LOID - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
51700.9895Adaptation to metal(loid)s in strain Mucilaginibacter rubeus P2 involves novel arsenic resistance genes and mechanisms. Arsenic is a ubiquitous environmental toxi substance that affects human health. Compared to inorganic arsenicals, reduced organoarsenicals are more toxic, and some of them are recognized as antibiotics, such as methylarsenite [MAs(III)] and arsinothricin (2-amino-4-(hydroxymethylarsinoyl)butanoate, or AST). To date, organoarsenicals such as MAs(V) and roxarsone [Rox(V)] are still used in agriculture and animal husbandry. How bacteria deal with both inorganic and organoarsenic species is unclear. Recently, we identified an environmental isolate Mucilaginibacter rubeus P2 that has adapted to high arsenic and antinomy levels by triplicating an arsR-mrarsU(Bact)-arsN-arsC-(arsRhp)-hp-acr3-mrme1(Bact)-mrme2(Bact)gene cluster. Heterologous expression of mrarsM(Bact), mrarsU(Bact), mrme1(Bact) and mrme2(Bact), encoding putative arsenic resistance determinants, in the arsenic hypersensitive strain Escherichia coli AW3110 conferred resistance to As(III), As(V), MAs(III) or Rox(III). Our data suggest that metalloid exposure promotes plasticity in arsenic resistance systems, enhancing host organism adaptation to metalloid stress.202437865075
638710.9889Insights into the Evolutionary and Ecological Roles of Bathyarchaeia in Arsenic Detoxification. Arsenic (As) is a prevalent toxic element, posing significant risks to organisms, including microbes. While microbial arsenic detoxification has been extensively studied in bacteria, archaeal mechanisms remain understudied. Here, we investigated arsenic resistance genes in Bathyarchaeia, one of the most abundant archaeal lineages on Earth. Comprehensive genomic analysis of 318 Bathyarchaeia representatives revealed a widespread distribution of arsenic resistance genes, with 60% of genomes harboring genes for arsenate reduction (arsR1 and arsC2), arsenite methylation (arsM), and arsenic transport (acr3, arsP, and arsB). Phylogenetic analysis revealed that these genes are widely distributed across 14 archaeal phyla, including Asgardarchaeota, Thermoproteota, and Thermoplasmatota, with close evolutionary relationships among these archaeal lineages. In situ investigation of sediment columns and laboratory microcosm experiments demonstrated a strong positive correlation between Bathyarchaeia abundance and arsenic concentrations, suggesting their adaptation to arsenic-rich environments. Molecular dating analysis placed the emergence of Bathyarchaeia at approximately 3.01 billion years ago, with the evolution of their arsenic resistance mechanisms closely tracking major geological events, including the Great Oxidation Event (2.4-2.1 Gya), Huronian Glaciation (2.29-2.25 Gya), and Cryogenian Glaciation (∼700 Mya). Our findings highlight the critical role of Archaea in the arsenic cycle and provide insights into the evolutionary history of arsenic resistance associated with paleogeochemical changes in Bathyarchaeia.202540921195
864520.9889Resilience mechanisms of rhizosphere microorganisms in lead-zinc tailings: Metagenomic insights into heavy metal resistance. This study investigates the impact of heavy metal contamination in lead-zinc tailings on plant and soil microbial communities, focusing on the resilience mechanisms of rhizosphere microorganisms in these extreme environments. Utilizing metagenomic techniques, we identified a significant association between Coriaria nepalensis Wall. rhizosphere microbial communities and metal(loid) resistance genes. Our results reveal a notable diversity and abundance of bacteria within the rhizosphere of tailings, primarily consisting of Proteobacteria, Actinobacteria, and Chloroflexi. The presence of metal-resistant bacterial taxa, including Afipia, Bradyrhizobium, Sphingomonas, and Miltoncostaea, indicates specific evolutionary adaptations to metal-rich, nutrient-deficient environments. Elevated expression of resistance genes such as znuD, zntA, pbrB, and pbrT underscores the microorganisms' ability to endure these harsh conditions. These resistance genes are crucial for maintaining biodiversity, ecosystem stability, and adaptability. Our findings enhance the understanding of interactions between heavy metal contamination, microbial community structure, and resistance gene dynamics in lead-zinc tailings. Additionally, this research provides a theoretical and practical foundation for employing plant-microbial synergies in the in-situ remediation of contaminated sites.202540056745
865330.9888Mining-related multi-resistance genes in sulfate-reducing bacteria treatment of typical karst nonferrous metal(loid) mine tailings in China. Management of tailings at metal mine smelter sites can reduce the potential hazards associated with exposure to toxic metal(loid)s and residual organic flotation reagents. In addition, microbes in the tailings harboring multi-resistance genes (e.g., tolerance to multiple antimicrobial agents) can cause high rates of morbidity and global economic problems. The potential co-selection mechanisms of antibiotic resistance genes (ARGs) and metal(loid) resistance genes (MRGs) during tailings sulfate-reducing bacteria (SRB) treatment have been poorly investigated. Samples were collected from a nonferrous metal mine tailing site treated with an established SRB protocol and were analyzed for selected geochemical properties and high throughput sequencing of 16S rRNA gene barcoding. Based on the shotgun metagenomic analysis, the bacterial domain was dominant in nonferrous metal(loid)-rich tailings treated with SRB for 12 months. KEGGs related to ARGs and MRGs were detected. Thiobacillus and Sphingomonas were the main genera carrying the bacA and mexEF resistance operons, along with Sulfuricella which were also found as the main genera carrying MRGs. The SRB treatment may mediate the distribution of numerous resistance genes. KOs based on the metagenomic database indicated that ARGs (mexNW, merD, sul, and bla) and MRGs (czcABCR and copRS genes) were found on the same contig. The SRB strains (Desulfosporosinus and Desulfotomaculum), and the acidophilic strain Acidiphilium significantly contributed to the distribution of sul genes. The functional metabolic pathways related to siderophores metabolism were largely from anaerobic genera of Streptomyces and Microbacterium. The presence of arsenate reductase, metal efflux pump, and Fe transport genes indicated that SRB treatment plays a key role in the metal(loid)s transformation. Overall, our findings show that bio-treatment is an effective tool for managing ARGs/MRGs and metals in tailings that contain numerous metal(loid) contaminants.202337707732
51240.9888An alternate pathway of antimonite [Sb(III)] resistance in Ensifer adhaerens mediated by ArsZ'. Trivalent arsenicals, such as arsenite [As(III)] and methylarsenite [MAs(III)], are highly toxic and commonly found in anoxic environments. Similarly, antimony (Sb), a toxic metalloid present in the environment, triggers the activation of numerous genes in microorganisms to resist, transform, and efflux it. This study focuses on the arsZ' gene from the trivalent metalloids-resistant Ensifer adhaerens strain ST2 and its role in mitigating antimonite [Sb(III)] toxicity. The introduction of arsZ' into Escherichia coli AW3110 provided resistance to Sb(III) but not MAs(III). Crucial cysteine residues, Cys95 and Cys109 in ArsZ', were found to be essential for Sb(III) resistance. The disruption of arsZ' in E. adhaerens resulted in decreased tolerance to Sb(III) but not As(III). Exposure to Sb(III) in the ΔarsZ' mutant strain ST2(Δars'Z) led to a significant rise in reactive oxygen species production and a decline in catalase activity, indicating oxidative stress. Particularly, Sb(III) induced glutathione reductase activity. These discoveries shed light on a novel detoxification pathway for Sb(III) in bacteria and underscore the potential of soil bacteria like strain ST2 in mitigating Sb(III) toxicity for future bioremediation endeavors.202540682878
51050.9887ArsZ from Ensifer adhaerens ST2 is a novel methylarsenite oxidase. Trivalent methylarsenite [MAs(III)] produced by biomethylation is more toxic than inorganic arsenite [As(III)]. Hence, MAs(III) has been proposed to be a primordial antibiotic. Other bacteria evolved mechanisms to detoxify MAs(III). In this study, the molecular mechanisms of MAs(III) resistance of Ensifer adhaerens ST2 were investigated. In the chromosome of E. adhaerens ST2 is a gene encoding a protein of unknown function. Here, we show that this gene, designated arsZ, encodes a novel MAs(III) oxidase that confers resistance by oxidizing highly toxic MAs(III) to relatively nontoxic MAs(V). Two other genes, arsRK, are adjacent to arsZ but are divergently encoded in the opposite direction. Heterologous expression of arsZ in Escherichia coli confers resistance to MAs(III) but not to As(III). Purified ArsZ catalyses thioredoxin- and NAPD(+) -dependent oxidation of MAs(III). Mutational analysis of ArsZ suggests that Cys59 and Cys123 are involved in the oxidation of MAs(III). Expression of arsZ, arsR and arsK genes is induced by MAs(III) and As(III) and is likely controlled by the ArsR transcriptional repressor. These results demonstrate that ArsZ is a novel MAs(III) oxidase that contributes to E. adhaerens tolerance to environmental organoarsenicals. The arsZRK operon is widely present in bacteria within the Rhizobiaceae family.202235355385
863160.9886Bacterial metal(loid) resistance genes (MRGs) and their variation and application in environment: A review. Toxic metal(loid)s are widespread and permanent in the biosphere, and bacteria have evolved a wide variety of metal(loid) resistance genes (MRGs) to resist the stress of excess metal(loid)s. Via active efflux, permeability barriers, extracellular/intracellular sequestration, enzymatic detoxification and reduction in metal(loid)s sensitivity of cellular targets, the key components of bacterial cells are protected from toxic metal(loid)s to maintain their normal physiological functions. Exploiting bacterial metal(loid) resistance mechanisms, MRGs have been applied in many environmental fields. Based on the specific binding ability of MRGs-encoded regulators to metal(loid)s, MRGs-dependent biosensors for monitoring environmental metal(loid)s are developed. MRGs-related biotechnologies have been applied to environmental remediation of metal(loid)s by using the metal(loid) tolerance, biotransformation, and biopassivation abilities of MRGs-carrying microorganisms. In this work, we review the historical evolution, resistance mechanisms, environmental variation, and environmental applications of bacterial MRGs. The potential hazards, unresolved problems, and future research directions are also discussed.202336758696
864470.9884Biotic and abiotic drivers of soil carbon, nitrogen and phosphorus and metal dynamic changes during spontaneous restoration of Pb-Zn mining wastelands. The biotic and abiotic mechanisms that drive important biogeochemical processes (carbon, nitrogen, phosphorus and metals dynamics) in metal mine revegetation remains elusive. Metagenomic sequencing was used to explored vegetation, soil properties, microbial communities, functional genes and their impacts on soil processes during vegetation restoration in a typical Pb-Zn mine. The results showed a clear niche differentiation between bacteria, fungi and archaea. Compared to bacteria and fungi, the archaea richness were more tightly coupled with natural restoration changes. The relative abundances of CAZyme-related, denitrification-related and metal resistance genes reduced, while nitrification, urease, inorganic phosphorus solubilisation, phosphorus transport, and phosphorus regulation -related genes increased. Redundancy analysis, hierarchical partitioning analysis, relative-importance analysis and partial least squares path modelling, indicated that archaea diversity, primarily influenced by available lead, directly impacts carbon dynamics. Functional genes, significantly affected by available cadmium, directly alter nitrogen dynamics. Additionally, pH affects phosphorus dynamics through changes in bacterial diversity, while metal dynamics are directly influenced by vegetation. These insights elucidate natural restoration mechanisms in mine and highlight the importance of archaea in soil processes.202540054196
865580.9884Toxic trace element resistance genes and systems identified using the shotgun metagenomics approach in an Iranian mine soil. This study aimed to identify the microbial communities, resistance genes, and resistance systems in an Iranian mine soil polluted with toxic trace elements (TTE). The polluted soil samples were collected from a mining area and compared against non-polluted (control) collected soils from the vicinity of the mine. The soil total DNA was extracted and sequenced, and bioinformatic analysis of the assembled metagenomes was conducted to identify soil microbial biodiversity, TTE resistance genes, and resistance systems. The results of the employed shotgun approach indicated that the relative abundance of Proteobacteria, Firmicutes, Bacteroidetes, and Deinococcus-Thermus was significantly higher in the TTE-polluted soils compared with those in the control soils, while the relative abundance of Actinobacteria and Acidobacteria was significantly lower in the polluted soils. The high concentration of TTE increased the ratio of archaea to bacteria and decreased the alpha diversity in the polluted soils compared with the control soils. Canonical correspondence analysis (CCA) demonstrated that heavy metal pollution was the major driving factor in shaping microbial communities compared with any other soil characteristics. In the identified heavy metal resistome (HV-resistome) of TTE-polluted soils, major functional pathways were carbohydrates metabolism, stress response, amino acid and derivative metabolism, clustering-based subsystems, iron acquisition and metabolism, cell wall synthesis and capsulation, and membrane transportation. Ten TTE resistance systems were identified in the HV-resistome of TTE-polluted soils, dominated by "P-type ATPases," "cation diffusion facilitators," and "heavy metal efflux-resistance nodulation cell division (HME-RND)." Most of the resistance genes (69%) involved in resistance systems are affiliated to cell wall, outer membrane, periplasm, and cytoplasmic membrane. The finding of this study provides insight into the microbial community in Iranian TTE-polluted soils and their resistance genes and systems.202132949366
51190.9883Oxidation of organoarsenicals and antimonite by a novel flavin monooxygenase widely present in soil bacteria. Arsenic can be biomethylated to form a variety of organic arsenicals differing in toxicity and environmental mobility. Trivalent methylarsenite (MAs(III)) produced in the methylation process is more toxic than inorganic arsenite (As(III)). MAs(III) also serves as a primitive antibiotic and, consequently, some environmental microorganisms have evolved mechanisms to detoxify MAs(III). However, the mechanisms of MAs(III) detoxification are not well understood. In this study, we identified an arsenic resistance (ars) operon consisting of three genes, arsRVK, that contribute to MAs(III) resistance in Ensifer adhaerens ST2. ArsV is annotated as an NADPH-dependent flavin monooxygenase with unknown function. Expression of arsV in the arsenic hypersensitive Escherichia coli strain AW3110Δars conferred resistance to MAs(III) and the ability to oxidize MAs(III) to MAs(V). In the presence of NADPH and either FAD or FMN, purified ArsV protein was able to oxidize both MAs(III) to MAs(V) and Sb(III) to Sb(V). Genes with arsV-like sequences are widely present in soils and environmental bacteria. Metagenomic analysis of five paddy soils showed the abundance of arsV-like sequences of 0.12-0.25 ppm. These results demonstrate that ArsV is a novel enzyme for the detoxification of MAs(III) and Sb(III) and the genes encoding ArsV are widely present in soil bacteria.202233769668
514100.9882The organoarsenical biocycle and the primordial antibiotic methylarsenite. Arsenic is the most pervasive environmental toxic substance. As a consequence of its ubiquity, nearly every organism has genes for resistance to inorganic arsenic. In bacteria these genes are found largely in bacterial arsenic resistance (ars) operons. Recently a parallel pathway for synthesis and degradation of methylated arsenicals has been identified. The arsM gene product encodes the ArsM (AS3MT in animals) As(iii) S-adenosylmethionine methyltransferase that methylates inorganic trivalent arsenite in three sequential steps to methylarsenite MAs(iii), dimethylarsenite (DMAs(iii) and trimethylarsenite (TMAs(iii)). MAs(iii) is considerably more toxic than As(iii), and we have proposed that MAs(iii) was a primordial antibiotic. Under aerobic conditions these products are oxidized to nontoxic pentavalent arsenicals, so that methylation became a detoxifying pathway after the atmosphere became oxidizing. Other microbes have acquired the ability to regenerate MAs(v) by reduction, transforming it again into toxic MAs(iii). Under this environmental pressure, MAs(iii) resistances evolved, including the arsI, arsH and arsP genes. ArsI is a C-As bond lyase that demethylates MAs(iii) back to less toxic As(iii). ArsH re-oxidizes MAs(iii) to MAs(v). ArsP actively extrudes MAs(iii) from cells. These proteins confer resistance to this primitive antibiotic. This oscillation between MAs(iii) synthesis and detoxification is an essential component of the arsenic biogeocycle.201627730229
8543110.9882Soil bacteria, genes, and metabolites stimulated during sulfur cycling and cadmium mobilization under sodium sulfate stress. Sodium sulfate stress is known to improve cadmium (Cd) mobilization in soil and microbial sulfur oxidation, Cd resistance, and the accumulation of stress tolerance-associated metabolites has been correlated with increased soil Cd availability and toxicity. In this study, aerobic soil microcosms with Cd-contamination were stimulated with sodium sulfate to investigate its effects on soil microbial community structure, functional genes, and associated metabolite profiles. Metagenomic analysis revealed that sulfur oxidizing and Cd-resistant bacteria carried gene clusters encoding sox, dsr, and sqr genes, and znt, czc, and cad genes, respectively. Exposure to sodium sulfate resulted in the reprogram of soil metabolites. In particular, intensification of sulfur metabolism triggered an up-regulation in the tricarboxylic acid (TCA) cycle, which promoted the secretion of carboxylic acids and their precursors by soil bacteria. The accumulation of organic acids induced in response to high sodium sulfate dosages potentially drove an observed increase in Cd mobility. Pseudomonas and Erythrobacter spp. exhibited a high capacity for adaptation to heavy metal- or sulfur-induced stress, evident by an increased abundance of genes and metabolites for sulfur cycling and Cd resistance. These results provide valuable insights towards understanding the microbial mechanisms of sulfur transformation and Cd dissolution under saline stress.202134214562
6386120.9881Distribution of antibiotic and metal resistance genes in two glaciers of North Sikkim, India. Glacier studies as of late have ruffled many eyeballs, exploring this frigid ecology to understand the impact of climate change. Mapquesting the glaciers led to the discovery of concealed world of "psychrophiles" harboring in it. In the present study, the antibiotic resistance genes (ARGs) and heavy metal resistance genes (MRGs) were evaluated through both the culture-dependent and culture-independent methods. Samples were collected from two different glaciers, i.e., debris-covered glacier (Changme Khangpu) and debris-free glacier (Changme Khang). Functional metagenomics of both the glacier samples, provided evidence of presence of resistant genes against various antibiotic groups. Bacitracin resistant gene (bacA) was the predominant ARG in both the glaciers. MRGs in both the glacier samples were diversified as the genes detected were resistant against various heavy metals such as arsenic, tungsten, mercury, zinc, chromium, copper, cobalt, and iron. Unique MRGs identified from Changme Khangpu glacier were resistant to copper (cutA, cutE, cutC, cutF, cueR, copC, and copB) and chromium (yelf, ruvB, nfsA, chrR, and chrA) whereas, from Changme Khang glacier they showed resistance against cobalt (mgtA, dmef, corD, corC, corB, and cnrA), and iron (yefD, yefC, yefB, and yefA) heavy metals. ARGs aligned maximum identity with Gram-negative psychrotolerant bacteria. The cultured bacterial isolates showed tolerance to high concentrations of tested heavy metal solutions. Interestingly, some of the antibiotic resistant bacterial isolates also showed tolerance towards the higher concentrations of heavy metals. Thus, an introspection of the hypothesis of co-occurrence and/co-selection of ARGs and MRGs in such environments has been highlighted here.202032888596
6089130.9881Genomic analyses of metal resistance genes in three plant growth promoting bacteria of legume plants in Northwest mine tailings, China. To better understand the diversity of metal resistance genetic determinant from microbes that survived at metal tailings in northwest of China, a highly elevated level of heavy metal containing region, genomic analyses was conducted using genome sequence of three native metal-resistant plant growth promoting bacteria (PGPB). It shows that: Mesorhizobium amorphae CCNWGS0123 contains metal transporters from P-type ATPase, CDF (Cation Diffusion Facilitator), HupE/UreJ and CHR (chromate ion transporter) family involved in copper, zinc, nickel as well as chromate resistance and homeostasis. Meanwhile, the putative CopA/CueO system is expected to mediate copper resistance in Sinorhizobium meliloti CCNWSX0020 while ZntA transporter, assisted with putative CzcD, determines zinc tolerance in Agrobacterium tumefaciens CCNWGS0286. The greenhouse experiment provides the consistent evidence of the plant growth promoting effects of these microbes on their hosts by nitrogen fixation and/or indoleacetic acid (IAA) secretion, indicating a potential in-site phytoremediation usage in the mining tailing regions of China.201525597676
6144140.9880Efficient arsenate reduction by As-resistant bacterium Bacillus sp. strain PVR-YHB1-1: Characterization and genome analysis. Arsenate (AsV) reduction in bacteria is essential to alleviate their arsenic (As) toxicity. We isolated a Bacillus strain PVR-YHB1-1 from the roots of As-hyperaccumulator Pteris vittata. The strain was efficient in reducing AsV to arsenite (AsIII), but the associated mechanisms were unclear. Here, we investigated its As resistance and reduction behaviors and associated genes at genome level. Results showed that the strain tolerated up to 20 mM AsV. When grown in 1 mM AsV, 96% AsV was reduced to AsIII in 48 h, with its AsV reduction ability being positively correlated to bacterial biomass. Two ars operons arsRacr3arsCDA and arsRKacr3arsC for As metabolisms were identified based on draft genome sequencing and gene annotations. Our data suggested that both operons might have attributed to efficient As resistance and AsV reduction in PVR-YHB1-1, providing clues to better understand As transformation in bacteria and their roles in As transformation in the environment.201930609485
7984150.9880Distinct response of nitrogen metabolism to exogenous cadmium (Cd) in river sediments with and without Cd contamination history. The role of metal resistance on nitrogen metabolism function and community resilience against Cd is important for elucidating the evolutionary dynamics of key ecological functions in river ecosystems. In this study, the response of nitrogen transforming function to Cd exposure in river sediments from the Yangtze River Basin with varying levels of heavy metal contamination history (Cd-contaminated and Cd-free sediments) was compared to understand how Cd influenced nitrogen metabolism under varying metal resistance conditions. The results showed that chronic and persistent Cd pollution of sediments caused an elevation of transport efflux metal resistance genes (MRGs) and a reduction in the uptake MRGs, leading to a stronger tolerance to Cd for Cd-contaminated sediment than Cd-free ones. Specifically, denitrification, anaerobic ammonium oxidation (anammox) and dissimilatory nitrate reduction to ammonium (DNRA) respectively responded to Cd through different mechanisms. Exogenous Cd (5-100 mg kg(-1)) influenced denitrification rates (-70 %-100 % deviation to control group) by regulating key genera (Thiobacillus, Magnetospirillum, Sideroxydans etc.) and gene clusters for denitrification. Both adaptive nature of anammox bacteria and co-regulation of key genera (Candidatus_Scalindua, Candidatus_Jettenia, Planctomyces etc.) and gene hzsA were drivers of differential responses in sediments from various contamination history. Environmental factors rather than contamination history, key genera or genes were probably critical ones determining Cd-resistance in DNRA, being more tolerant to Cd in sediments with higher TOC and NH(4)(+). Stimulation of N(2)O reduction process (genera Gemmatimonas and Gemmatirosa and genes nosZ) in Cd-contaminated sediments by exogenous Cd lowered N(2)O emission risk, whereas the reverse was true for Cd-free sediments. These results enrich our understanding about the linkages among MRGs and nitrogen reduction functions in river.202539793158
6800160.9878Shotgun Metagenomics-Guided Prediction Reveals the Metal Tolerance and Antibiotic Resistance of Microbes in Poly-Extreme Environments in the Danakil Depression, Afar Region. The occurrence and spread of antibiotic resistance genes (ARGs) in environmental microorganisms, particularly in poly-extremophilic bacteria, remain underexplored and have received limited attention. This study aims to investigate the prevalence of ARGs and metal resistance genes (MRGs) in shotgun metagenome sequences obtained from water and salt crust samples collected from Lake Afdera and the Assale salt plain in the Danakil Depression, northern Ethiopia. Potential ARGs were characterized by the comprehensive antibiotic research database (CARD), while MRGs were identified by using BacMetScan V.1.0. A total of 81 ARGs and 39 MRGs were identified at the sampling sites. We found a copA resistance gene for copper and the β-lactam encoding resistance genes were the most abundant the MRG and ARG in the study area. The abundance of MRGs is positively correlated with mercury (Hg) concentration, highlighting the importance of Hg in the selection of MRGs. Significant correlations also exist between heavy metals, Zn and Cd, and ARGs, which suggests that MRGs and ARGs can be co-selected in the environment contaminated by heavy metals. A network analysis revealed that MRGs formed a complex network with ARGs, primarily associated with β-lactams, aminoglycosides, and tetracyclines. This suggests potential co-selection mechanisms, posing concerns for both public health and ecological balance.202338136731
8651170.9878Repercussions of Prolonged Pesticide Use on Natural Soil Microbiome Dynamics Using Metagenomics Approach. The residual pesticides in soil can affect the natural microbiome composition and genetic profile that drive nutrient cycling and soil fertility. In the present study, metagenomic approach was leveraged to determine modulations in nutrient cycling and microbial composition along with connected nexus of pesticide, antibiotic, and heavy metal resistance in selected crop and fallow soils having history of consistent pesticide applications. GC-MS analysis estimated residuals of chlorpyrifos, hexachlorbenzene, and dieldrin showing persistent nature of pesticides that pose selective pressure for microbial adaptation. Taxonomic profiling showed increased abundance of pesticide degrading Streptomyces, Xanthomonas, Cupriavidus, and Pseudomonas across the selected soils. Genes encoding for pesticide degrading cytochrome p450, organophosphorus hydrolase, aldehyde dehydrogenase, and oxidase were predominant and positively correlated with Bacillus, Sphingobium, and Burkholderia. Nitrogen-fixing genes (nifH, narB, and nir) were relatively less abundant in crop soils, correlating to the decrease in nitrogen-fixing bacteria (Anabaena, Pantoea, and Azotobacter). Microbial enzymes involved in carbon (pfkA, gap, pgi, and tpiA) and phosphorus cycle (gmbh and phnJ) were significantly higher in crop soils indicating extensive utilization of pesticide residuals as a nutrient source by the indigenous soil microbiota. Additionally, presence of antibiotic and heavy metal resistance genes suggested potential cross-resistance under pressure from pesticide residues. The results implied selective increase in pesticide degrading microbes with decrease in beneficial bacteria that resulted in reduced soil health and fertility. The assessment of agricultural soil microbial profile will provide a framework to develop sustainable agriculture practices to conserve soil health and fertility.202539096471
8687180.9877Diversity and Distribution of Arsenic-Related Genes Along a Pollution Gradient in a River Affected by Acid Mine Drainage. Some microorganisms have the capacity to interact with arsenic through resistance or metabolic processes. Their activities contribute to the fate of arsenic in contaminated ecosystems. To investigate the genetic potential involved in these interactions in a zone of confluence between a pristine river and an arsenic-rich acid mine drainage, we explored the diversity of marker genes for arsenic resistance (arsB, acr3.1, acr3.2), methylation (arsM), and respiration (arrA) in waters characterized by contrasted concentrations of metallic elements (including arsenic) and pH. While arsB-carrying bacteria were representative of pristine waters, Acr3 proteins may confer to generalist bacteria the capacity to cope with an increase of contamination. arsM showed an unexpected wide distribution, suggesting biomethylation may impact arsenic fate in contaminated aquatic ecosystems. arrA gene survey suggested that only specialist microorganisms (adapted to moderately or extremely contaminated environments) have the capacity to respire arsenate. Their distribution, modulated by water chemistry, attested the specialist nature of the arsenate respirers. This is the first report of the impact of an acid mine drainage on the diversity and distribution of arsenic (As)-related genes in river waters. The fate of arsenic in this ecosystem is probably under the influence of the abundance and activity of specific microbial populations involved in different As biotransformations.201626603631
8568190.9877Bioremediation potential of sulfadiazine-degrading bacteria: Impacts on ryegrass growth and soil functionality. The extensive use of antibiotics, particularly sulfadiazine (SDZ), has led to significant environmental contamination and the proliferation of antibiotic resistance genes (ARGs). This study investigates the bioremediation potential of two SDZ-degrading bacterial strains, Acinetobacter sp. M9 and Enterobacter sp. H1, and their impact on ryegrass (Lolium perenne) growth and the inter-root microenvironment in SDZ-contaminated soils. A pot experiment combined with amplicon and metagenomic sequencing revealed that inoculation with M9 and H1 significantly enhanced ryegrass growth by alleviating oxidative stress, increasing chlorophyll content, and improving soil nutrient availability. The strains also promoted SDZ degradation efficiency and improved carbon and nitrogen cycling through the upregulation of key functional genes. Furthermore, microbial community analysis demonstrated increased alpha diversity, shifts in dominant taxa, and functional enrichment in pollutant degradation pathways. The dynamics of ARGs revealed a decrease in aminoglycoside, rifamycin, and streptomycin resistance genes, while sulfonamide resistance genes increased due to the residual SDZ stress. These findings highlight the potential of M9 and H1 as sustainable bioremediation agents to mitigate antibiotic contamination, improve soil health, and support plant growth in polluted environments.202540122011