# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1264 | 0 | 0.9856 | Characterization of mannitol-fermenting methicillin-resistant staphylococci isolated from pigs in Nigeria. This study was conducted to determine the species distribution, antimicrobial resistance pheno- and genotypes and virulence traits of mannitol-positive methicillin-resistant staphylococci (MRS) isolated from pigs in Nsukka agricultural zone, Nigeria. Twenty mannitol-positive methicillin-resistant coagulase-negative staphylococcal (MRCoNS) strains harboring the mecA gene were detected among the 64 Staphylococcus isolates from 291 pigs. A total of 4 species were identified among the MRCoNS isolates, namely, Staphylococcus sciuri (10 strains), Staphylococcus lentus (6 strains), Staphylococcus cohnii (3 strains) and Staphylococcus haemolyticus (one strain). All MRCoNS isolates were multidrug-resistant. In addition to β-lactams, the strains were resistant to fusidic acid (85%), tetracycline (75%), streptomycin (65%), ciprofloxacin (65%), and trimethoprim/sulphamethoxazole (60%). In addition to the mecA and blaZ genes, other antimicrobial resistance genes detected were tet(K), tet(M), tet(L), erm(B), erm(C), aacA-aphD, aphA3, str, dfrK, dfrG, cat pC221, and cat pC223. Thirteen isolates were found to be ciprofloxacin-resistant, and all harbored a Ser84Leu mutation within the QRDR of the GyrA protein, with 3 isolates showing 2 extra substitutions, Ser98Ile and Arg100Lys (one strain) and Glu88Asp and Asp96Thr (2 strains). A phylogenetic tree of the QRDR nucleotide sequences in the gyrA gene revealed a high nucleotide diversity, with several major clusters not associated with the bacterial species. Our study highlights the possibility of transfer of mecA and other antimicrobial resistance genes from MRCoNS to pathogenic bacteria, which is a serious public health and veterinary concern. | 2015 | 26413075 |
| 1265 | 1 | 0.9854 | Coagulase-negative staphylococci (CoNS) isolated from ready-to-eat food of animal origin--phenotypic and genotypic antibiotic resistance. The aim of this work was to study the pheno- and genotypical antimicrobial resistance profile of coagulase negative staphylococci (CoNS) isolated from 146 ready-to-eat food of animal origin (cheeses, cured meats, sausages, smoked fishes). 58 strains were isolated, they were classified as Staphylococcus xylosus (n = 29), Staphylococcus epidermidis (n = 16); Staphylococcus lentus (n = 7); Staphylococcus saprophyticus (n = 4); Staphylococcus hyicus (n = 1) and Staphylococcus simulans (n = 1) by phenotypic and genotypic methods. Isolates were tested for resistance to erythromycin, clindamycin, gentamicin, cefoxitin, norfloxacin, ciprofloxacin, tetracycline, tigecycline, rifampicin, nitrofurantoin, linezolid, trimetoprim, sulphamethoxazole/trimethoprim, chloramphenicol, quinupristin/dalfopristin by the disk diffusion method. PCR was used for the detection of antibiotic resistance genes encoding: methicillin resistance--mecA; macrolide resistance--erm(A), erm(B), erm(C), mrs(A/B); efflux proteins tet(K) and tet(L) and ribosomal protection proteins tet(M). For all the tet(M)-positive isolates the presence of conjugative transposons of the Tn916-Tn1545 family was determined. Most of the isolates were resistant to cefoxitin (41.3%) followed by clindamycin (36.2%), tigecycline (24.1%), rifampicin (17.2%) and erythromycin (13.8%). 32.2% staphylococcal isolates were multidrug resistant (MDR). All methicillin resistant staphylococci harboured mecA gene. Isolates, phenotypic resistant to tetracycline, harboured at least one tetracycline resistance determinant on which tet(M) was most frequent. All of the isolates positive for tet(M) genes were positive for the Tn916-Tn1545 -like integrase family gene. In the erythromycin-resistant isolates, the macrolide resistance genes erm(C) or msr(A/B) were present. Although coagulase-negative staphylococci are not classical food poisoning bacteria, its presence in food could be of public health significance due to the possible spread of antibiotic resistance. | 2015 | 25475289 |
| 5409 | 2 | 0.9850 | Presence and new genetic environment of pleuromutilin-lincosamide-streptogramin A resistance gene lsa(E) in Erysipelothrix rhusiopathiae of swine origin. Erysipelothrix rhusiopathiae is a Gram-positive bacillus that causes erysipelas in swine. In recent years, erysipelas infection among swine in China has been increasing. A combined resistance phenotype to pleuromutilins, lincosamides, and streptogramin A (PLSA phenotype) was found in some E. rhusiopathiae isolates. The aim of this study was to identify the resistance genes responsible for the PLSA phenotype in E. rhusiopathiae strains and to map the genetic environment of the identified resistance gene. A total of 46 E. rhusiopathiae isolates from 31 pig farms in China were studied. Minimum inhibitory concentrations (MICs) of 11 antimicrobial agents were determined by broth microdilution method. Seven were highly resistant to tiamulin (MICs 32 μg/ml) and clindamycin (MICs 64 μg/ml). Resistance genes responsible for the PLSA phenotype were screened by PCR. The lsa(E), spw, lnu(B), aadE and aphA3 genes were detected in strains had the PLSA phenotype, whereas none was detected in susceptible strains. The genetic environment of lsa(E) gene was determined by whole-genome sequencing and overlapping PCR assays. A novel multiresistance gene cluster, orf1-aadE-apt-spw-lsa(E)-lnu(B)-rec-orf2-orf1-aadE-sat4-aphA3, was found. Horizontal gene transfer experiments and whole-genome sequencing suggested that the lsa(E)-carrying multiresistance gene cluster was located in the chromosome. This is the first molecular characterization of PLSA resistance in E. rhusiopathiae. The lsa(E), spw and lnu(B) genes were found in E. rhusiopathiae for the first time. A novel lsa(E)-carrying multiresistance gene cluster was found. The location of lsa(E) in different gene cluster facilitates its persistence and dissemination. | 2015 | 25759293 |
| 5408 | 3 | 0.9849 | Identification and pathogenicity of an XDR Streptococcus suis isolate that harbours the phenicol-oxazolidinone resistance genes optrA and cfr, and the bacitracin resistance locus bcrABDR. One hundred and seven Streptococcus suis isolates were collected from healthy pigs or asymptomatic carriers in Jiangsu, China in 2016-2017. Thirty-eight percent of the isolates were linezolid-resistant and all carried the optrA gene. Among them, one isolate, SFJ44, was resistant to all 20 of the antibiotics tested, except for ceftiofur, and thus exhibited an extensively-drug-resistant phenotype. This isolate carried the optrA gene and the bacitracin resistance locus bcrABDR on an antibiotic-resistance-associated genomic island (ARGI1), and harboured the resistance genes cfr, aadE, sat4, spw-like, aphA3, mef(A), msr(D), erm(A)-like, erm(B), tetAB(P)', tet(M) and catQ on ARGI2∼4. The IS1216E-bcrABDR-ISEnfa1 segment showed >99.9% sequence identity to corresponding sequences from other species. The cfr gene was located on ARGI4, and two IS6 family insertion sequences, IS1216E and ISTeha2, were found upstream and downstream of cfr-ΔISEnfa5, respectively. A circular intermediate of bcrABDR-ISEnfa1 was detected, suggesting the role of ISEnfa1 in dissemination of bcrABDR. Other antibiotic resistance genes might be acquired from different Gram-positive pathogens. Infection of zebrafish showed that SFJ44 exhibited a virulence level comparable to serotype 2 hypervirulent strain SC070731, highlighting the need for surveillance of the pathogenicity of multi-drug-resistant S. suis isolates. This is the first report of the co-existence of optrA and cfr, and of the bcrABDR locus in streptococci. As it has been suggested that S. suis may act as an antibiotic resistance reservoir contributing to the spread of resistance genes to major streptococcal pathogens, the potential dissemination of these resistance genes among Gram-positive bacteria is of concern and routine surveillance should be strengthened. | 2019 | 30981924 |
| 1266 | 4 | 0.9848 | Characterization of methicillin-resistant coagulase-negative staphylococci in milk from cows with mastitis in Brazil. Staphylococci are one of the most prevalent microorganisms in bovine mastitis. Staphylococcus spp. are widespread in the environment, and can infect animals and humans as opportunistic pathogens. The objective of this study was to determine the frequency of methicillin-resistance (MR) among coagulase-negative staphylococci (CoNS) previously obtained from milk of mastitic cows in Brazil and to characterize the antimicrobial resistance phenotype/genotype and the SCCmec type of MRCoNS isolates. Identification of MRCoNS was based on both biochemical and molecular methods. Susceptibility testing for eleven antimicrobials was performed by disk-diffusion agar. Antimicrobial resistance genes and SCCmec were investigated by specific PCRs. Twenty-six MRCoNS were detected (20 % of total CoNS), obtained from 24 animals, and were identified as follows: S. epidermidis (7 isolates), S. chromogenes (7), S. warneri (6), S. hyicus (5) and S. simulans (1). All MRCoNS isolates carried mecA while the mecC gene was not detected in any CoNS. The SCCmec IVa was demonstrated in nine MRCoNS, while the remaining 17 isolates harbored non-typeable SCCmec cassettes. In addition to oxacillin and cefoxitin resistance, MRCoNS showed resistance to tetracycline (n = 7), streptomycin (n = 6), tobramycin (n = 6), and gentamicin (n = 4), and harbored the genes tet(K) (n = 7), str (n = 3), ant(4') (n = 6) and aac(6')-aph(2″) (n = 4), respectively. In addition, seven strains showed intermediate resistance to clindamycin and two to streptomycin, of which two harboured the lnu(B) and lsa(E) genes and two the aad(E) gene, respectively. One isolate presented intermediate erythromycin and clindamycin resistance and harbored an erm(C) gene with an uncommon 89-bp deletion rendering a premature stop codon. MRCoNS can be implicated in mastitis of cows and they constitute a reservoir of resistance genes that can be transferred to other pathogenic bacteria. | 2014 | 24817534 |
| 1267 | 5 | 0.9847 | Detection and characterization of methicillin-resistant and susceptible coagulase-negative staphylococci in milk from cows with clinical mastitis in Tunisia. OBJECTIVES: This study investigated prevalence of methicillin-resistant (MR) and methicillin-susceptible (MS) coagulase-negative staphylococci (CNS) and the implicated mechanisms of resistance and virulence in milk of mastitis cows. In addition, the presence of SCCmec type was analyzed in MR Staphylococcus epidermidis (MRSE). RESULTS: Three hundred milk samples from cows with clinical mastitis were obtained from 30 dairy farms in different regions of Tunisia. Sixty-eight of the 300 tested samples contained CNS strains. Various CNS species were identified, with Staphylococcus xylosus being the most frequently found (40%) followed by Staphylococcus warneri (12%). The mecA gene was present in 14 of 20 MR-CNS isolates. All of them were lacking the mecC gene. The SCCmecIVa was identified in four MRSE isolates. Most of CNS isolates showed penicillin resistance (70.6%) and 58.3% of them carried the blaZ gene. MR-CNS isolates (n = 20) showed resistance to erythromycin, tetracycline and trimethoprim-sulfametoxazole harboring different resistance genes such us erm(B), erm(T), erm(C), mph(C) or msr(A), tet(K) and dfr(A). However, a lower percentage of resistance was observed among 48 MS-CNS isolates: erythromycin (8.3%), tetracycline (6.2%), streptomycin (6.2%), clindamycin (6.2%), and trimethoprim-sulfametoxazole (2%). The Inu(B) gene was detected in one Staphylococcus xylosus strain that showed clindamycin resistance. The virulence gene tsst-1 was observed in one MR-CNS strain. DISCUSSION: Coagulase-negative staphylococci containing a diversity of antimicrobial resistance genes are frequently detected in milk of mastitis cows. This fact emphasizes the importance of identifying CNS when an intramammary infection is present because of the potential risk of lateral transfer of resistant genes among staphylococcal species and other pathogenic bacteria. | 2018 | 30077662 |
| 1351 | 6 | 0.9845 | Characteristics of High-Level Ciprofloxacin-Resistant Enterococcus faecalis and Enterococcus faecium from Retail Chicken Meat in Korea. Genes encoding ciprofloxacin resistance in enterococci in animals may be transferred to bacteria in the animal gut and to zoonotic bacteria where they could pose a human health hazard. The objective of this study was to characterize antimicrobial resistance in high-level ciprofloxacin-resistant (HLCR) Enterococcus faecalis and Enterococcus faecium isolated from retail chicken meat. A total of 345 enterococci (335 E. faecalis and 10 E. faecium) were isolated from 200 chicken meat samples. Of these, 85 E. faecalis isolates and 1 E. faecium isolate were confirmed as HLCR enterococci. All 86 HLCR enterococci displayed gyrA- parC point mutations consisting of S83I-S80I (94.2%, 81 isolates), S83F-S80I (2.3%, 2 isolates), S83Y-S80I (2.3%, 2 isolates), and S83Y-S80F (1.2%, 1 isolate). Sixty-one (72.9%) of the 86 HLCR enterococci showed multidrug resistance to three to six classes of antimicrobial agents. Multilocus sequence typing revealed that E. faecalis had 17 different sequence types (ST) and E. faecium had 1 different ST, with ST256 observed most often (44 isolates, 51.8%). Although these results cannot exclude the possibility that pathotypes of enterococci isolated from chicken might represent transmission to or from humans, the foodborne HLCR E. faecalis indicated that the food chain is a potential route of enterococcal infection in humans. | 2018 | 30015506 |
| 1752 | 7 | 0.9845 | Genetic Characterization of a Linezolid- and Penicillin-Resistant Enterococcus hirae Isolate Co-Harboring poxtA and pbp5fm. Linezolid and penicillin are critical for treating multidrug resistant (MDR) Gram-positive infections, but the emergence of resistance to both seriously threatens public health. Here, we first report the cocarrying poxtA (oxazolidinone resistance) and pbp5fm (β-lactam resistance) genes by the plasmid in a strain of Enterococcus hirae HDC14-2 derived from porcine. The isolate also exhibits MDR phenotypes to phenicols, oxazolidinones, tetracyclines, β-lactams, aminoglycosides, macrolides, and lincosamides. Whole-genome sequencing (WGS) revealed these resistance genes, along with tet(L), tet(M), catA, erm(B), aac(6)-aph(2"), aadE, spw, lsa(E), lnu(B), sat4, and aphA3, were clustered in a novel MDR region flanked by IS1216 elements on plasmid pHDC14-2.133K. This IS1216-bounded MDR region formed translocatable units (TUs), including an IS1216-poxtA TU that was also identified on a secondary plasmid, pHDC14-2.27K. Functional assays demonstrated the excisability and mobility of these TUs, indicating its potential ability integration into other plasmids or chromosomes. Critically, electrotransformation confirmed the transfer of pHDC14-2.27K (poxtA-carrying) to Enterococcus faecalis JH2-2, with retained TU activity and minimal fitness cost. This study provides the evidence of colocalized poxtA and pbp5fm on plasmids in enterococci, highlighting their role in disseminating pan-resistance among bacteria. Although E. hirae is not an important pathogenic bacterium to humans and animals, but its potential risk to horizontally spread of these resistance genes important in medicine still cannot be ignored. | 2025 | 40692874 |
| 1247 | 8 | 0.9844 | Antibiotic resistance determinants of multidrug-resistant Acinetobacter baumannii clinical isolates in Algeria. Antibiotic susceptibility testing was performed on 71 Acinetobacter baumannii clinical isolates, and presence of antibiotic resistance genes was screened for by PCR amplification and sequencing. Resistance rates were very high for aminoglycosides (22-80%), fluoroquinolones (>90%), and cephalosporins (>90%) but remained low for rifampin (2.8%) or null for colistin. Antibiotic resistance encoding genes detected were as follows: blaTEM-128 gene (74.6%), aph(3')-VI (50.7 %), aadA (63.4%), ant(2″)-I (14.1%), aac(3)-Ia (91.1%), aac(6')-Ib (4.2%), mutation Ser83Leu in gyrA (94.4%), double mutations Ser83Leu and Ser80Leu (or Ser84Leu) in gyrA and parC (69.0%), and mutation I581N in RRDR of the rpoB gene. | 2013 | 23688522 |
| 1322 | 9 | 0.9843 | Phenotypic and genotypic characterization of antimicrobial resistance in faecal enterococci from wild boars (Sus scrofa). The objective was to study the prevalence of antimicrobial resistance and the mechanisms implicated in faecal enterococci of wild boars in Portugal. One hundred and thirty-four enterococci (67 E. faecium, 54 E. hirae, 2 E. faecalis, 2 E. durans and 9 Enterococcus spp.) were recovered from 67 wild boars (two isolates/sample), and were further analysed. High percentages of resistance were detected for erythromycin, tetracycline, and ciprofloxacin (48.5%, 44.8%, and 17.9%, respectively), and lower values were observed for high-level-kanamycin, -streptomycin, chloramphenicol, and ampicillin resistance (9%, 6.7%, 4.5%, and 3.7%, respectively). No isolates showed vancomycin or high-level-gentamicin resistance. The erm(B), tet(M), aph(3')-IIIa, and ant(6)-I genes were demonstrated in all erythromycin-, tetracycline-, kanamycin-, and streptomycin-resistant isolates, respectively. Specific genes of Tn916/Tn1545 and Tn5397 transposons were detected in 78% and 47% of our tet(M)-positive enterococci, respectively. The tet(S) and tet(K) genes were detected in one isolate of E. faecium and E. hirae, respectively. Three E. faecium isolates showed quinupristin-dalfopristin resistance and the vat(E) gene was found in all of them showing the erm(B)-vat(E) linkage. Four E. faecium isolates showed ampicillin-resistance and all of them presented seven amino acid substitutions in PBP5 protein (461Q-->K, 470H-->Q, 485M-->A, 496N-->K, 499A-->T, 525E-->D, and 629E-->V), in relation with the reference one; a serine insertion at 466' position was found in three of the isolates. Faecal enterococci from wild boars harbour a variety of antimicrobial resistance mechanisms and could be a reservoir of antimicrobial resistance genes and resistant bacteria that could eventually be transmitted to other animals or even to humans. | 2007 | 17658226 |
| 1131 | 10 | 0.9842 | Antimicrobial resistance genotypes and phenotypes from multidrug-resistant bacterial wound infection isolates in Cambodia. This study aimed to identify the molecular determinants responsible for antibiotic resistance among human wound isolates in Cambodia. Staphylococcus spp. (n=10) and a variety of Gram-negative isolates (n=21) were taken from a larger collection of wound isolates collected during 2011-2013 and were analysed for the presence of >230 resistance determinants using a broad-spectrum DNA microarray. These isolates were chosen to represent the species most commonly found in wound isolates referred during this time and to include some of the most resistant strains. Resistance determinants detected among the staphylococci included blaZ (90%), mecA (100%), erm(B) (70%), erm(C) (20%), tet(38) (90%), tet(K) (40%), tet(L(p)) (10%), tet(M) (20%), lnu(A)/lin(A) and lnu(B)/lin(B) (10% each), msr(A)/msr(B)/msr(SA) (10%), norA (80%) and dfrA (10%). Eleven different β-lactamase genes were detected among the Gram-negative bacteria, including genes encoding the TEM (48%), CTX-M-1 (48%), CTX-M-9 (5%), SHV (5%) and VEB (10%) families of broad-spectrum and extended-spectrum β-lactamase enzymes, as well as the carbapenemase gene bla(OXA-23). Forty additional genes were also detected in the Gram-negative isolates conferring resistance to aminoglycosides (11 genes), phenicols (5 genes), macrolides [4 genes, including mph(A)/mph(K) (10%)], lincosamides [lnu(F)/lin(F), lnu(G)/lin(G)], tetracycline (4 genes), rifampicin [arr (29%)], quaternary amines [qacEΔ1 (43%)], quinolones [qnrS (14%) and qnrB (5%)], sulfonamides [sul1 (29%), sul2 (38%) and sul3 (10%)], streptothricin (sat2) and trimethoprim (6 genes). The results obtained here provide a snapshot of the broad variety of resistance determinants currently circulating within Cambodia. | 2015 | 27873709 |
| 1255 | 11 | 0.9842 | Emergence of quinupristin/dalfopristin resistance among livestock-associated Staphylococcus aureus ST9 clinical isolates. Quinupristin/dalfopristin (Q/D) is a valuable alternative to vancomycin for the treatment of meticillin-resistant Staphylococcus aureus (MRSA) infections. However, not long after Q/D was approved, bacteria with resistance to this newer antimicrobial agent were reported. To investigate the prevalence of Q/D resistance, a total of 1476 non-duplicate S. aureus isolates, including 775 MRSA, from a Chinese tertiary hospital were selected randomly from 2003 to 2013. Of the 775 MRSA, 3 (0.4%) were resistant to Q/D. All meticillin-susceptible S. aureus were susceptible to Q/D. The prevalence of Q/D resistance among S. aureus was 0.2% (3/1476). The three isolates with Q/D resistance had the same antimicrobial resistance profile, except for cefaclor and chloramphenicol. All three Q/D-resistant MRSA were positive for five streptogramin B resistance genes (ermA, ermB, ermC, msrA and msrB) and two streptogramin A resistance genes (vatC and vgaA) as determined by PCR and DNA sequencing. MRSA WZ1031 belonged to ST9-MRSA-SCCmecV-t899, whilst MRSA WZ414 and WZ480 belonged to ST9-MRSA-SCCmecNT(non-typeable)-t899. ST9 has been reported predominantly in livestock-associated (LA) MRSA in some Asian countries. The three patients with these MRSA isolates were not livestock handlers and did not keep close contact with livestock. The origin of these important LA-MRSA isolates causing human infections is not known. Taken together, Q/D resistance, which was caused by a combination of ermA-ermB-ermC-msrA-msrB-vatC-vgaA, was first found among S. aureus clinical isolates in China. The present study is the first report of the emergence of human infections caused by ST9 LA-MRSA isolates with Q/D resistance. | 2014 | 25218154 |
| 1236 | 12 | 0.9842 | Molecular characterization of antimicrobial resistance in Gram-negative bacteria isolated from bovine mastitis in Egypt. The aim of this study was to characterize the genetic basis of multidrug resistance in Gram-negative bacteria isolated from bovine mastitis cases in Egypt. Multidrug resistance phenotypes were found in 34 of 112 (30.4%) Gram-negative bacterial isolates, which harbored at least one antimicrobial resistance gene. The most prevalent multidrug-resistant (MDR) species were Enterobacter cloacae (8 isolates, 7.1%), Klebsiella pneumoniae (7 isolates, 6.3%), Klebsiella oxytoca (7 isolates, 6.3%), Escherichia coli (5 isolates, 4.5%), and Citrobacter freundii (3 isolates, 2.7%). The most commonly observed resistance phenotypes were against ampicillin (97.0%), streptomycin (94.1%), tetracycline (91.2%), trimethoprim-sulfamethoxazole (88.2%), nalidixic acid (85.3%), and chloramphenicol (76.5%). Class 1 integrons were detected in 28 (25.0%) isolates. The gene cassettes within class 1 integrons included those encoding resistance to trimethoprim (dfrA1, dfrA5, dfrA7, dfrA12, dfrA15, dfrA17, and dfrA25), aminoglycosides (aadA1, aadA2, aadA5, aadA7, aadA12, aadA22, and aac(3)-Id), chloramphenicol (cmlA), erythromycin (ereA2), and rifampicin (arr-3). Class 2 integrons were identified in 6 isolates (5.4%) with three different profiles. Furthermore, the β-lactamase encoding genes, bla(TEM), bla(SHV), bla(CTX-M), and bla(OXA), the plasmid-mediated quinolone resistance genes, qnr and aac(6)-Ib-cr, and the florfenicol resistance gene, floR, were also identified. To the best of our knowledge, the results identified class 2 integrons, qnr and aac(6)-Ib-cr from cases of mastitis for the first time. This is the first report of molecular characterization for antimicrobial resistance in Gram-negative bacteria isolated from bovine mastitis in Africa. | 2011 | 21338385 |
| 1324 | 13 | 0.9841 | Molecular characterization of antimicrobial resistance in enterococci and Escherichia coli isolates from European wild rabbit (Oryctolagus cuniculus). A total of 44 Escherichia coli and 64 enterococci recovered from 77 intestinal samples of wild European rabbits in Portugal were analyzed for resistance to antimicrobial agents. Resistance in E. coli isolates was observed for ampicillin, tetracycline, sulfamethoxazole/trimethoprim, streptomycin, gentamicin, tobramycin, nalidixic acid, ciprofloxacin and chloramphenicol. None of the E. coli isolates produced extended-spectrum beta-lactamases (ESBLs). The bla(TEM), aadA, aac(3)-II, tet(A) and/or tet(B), and the catA genes were demonstrated in all ampicillin, streptomycin, gentamicin, tetracycline, and chloramphenicol-resistant isolates respectively, and the sul1 and/or sul2 and/or sul3 genes in 4 of 5 sulfamethoxazole/trimethoprim resistant isolates. Of the enterococcal isolates, Enterococcus faecalis was the most prevalent detected species (39 isolates), followed by E. faecium (21 isolates) and E. hirae (4 isolates). More than one-fourth (29.7%) of the isolates were resistant to tetracycline; 20.3% were resistant to erythromycin, 14.1% were resistant to ciprofloxacin and 10.9% were resistant to high-level-kanamycin. Lower level of resistance (<10%) was detected for ampicillin, quinupristin/dalfopristin and high-level-gentamicin, -streptomycin. No vancomycin-resistance was detected in the enterococci isolates. Resistance genes detected included aac(6')-aph(2''), ant(6)-Ia, tet(M) and/or tet(L) in all gentamicin, streptomycin and tetracycline-resistant isolates respectively. The aph(3')-IIIa gene was detected in 6 of 7 kanamycin-resistant isolates, the erm(B) gene in 11 of 13 erythromycin-resistant isolates and the vat(D) gene in the quinupristin/dalfopristin-resistant E. faecium isolate. This survey showed that faecal bacteria such as E. coli and enterococci of wild rabbits could be a reservoir of antimicrobial resistance genes. | 2010 | 20624632 |
| 1327 | 14 | 0.9841 | Distribution of aminoglycoside resistance genes in recent clinical isolates of Enterococcus faecalis, Enterococcus faecium and Enterococcus avium. Aminoglycoside modifying enzymes (AMEs) are major factors which confer aminoglycoside resistance on bacteria. Distribution of genes encoding seven AMEs was investigated by multiplex PCR for 279 recent clinical isolates of enterococci derived from a university hospital in Japan. The aac(6')-aph(2"), which is related to high level gentamicin resistance, was detected at higher frequency in Enterococcus faecalis (42.5%) than in Enterococcus faecium (4.3%). Almost half of E. faecalis and E. faecium isolates possessed ant(6)-Ia and aph(3')-IIIa. The profile of AME gene(s) detected most frequently in individual strains of E. faecalis was aac(6')aph(2") + ant(6)-Ia + aph(3')-IIIa, and isolates with this profile showed high level resistance to both gentamicin and streptomycin. In contrast, AME gene profiles of aac(6')-Ii+ ant(6)-Ia+aph(3')-IIIa, followed by aac(6')-Ii alone, were predominant in E. faecium. Only one AME gene profile of ant(6)-Ia+aph(3')-IIIa was found in Enterococcus avium. The ant(4')-Ia and ant(9)-Ia, which have been known to be distributed mostly among Staphylococcus aureus strains, were detected in a few enterococcal strains. An AME gene aph(2")-Ic was not detected in any isolates of the three enterococcal species. These findings indicated a variety of distribution profiles of AME genes among enterococci in our study site. | 2001 | 11349969 |
| 1329 | 15 | 0.9840 | First report of the Staphylococcus aureus isolate from subclinical bovine mastitis in the South of Brazil harboring resistance gene dfrG and transposon family Tn916-1545. The aim of this work was to identify at the molecular level the species of coagulase-positive staphylococci isolates from clinical and subclinical bovine mastitis samples in Southern Brazil, and to evaluate the antimicrobial resistance profile, as well as the presence of resistance genes. According to the PCR assay, all 31 isolates were classified as Staphylococcus aureus. The isolates were tested for resistance to penicillin, ampicillin, oxacillin, cefoxitin, cephalothin, ceftiofur, streptomycin, tobramycin, teicoplanin, erythromycin, clindamycin, enrofloxacin, sulfonamide, trimethoprim-sulfamethoxazole, trimethoprim, and tetracycline by the disk diffusion method. Most of the isolates were resistant to sulfonamide (20), followed by ampicillin and clindamycin (16). Twenty isolates were multidrug-resistant. PCR was used for the detection of several antimicrobial resistance genes (ereB, ermB, ermC, tetA, tetB, tetK, tetL, tetM, tetO, Tn916-1545, strA, strB, sul1, sul2, dfrA, dfrG, dfrK, blaZ, mecA, and mecC). The most prevalent antimicrobial resistance genes were tetK and tetL, ereB, followed by tetM, Tn916-1545 and blaZ, detected in 11, nine and four isolates, respectively. For all the tetM gene positive isolates, the presence of conjugative transposons of the Tn916-1545 family was detected. The presence of multidrug-resistant isolates, antimicrobial resistance genes and transposons suggests a potential risk of spreading multi-resistance genes to other bacteria. | 2017 | 29051059 |
| 1323 | 16 | 0.9840 | Detection of antibiotic resistant enterococci and Escherichia coli in free range Iberian Lynx (Lynx pardinus). Thirty fecal samples from wild specimens of Iberian lynx were collected and analyzed for Enterococcus spp. (27 isolates) and Escherichia coli (18 isolates) recovery. The 45 isolates obtained were tested for antimicrobial resistance, molecular mechanisms of resistance, and presence of virulence genes. Among the enterococci, Enterococcus faecium and Enterococcus hirae were the most prevalent species (11 isolates each), followed by Enterococcus faecalis (5 isolates). High percentages of resistance to tetracycline and erythromycin (33% and 30%, respectively) were detected among enterococcal isolates. The tet(M) and/or tet(L), erm(B), aac(6')-Ie-aph(2″)-Ia, ant(6)-Ia, or aph(3')-IIIa genes were detected among resistant enterococci. Virulence genes were detected in one E. faecalis isolate (cpd, cylB, and cylL) and one E. hirae isolate (cylL). High percentages of resistance were detected in E. coli isolates to tetracycline (33%), streptomycin (28%), nalidixic acid (28%), and sulfamethoxazole-trimethoprim (SXT, 22%). Additionally, the blaTEM, tet(A), aadA, cmlA, and different combinations of sul genes were detected among most ampicillin, tetracycline, streptomycin, chloramphenicol and SXT-resistant isolates, respectively. Two isolates contained a class 1 integron with the gene cassette arrays dfrA1 + aadA1 and dfrA12 + aadA2. The E. coli isolates were ascribed to phylo-groups A (n=5); B1 (n=4); B2 (n=6), and D (n=3), with the virulence gene fimA present in all E. coli isolates. This study found resistance genes in wild specimens of Iberian lynx. Thus, it is important to notice that multiresistant bacteria have reached species as rare and completely non-synanthropic as the Iberian lynx. Furthermore, the susceptibility of this endangered species to bacterial infection may be affected by the presence of these virulence and resistance genes. | 2013 | 23588135 |
| 1261 | 17 | 0.9839 | Antibiotic Resistance Genes, Virulence Factors, and Biofilm Formation in Coagulase-Negative Staphylococcus spp. Isolates from European Hakes (Merluccius merluccius, L.) Caught in the Northeast Atlantic Ocean. The indiscriminate use of antibiotics has contributed to the dissemination of multiresistant bacteria, which represents a public health concern. The aim of this work was to characterize 27 coagulase-negative staphylococci (CoNS) isolated from eight wild Northeast Atlantic hakes (Merluccius merluccius, L.) and taxonomically identified as Staphylococcus epidermidis (n = 16), Staphylococcus saprophyticus (n = 4), Staphylococcus hominis (n = 3), Staphylococcus pasteuri (n = 2), Staphylococcus edaphicus (n = 1), and Staphylococcus capitis (n = 1). Biofilm formation was evaluated with a microtiter assay, antibiotic susceptibility testing was performed using the disk diffusion method, and antibiotic resistance and virulence determinants were detected by PCR. Our results showed that all staphylococci produced biofilms and that 92.6% of the isolates were resistant to at least one antibiotic, mainly penicillin (88.8%), fusidic acid (40.7%), and erythromycin (37%). The penicillin resistance gene (blaZ) was detected in 66.6% (18) of the isolates, of which 10 also carried resistance genes to macrolides and lincosamides (mphC, msr(A/B), lnuA, or vgaA), 4 to fusidic acid (fusB), and 3 to trimethoprim-sulfamethoxazole (dfrA). At least one virulence gene (scn, hla, SCCmecIII, and/or SCCmecV) was detected in 48% of the isolates. This study suggests that wild European hake destined for human consumption could act as a vector of CoNS carrying antibiotic resistance genes and/or virulence factors. | 2023 | 38133330 |
| 1260 | 18 | 0.9839 | Isolation, Identification, and Antimicrobial Susceptibilities of Bacteria from the Conjunctival Sacs of Dogs with Bacterial Conjunctivitis in Different Regions of Wuhan, China. In order to investigate the bacterial species present in the conjunctival sacs of dogs with bacterial conjunctivitis in Wuhan (Hongshan District, Wuchang District, Jiangxia District, and Huangpi District) and their resistance to aminoglycoside antibiotics, samples of conjunctival sac secretions were collected from 56 dogs with bacterial conjunctivitis in various regions of Wuhan. Drug susceptibility testing for aminoglycoside antibiotics was performed on the most commonly isolated gram-positive and gram-negative bacteria. The expression of two aminoglycoside modifying enzyme genes, aacA-aphD and aac (6')-Ib, and three 16S rRNA methyltransferase genes, rmtB, rmtE and npmA, were analyzed by PCR. The results showed that a total of 123 bacterial strains were cultured from 56 conjunctival sac secretion samples, with Staphylococcus being the most commonly isolated species, followed by Escherichia. Among them, 14 strains of Staphylococcus pseudointermedius were not resistant to tobramycin, amikacin, gentamicin or neomycin, but the resistance rates to streptomycin and kanamycin were 35.71% and 42.86%, respectively. Among them, 14 Escherichia coli strains were not resistant to tobramycin and gentamicin, but they showed high resistance rates to neomycin and kanamycin (both at 50%). The detection rate of the aacA-aphD gene in Staphylococcus pseudointermedius strains was 100%. The detection rates of the rmtB gene and rmtE gene in Escherichia coli were 85.71% and 28.57%, respectively, while the aac(6')-Ib gene and npmA gene were not detected. | 2025 | 39852896 |
| 5413 | 19 | 0.9839 | First detection of the staphylococcal trimethoprim resistance gene dfrK and the dfrK-carrying transposon Tn559 in enterococci. The trimethoprim resistance gene dfrK has been recently described in Staphylococcus aureus, but so far has not been found in other bacteria. A total of 166 enterococci of different species (E. faecium, E. faecalis, E. hirae, E. durans, E. gallinarum, and E. casseliflavus) and origins (food, clinical diseases in humans, healthy humans or animals, and sewage) were studied for their susceptibility to trimethoprim as determined by agar dilution (European Committee on Antimicrobial Susceptibility Testing) and the presence of (a) the dfrK gene and its genetic environment and (b) other dfr genes. The dfrK gene was detected in 49% of the enterococci (64% and 42% of isolates with minimum inhibitory concentrations of ≥2 mg/L or ≤1 mg/L, respectively). The tet(L)-dfrK linkage was detected in 21% of dfrK-positive enterococci. The chromosomal location of the dfrK gene was identified in one E. faecium isolate in which the dfrK was not linked to tet(L) gene but was part of a Tn559 element, which was integrated in the chromosomal radC gene. This Tn559 element was also found in 14 additional isolates. All combinations of dfr genes were detected among the isolates tested (dfrK, dfrG, dfrF, dfrK+dfrG, dfrK+dfrF, dfrF+dfrG, and dfrF+dfrG+dfrK). The gene dfrK gene was found together with other dfr genes in 58% of the tested enterococci. This study suggested an exchange of the trimethoprim resistance gene dfrK between enterococci and staphylococci, as previously observed for the trimethoprim resistance gene dfrG. | 2012 | 21718151 |