detected in surface water samples. However, mrDNA also revealed many sequence reads from multidrug-resistant bacteria, as well as nonspecific ARGs, whereas eDNA revealed specific ARGs such as pathogenic OXA-type and New Delhi metallo (NDM)-beta-lactamase ARGs. CONCLUSION: To estimate potential AMR pollution, our findings suggested that eDNA is preferable for detecting pathogen ARGs. | 2023 | 38179449 |
| 3157 | 13 | 0.9923 | Reservoirs of antimicrobial resistance genes in retail raw milk. BACKGROUND: It has been estimated that at least 3% of the USA population consumes unpasteurized (raw) milk from animal sources, and the demand to legalize raw milk sales continues to increase. However, consumption of raw milk can cause foodborne illness and be a source of bacteria containing transferrable antimicrobial resistance genes (ARGs). To obtain a comprehensive understanding of the microbiome and antibiotic resistome in both raw and processed milk, we systematically analyzed 2034 retail milk samples including unpasteurized milk and pasteurized milk via vat pasteurization, high-temperature-short-time pasteurization, and ultra-pasteurization from the United States using complementary culture-based, 16S rRNA gene, and metagenomic sequencing techniques. RESULTS: Raw milk samples had the highest prevalence of viable bacteria which were measured as all aerobic bacteria, coliform, and Escherichia coli counts, and their microbiota was distinct from other types of milk. 16S rRNA gene sequencing revealed that Pseudomonadaceae dominated raw milk with limited levels of lactic acid bacteria. Among all milk samples, the microbiota remained stable with constant bacterial populations when stored at 4 °C. In contrast, storage at room temperature dramatically enriched the bacterial populations present in raw milk samples and, in parallel, significantly increased the richness and abundance of ARGs. Metagenomic sequencing indicated raw milk possessed dramatically more ARGs than pasteurized milk, and a conjugation assay documented the active transfer of bla(CMY-2), one ceftazidime resistance gene present in raw milk-borne E. coli, across bacterial species. The room temperature-enriched resistome differed in raw milk from distinct geographic locations, a difference likely associated with regionally distinct milk microbiota. CONCLUSION: Despite advertised "probiotic" effects, our results indicate that raw milk microbiota has minimal lactic acid bacteria. In addition, retail raw milk serves as a reservoir of ARGs, populations of which are readily amplified by spontaneous fermentation. There is an increased need to understand potential food safety risks from improper transportation and storage of raw milk with regard to ARGs. Video Abstract. | 2020 | 32591006 |
| 2590 | 14 | 0.9923 | Combining stool and stories: exploring antimicrobial resistance among a longitudinal cohort of international health students. BACKGROUND: Antimicrobial resistance (AMR) is a global public health concern that requires transdisciplinary and bio-social approaches. Despite the continuous calls for a transdisciplinary understanding of this problem, there is still a lack of such studies. While microbiology generates knowledge about the biomedical nature of bacteria, social science explores various social practices related to the acquisition and spread of these bacteria. However, the two fields remain disconnected in both methodological and conceptual levels. Focusing on the acquisition of multidrug resistance genes, encoding extended-spectrum betalactamases (CTX-M) and carbapenemases (NDM-1) among a travelling population of health students, this article proposes a methodology of 'stool and stories' that combines methods of microbiology and sociology, thus proposing a way forward to a collaborative understanding of AMR. METHODS: A longitudinal study with 64 health students travelling to India was conducted in 2017. The study included multiple-choice questionnaires (n = 64); a collection of faecal swabs before travel (T0, n = 45), in the first week in India (T1, n = 44), the second week in India (T2, n = 41); and semi-structured interviews (n = 11). Stool samples were analysed by a targeted metagenomic approach. Data from semi-structured interviews were analysed using the method of thematic analysis. RESULTS: The incidence of ESBL- and carbapenemase resistance genes significantly increased during travel indicating it as a potential risk; for CTX-M from 11% before travel to 78% during travel and for NDM-1 from 2% before travel to 11% during travel. The data from semi-structured interviews showed that participants considered AMR mainly in relation to individual antibiotic use or its presence in a clinical environment but not to travelling. CONCLUSION: The microbiological analysis confirmed previous research showing that international human mobility is a risk factor for AMR acquisition. However, sociological methods demonstrated that travellers understand AMR primarily as a clinical problem and do not connect it to travelling. These findings indicate an important gap in understanding AMR as a bio-social problem raising a question about the potential effectiveness of biologically driven AMR stewardship programs among travellers. Further development of the 'stool and stories' approach is important for a transdisciplinary basis of AMR stewardship. | 2021 | 34579656 |
| 2588 | 15 | 0.9923 | Exposure factors associated with antimicrobial resistance and identification of management practices for preharvest mitigation along broiler production systems: A systematic review. OBJECTIVE: This systematic review aimed to (i) determine the risk of antimicrobial resistance (AMR) development associated with antimicrobial use (AMU) and other exposure factors in broilers, and (ii) identify best management practices to mitigate preharvest AMR development of enteric bacteria alongside broiler production. METHODS: Study selection criteria comprised the population, exposure or intervention, comparator, and outcome framework and included broiler (population), AMU or other management practices (exposure or intervention), organic or antibiotic-free production (comparator), and the presence of AMR-enteric bacteria/genes (outcome). Peer-reviewed primary research studies were searched in PubMed on 19 December 2022, and AGRICOLA, Embase, Scopus, and Web of Science on 10 February 2023. The risk of bias in studies was assessed using the modified ROBIS-E risk of bias assessment tool. The results were synthesised and presented narratively according to PRISMA 2020 guidelines. RESULTS: In total, 205/2699 studies were subjected to full-text review, with 15 included in the final synthesis. Enteric bacteria Escherichia coli, Salmonella(,) and Campylobacter exhibited AMR and multidrug resistance against several critically important antimicrobials (aminoglycoside, cephalosporin, chloramphenicol, macrolide, penicillin, quinolone, tetracycline, and sulfonamide) for human health. The risk of AMR development in bacteria was shown to be potentially higher with AMU in broiler production. Substandard farm management practices, poor biosecurity measures, and conventional production systems have also been associated with the dissemination of AMR in bacteria. CONCLUSIONS: Our findings indicate that AMU exposure is associated with considerably higher risk of AMR development in enteric bacteria. Antimicrobial stewardship, organic/antibiotic-free broiler production, good farm management practices, and high-level biosecurity measures are able to substantially mitigate preharvest AMR development in enteric bacteria. However, most of studies were cross-sectional, and therefore causal inference cannot be established. | 2024 | 39490979 |
| 2540 | 16 | 0.9923 | Equine sinusitis aetiology is linked to sinus microbiome by amplicon sequencing. BACKGROUND: Information regarding the microbiome in sinusitis using genetic sequencing is lacking and more-in-depth understanding of the microbiome could improve antimicrobial selection and treatment outcomes for cases of primary sinusitis. OBJECTIVES: To describe sinus microbiota in samples from horses with sinusitis and compare microbiota and the presence of antimicrobial resistance genes between primary, dental-related and other secondary causes of sinusitis. STUDY DESIGN: Retrospective case series. METHODS: Records of equine sinusitis from 2017 to 2021 were reviewed and historical microbial amplicon sequence data were obtained from clinical diagnostic testing of sinus secretions. Following bioinformatic processing of bacterial and fungal sequence data, the sinus microbiota and importance of sinusitis aetiology among other factors were investigated from the perspectives of alpha diversity (e.g., number of operational taxonomic units [OTUs], Hill1 Diversity), beta diversity, and differentially abundant taxa. Quantitative PCR allowed for comparisons of estimated bacterial abundance and detection rate of common antibiotic resistance-associated genes. In a smaller subset, longitudinal analysis was performed to evaluate similarity in samples over time. RESULTS: Of 81 samples analysed from 70 horses, the bacterial microbiome was characterised in 66, and fungal in five. Only sinusitis aetiology was shown to significantly influence microbiome diversity and composition (p < 0.05). Dental-related sinusitis (n = 44) was associated with a significantly higher proportion of obligate anaerobic bacteria, whereas primary sinusitis (n = 12) and other (n = 10) groups were associated with fewer bacteria and higher proportions of facultative anaerobic and aerobic genera. Antimicrobial resistance genes and fungal components were exclusively identified in dental-related sinusitis. MAIN LIMITATIONS: Retrospective nature, incomplete prior antimicrobial administration data. CONCLUSIONS: Molecular characterisation in sinusitis identifies microbial species which may be difficult to isolate via culture, and microbiome profiling can differentiate sinusitis aetiology, which may inform further treatment, including antimicrobial therapy. | 2023 | 36199163 |
| 5282 | 17 | 0.9923 | Occupational Exposure and Carriage of Antimicrobial Resistance Genes (tetW, ermB) in Pig Slaughterhouse Workers. OBJECTIVES: Slaughterhouse staff is occupationally exposed to antimicrobial resistant bacteria. Studies reported high antimicrobial resistance gene (ARG) abundances in slaughter pigs. This cross-sectional study investigated occupational exposure to tetracycline (tetW) and macrolide (ermB) resistance genes and assessed determinants for faecal tetW and ermB carriage among pig slaughterhouse workers. METHODS: During 2015-2016, 483 faecal samples and personal questionnaires were collected from workers in a Dutch pig abattoir, together with 60 pig faecal samples. Human dermal and respiratory exposure was assessed by examining 198 carcass, 326 gloves, and 33 air samples along the line, next to 198 packed pork chops to indicate potential consumer exposure. Samples were analyzed by qPCR (tetW, ermB). A job exposure matrix was created by calculating the percentage of tetW and ermB positive carcasses or gloves for each job position. Multiple linear regression models were used to link exposure to tetW and ermB carriage. RESULTS: Workers are exposed to tetracycline and macrolide resistance genes along the slaughter line. Tetw and ermB gradients were found for carcasses, gloves, and air filters. One packed pork chop contained tetW, ermB was non-detectable. Human faecal tetW and ermB concentrations were lower than in pig faeces. Associations were found between occupational tetW exposure and human faecal tetW carriage, yet, not after model adjustments. Sampling round, nationality, and smoking were determinants for ARG carriage. CONCLUSION: We demonstrated clear environmental tetracycline and macrolide resistance gene exposure gradients along the slaughter line. No robust link was found between ARG exposure and human faecal ARG carriage. | 2020 | 31883001 |
| 3162 | 18 | 0.9923 | Metagenomic Characterization of the Microbiome and Resistome of Retail Ground Beef Products. Ground beef can be a reservoir for a variety of bacteria, including spoilage organisms, and pathogenic foodborne bacteria. These bacteria can exhibit antimicrobial resistance (AMR) which is a public health concern if resistance in pathogens leads to treatment failure in humans. Culture-dependent techniques are commonly used to study individual bacterial species, but these techniques are unable to describe the whole community of microbial species (microbiome) and the profile of AMR genes they carry (resistome), which is critical for getting a holistic perspective of AMR. The objective of this study was to characterize the microbiome and resistome of retail ground beef products labeled as coming from conventional or raised without antibiotics (RWA) production systems. Sixteen ground beef products were purchased from 6 retail grocery outlets in Fort Collins, CO, half of which were labeled as produced from cattle raised conventionally and half of products were from RWA production. Total DNA was extracted and isolated from each sample and subjected to 16S rRNA amplicon sequencing for microbiome characterization and target-enriched shotgun sequencing to characterize the resistome. Differences in the microbiome and resistome of RWA and conventional ground beef were analyzed using the R programming software. Our results suggest that the resistome and microbiome of retail ground beef products with RWA packaging labels do not differ from products that do not carry claims regarding antimicrobial drug exposures during cattle production. The resistome predominantly consisted of tetracycline resistance making up more than 90% of reads mapped to resistance gene accessions in our samples. Firmicutes and Proteobacteria predominated in the microbiome of all samples (69.6% and 29.0%, respectively), but Proteobacteria composed a higher proportion in ground beef from conventionally raised cattle. In addition, our results suggest that product management, such as packaging type, could exert a stronger influence on the microbiome than the resistome in consumer-ready products. Metagenomic analyses of ground beef is a promising tool to investigate community-wide shifts in retail ground beef. Importantly, however, results from metagenomic sequencing must be carefully considered in parallel with traditional methods to better characterize the risk of AMR in retail products. | 2020 | 33240224 |
| 2550 | 19 | 0.9922 | Comparative gut microbiota and resistome profiling of intensive care patients receiving selective digestive tract decontamination and healthy subjects. BACKGROUND: The gut microbiota is a reservoir of opportunistic pathogens that can cause life-threatening infections in critically ill patients during their stay in an intensive care unit (ICU). To suppress gut colonization with opportunistic pathogens, a prophylactic antibiotic regimen, termed "selective decontamination of the digestive tract" (SDD), is used in some countries where it improves clinical outcome in ICU patients. Yet, the impact of ICU hospitalization and SDD on the gut microbiota remains largely unknown. Here, we characterize the composition of the gut microbiota and its antimicrobial resistance genes ("the resistome") of ICU patients during SDD and of healthy subjects. RESULTS: From ten patients that were acutely admitted to the ICU, 30 fecal samples were collected during ICU stay. Additionally, feces were collected from five of these patients after transfer to a medium-care ward and cessation of SDD. Feces from ten healthy subjects were collected twice, with a 1-year interval. Gut microbiota and resistome composition were determined using 16S rRNA gene phylogenetic profiling and nanolitre-scale quantitative PCRs. The microbiota of the ICU patients differed from the microbiota of healthy subjects and was characterized by lower microbial diversity, decreased levels of Escherichia coli and of anaerobic Gram-positive, butyrate-producing bacteria of the Clostridium clusters IV and XIVa, and an increased abundance of Bacteroidetes and enterococci. Four resistance genes (aac(6')-Ii, ermC, qacA, tetQ), providing resistance to aminoglycosides, macrolides, disinfectants, and tetracyclines, respectively, were significantly more abundant among ICU patients than in healthy subjects, while a chloramphenicol resistance gene (catA) and a tetracycline resistance gene (tetW) were more abundant in healthy subjects. CONCLUSIONS: The gut microbiota of SDD-treated ICU patients deviated strongly from the gut microbiota of healthy subjects. The negative effects on the resistome were limited to selection for four resistance genes. While it was not possible to disentangle the effects of SDD from confounding variables in the patient cohort, our data suggest that the risks associated with ICU hospitalization and SDD on selection for antibiotic resistance are limited. However, we found evidence indicating that recolonization of the gut by antibiotic-resistant bacteria may occur upon ICU discharge and cessation of SDD. | 2017 | 28803549 |