LIVING - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
643800.9978The influence of heavy metals, polyaromatic hydrocarbons, and polychlorinated biphenyls pollution on the development of antibiotic resistance in soils. The minireview is devoted to the analysis of the influence of soil pollution with heavy metals, polyaromatic hydrocarbons (PAHs), and the polychlorinated biphenyls (PCBs) on the distribution of antibiotics resistance genes (ARGs) in soil microbiomes. It is shown that the best understanding of ARGs distribution process requires studying the influence of pollutants on this process in natural microbiocenoses. Heavy metals promote co-selection of genes determining resistance to them together with ARGs in the same mobile elements of a bacterial genome, but the majority of studies focus on agricultural soils enriched with ARGs originating from manure. Studying nonagricultural soils would clear mechanisms of ARGs transfer in natural and anthropogenically transformed environments and highlight the role of antibiotic-producing bacteria. PAHs make a considerable shift in soil microbiomes leading to an increase in the number of Actinobacteria which are the source of antibiotics formation and bear multiple ARGs. The soils polluted with PAHs can be a selective medium for bacteria resistant to antibiotics, and the level of ARGs expression is much higher. PCBs are accumulated in soils and significantly alter the specific structure of soil microbiocenoses. In such soils, representatives of the genera Acinetobacter, Pseudomonas, and Alcanivorax dominate, and the ability to degrade PCBs is connected to horizontal gene transfer (HGT) and high level of genomic plasticity. The attention is also focused on the need to study the properties of the soil having an impact on the bioavailability of pollutants and, as a result, on resistome of soil microorganisms.201829453715
866710.9977Glacier-Fed Stream Biofilms Harbor Diverse Resistomes and Biosynthetic Gene Clusters. Antimicrobial resistance (AMR) is a universal phenomenon the origins of which lay in natural ecological interactions such as competition within niches, within and between micro- to higher-order organisms. To study these phenomena, it is crucial to examine the origins of AMR in pristine environments, i.e., limited anthropogenic influences. In this context, epilithic biofilms residing in glacier-fed streams (GFSs) are an excellent model system to study diverse, intra- and inter-domain, ecological crosstalk. We assessed the resistomes of epilithic biofilms from GFSs across the Southern Alps (New Zealand) and the Caucasus (Russia) and observed that both bacteria and eukaryotes encoded twenty-nine distinct AMR categories. Of these, beta-lactam, aminoglycoside, and multidrug resistance were both abundant and taxonomically distributed in most of the bacterial and eukaryotic phyla. AMR-encoding phyla included Bacteroidota and Proteobacteria among the bacteria, alongside Ochrophyta (algae) among the eukaryotes. Additionally, biosynthetic gene clusters (BGCs) involved in the production of antibacterial compounds were identified across all phyla in the epilithic biofilms. Furthermore, we found that several bacterial genera (Flavobacterium, Polaromonas, Superphylum Patescibacteria) encode both atimicrobial resistance genes (ARGs) and BGCs within close proximity of each other, demonstrating their capacity to simultaneously influence and compete within the microbial community. Our findings help unravel how naturally occurring BGCs and AMR contribute to the epilithic biofilms mode of life in GFSs. Additionally, we report that eukaryotes may serve as AMR reservoirs owing to their potential for encoding ARGs. Importantly, these observations may be generalizable and potentially extended to other environments that may be more or less impacted by human activity. IMPORTANCE Antimicrobial resistance is an omnipresent phenomenon in the anthropogenically influenced ecosystems. However, its role in shaping microbial community dynamics in pristine environments is relatively unknown. Using metagenomics, we report the presence of antimicrobial resistance genes and their associated pathways in epilithic biofilms within glacier-fed streams. Importantly, we observe biosynthetic gene clusters associated with antimicrobial resistance in both pro- and eukaryotes in these biofilms. Understanding the role of resistance in the context of this pristine environment and complex biodiversity may shed light on previously uncharacterized mechanisms of cross-domain interactions.202336688698
735620.9977Tossed 'good luck' coins as vectors for anthropogenic pollution into aquatic environment. Superstition has it that tossing coins into wells or fountains brings good luck, thereby causing a potential accumulation of microbially contaminated metal particles in the water. Here, we characterized the microbiota and the resistance profile in biofilm on such coins and their surrounding sediments. The study site was a tidal marine lake within a touristic center located in a natural reserve area. Notwithstanding the fact that coin-related biofilms were dominated by typical marine taxa, coin biofilms had specific microbial communities that were different from the communities of the surrounding sediment. Moreover, the communities were different depending on whether the coin were made mainly of steel or of copper. Sequences affiliated with putative pathogens were found on every third coin but were not found in the surrounding sediment. Antibiotic resistance genes (ARGs) were detected on most of the coins, and interestingly, sediments close to the area where coins accumulate had a higher frequency of ARGs. We suggest that the surface of the coins might offer a niche for ARGs and faecal bacteria to survive, and, thus, tossed coins are a potential source and vector for ARGs into the surrounding environment.202031887589
865730.9977The Phytoplankton Taxon-Dependent Oil Response and Its Microbiome: Correlation but Not Causation. Phytoplankton strongly interact with their associated bacteria, both attached (PA), and free-living (FL), and bacterial community structures can be specific to phytoplankton species. Similarly, responses to environmental stressors can vary by taxon, as exemplified by observed shifts in phytoplankton community structure from diatoms to phytoflagellates after the Deepwater Horizon (DWH) oil spill. Here, we assess the extent to which associated bacteria influence the phytoplankton taxon-specific oil response by exposing xenic and axenic strains of three phytoplankton species to oil and/or dispersant. The dinoflagellates Amphidinium carterae and Peridinium sociale, and the diatom Skeletonema sp., all harbored significantly distinct bacterial communities that reflected their host oil response. Oil degrading bacteria were detected in both PA and FL communities of the oil resistant dinoflagellates, but their FL bacteria were more efficient in lipid hydrolysis, a proxy for oil degradation capability. Inversely, the growth rate and photosynthetic parameters of the diatom Skeletonema sp. was the most impacted by dispersed oil compared to the dinoflagellates, and oil-degrading bacteria were not significantly associated to its microbiome, even in the dispersed oil treatment. Moreover, the FL bacteria of Skeletonema did not show significant oil degradation. Yet, the lack of consistent significant differences in growth or photosynthetic parameters between the xenic and axenic cultures after oil exposure suggest that, physiologically, the associated bacteria do not modify the phytoplankton oil response. Instead, both oil resistance and phycosphere composition appear to be species-specific characteristics that are not causally linked. This study explores one aspect of what is undoubtedly a complex suite of interactions between phytoplankton and their associated bacteria; future analyses would benefit from studies of genes and metabolites that mediate algal-bacterial exchanges.201930915045
643940.9977A review: Marine aquaculture impacts marine microbial communities. Marine aquaculture is key for protein production but disrupts marine ecosystems by releasing excess feed and pharmaceuticals, thus affecting marine microbes. Though vital, its environmental impact often remains overlooked. This article delves into mariculture's effects on marine microbes, including bacteria, fungi, viruses, and antibiotic-resistance genes in seawater and sediments. It highlights how different mariculture practices-open, pond, and cage culture-affect these microbial communities. Mariculture's release of nutrients, antibiotics, and heavy metals alters the microbial composition, diversity, and functions. Integrated multi-trophic aquaculture, a promising sustainable approach, is still developing and needs refinement. A deep understanding of mariculture's impact on microbial ecosystems is crucial to minimize pollution and foster sustainable practices, paving the way for the industry's sustainable advancement.202438919720
737350.9977Distributional Pattern of Bacteria, Protists, and Diatoms in Ocean according to Water Depth in the Northern South China Sea. Ocean microbiomes provide insightful details about the condition of water and the global impact of marine ecosystems. A fine-scale analysis of ocean microbes may shed light on the dynamics and function of the ocean microbiome community. In this study, we evaluated the changes in the community and function of marine bacteria, protists, and diatoms corresponding to different ocean depths using next-generation sequencing methods. We found that diatoms displayed a potential water-depth pattern in species richness (alpha diversity) and community composition (beta diversity). However, for bacteria and protists, there was no significant relationship between water depth and species richness. This may be related to the biological characteristics of diatoms. The photosynthesis of diatoms and their distribution may be associated with the fluctuating light regime in the underwater climate. Moreover, salinity displayed negative effects on the abundance of some diatom and bacterial groups, which indicates that salinity may be one of the factors restricting ocean microorganism diversity. In addition, compared to the global ocean microbiome composition, function, and antibiotic resistance genes, a water depth pattern due to the fine-scale region was not observed in this study. IMPORTANCE Fine-scale analysis of ocean microbes provides insights into the dynamics and functions of the ocean microbiome community. Here, using amplicon and metagenome sequencing methods, we found that diatoms in the northern South China Sea displayed a potential water-depth pattern in species richness and community composition, which may be related to their biological characteristics. The potential effects of the differences in geographic sites mainly occurred in the diatom and bacterial communities. Moreover, given the correlation between the environmental factors and relative abundance of antibiotic resistance genes (ARGs), the study of ocean ARG distribution patterns should integrate the potential effects of environmental factors.202236222702
868760.9977Diversity and Distribution of Arsenic-Related Genes Along a Pollution Gradient in a River Affected by Acid Mine Drainage. Some microorganisms have the capacity to interact with arsenic through resistance or metabolic processes. Their activities contribute to the fate of arsenic in contaminated ecosystems. To investigate the genetic potential involved in these interactions in a zone of confluence between a pristine river and an arsenic-rich acid mine drainage, we explored the diversity of marker genes for arsenic resistance (arsB, acr3.1, acr3.2), methylation (arsM), and respiration (arrA) in waters characterized by contrasted concentrations of metallic elements (including arsenic) and pH. While arsB-carrying bacteria were representative of pristine waters, Acr3 proteins may confer to generalist bacteria the capacity to cope with an increase of contamination. arsM showed an unexpected wide distribution, suggesting biomethylation may impact arsenic fate in contaminated aquatic ecosystems. arrA gene survey suggested that only specialist microorganisms (adapted to moderately or extremely contaminated environments) have the capacity to respire arsenate. Their distribution, modulated by water chemistry, attested the specialist nature of the arsenate respirers. This is the first report of the impact of an acid mine drainage on the diversity and distribution of arsenic (As)-related genes in river waters. The fate of arsenic in this ecosystem is probably under the influence of the abundance and activity of specific microbial populations involved in different As biotransformations.201626603631
766570.9976Metagenomic Views of Microbial Communities in Sand Sediments Associated with Coral Reefs. Reef sediments, the home for microbes with high abundances, provide an important source of carbonates and nutrients for the growth and maintenance of coral reefs. However, there is a lack of systematic research on the composition of microbial community in sediments of different geographic sites and their potential effect on nutrient recycling and health of the coral reef ecosystem. In combination of biogeochemical measurements with gene- and genome-centric metagenomics, we assessed microbial community compositions and functional diversity, as well as profiles of antibiotic resistance genes in surface sediments of 16 coral reef sites at different depths from the Xisha islands in the South China Sea. Reef sediment microbiomes are diverse and novel at lower taxonomic ranks, dominated by Proteobacteria and Planctomycetota. Most reef sediment bacteria potentially participate in biogeochemical cycling via oxidizing various organic and inorganic compounds as energy sources. High abundances of Proteobacteria (mostly Rhizobiales and Woeseiales) are metabolically flexible and contain rhodopsin genes. Various classes of antibiotic resistance genes, hosted by diverse bacterial lineages, were identified to confer resistance to multidrug, aminoglycoside, and other antibiotics. Overall, our findings expanded the understanding of reef sediment microbial ecology and provided insights for their link to the coral reef ecosystem health.202335113183
866380.9976CPR bacteria and DPANN archaea play pivotal roles in response of microbial community to antibiotic stress in groundwater. The accumulation of antibiotics in the natural environment can disrupt microbial population dynamics. However, our understanding of how microbial communities adapt to the antibiotic stress in groundwater ecosystems remains limited. By recovering 2675 metagenome-assembled genomes (MAGs) from 66 groundwater samples, we explored the effect of antibiotics on bacterial, archaeal, and fungal communities, and revealed the pivotal microbes and their mechanisms in coping with antibiotic stress. The results indicated that antibiotics had the most significant influence on bacterial and archaeal communities, while the impact on the fungal community was minimal. Analysis of co-occurrence networks between antibiotics and microbes revealed the critical roles of Candidate Phyla Radiation (CPR) bacteria and DPANN archaea, two representative microbial groups in groundwater ecosystem, in coping with antibiotic resistance and enhancing network connectivity and complexity. Further genomic analysis demonstrated that CPR bacteria carried approximately 6 % of the identified antibiotic resistance genes (ARGs), indicating their potential to withstand antibiotics on their own. Meanwhile, the genomes of CPR bacteria and DPANN archaea were found to encode diverse biosynthetic gene clusters (BGCs) responsible for producing antimicrobial metabolites, which could not only assist CPR and DPANN organisms but also benefit the surrounding microbes in combating antibiotic stress. These findings underscore the significant impact of antibiotics on prokaryotic microbial communities in groundwater, and highlight the importance of CPR bacteria and DPANN archaea in enhancing the overall resilience and functionality of the microbial community in the face of antibiotic stress.202438246077
768590.9976Gut heavy metal and antibiotic resistome of humans living in the high Arctic. Contaminants, such as heavy metals (HMs), accumulate in the Arctic environment and the food web. The diet of the Indigenous Peoples of North Greenland includes locally sourced foods that are central to their nutritional, cultural, and societal health but these foods also contain high concentrations of heavy metals. While bacteria play an essential role in the metabolism of xenobiotics, there are limited studies on the impact of heavy metals on the human gut microbiome, and it is so far unknown if and how Arctic environmental contaminants impact the gut microbes of humans living in and off the Arctic environment. Using a multiomics approach including amplicon, metagenome, and metatranscriptome sequencing, we identified and assembled a near-complete (NC) genome of a mercury-resistant bacterial strain from the human gut microbiome, which expressed genes known to reduce mercury toxicity. At the overall ecological level studied through α- and β-diversity, there was no significant effect of heavy metals on the gut microbiota. Through the assembly of a high number of NC metagenome-assembled genomes (MAGs) of human gut microbes, we observed an almost complete overlap between heavy metal-resistant strains and antibiotic-resistant strains in which resistance genes were all located on the same genetic elements.202439539714
7374100.9975Unravelling the Portuguese Coastal and Transitional Waters' Microbial Resistome as a Biomarker of Differential Anthropogenic Impact. Portugal mainland and Atlantic archipelagos (Madeira and Azores) provide a wide array of coastal ecosystems with varying typology and degrees of human pressure, which shape the microbial communities thriving in these habitats, leading to the development of microbial resistance traits. The samples collected on the Portuguese northeast Atlantic coast waters show an unequivocal prevalence of Bacteria over Archaea with a high prevalence of Proteobacteria, Cyanobacteria, Bacteroidetes and Actinobacteria. Several taxa, such as the Vibrio genus, showed significant correlations with anthropogenic pollution. These anthropogenic pressures, along with the differences in species diversity among the surveyed sites, lead to observed differences in the presence and resistance-related sequences' abundance (set of all metal and antibiotic resistant genes and their precursors in pathogenic and non-pathogenic bacteria). Gene ontology terms such as antibiotic resistance, redox regulation and oxidative stress response were prevalent. A higher number of significant correlations were found between the abundance of resistance-related sequences and pollution, inorganic pressures and density of nearby population centres when compared to the number of significant correlations between taxa abundance at different phylogenetic levels and the same environmental traits. This points towards predominance of the environmental conditions over the sequence abundance rather than the taxa abundance. Our data suggest that the whole resistome profile can provide more relevant or integrative answers in terms of anthropogenic disturbance of the environment, either as a whole or grouped in gene ontology groups, appearing as a promising tool for impact assessment studies which, due to the ubiquity of the sequences across microbes, can be surveyed independently of the taxa present in the samples.202236287893
7686110.9975Bacterial tolerances to metals and antibiotics in metal-contaminated and reference streams. Anthropogenic-derived sources of selection are typically implicated as mechanisms for maintaining antibiotic resistance in the environment. Here we report an additional mechanism for maintaining antibiotic resistance in the environment through bacterial exposure to metals. Using a culture-independent approach, bacteria sampled along a gradient of metal contamination were more tolerant of antibiotics and metals compared to bacteria from a reference site. This evidence supports the hypothesis that metal contamination directly selects for metal tolerant bacteria while co-selecting for antibiotic tolerant bacteria. Additionally, to assess how antibiotic and metal tolerance may be transported through a stream network, we studied antibiotic and metal tolerance patterns over three months in bacteria collected from multiple stream microhabitats including the water column, biofilm, sediment and Corbicula fluminea (Asiatic clam) digestive tracts. Sediment bacteria were the most tolerant to antibiotics and metals, while bacteria from Corbicula were the least tolerant. Differences between microhabitats may be important for identifying reservoirs of resistance and for predicting how these genes are transferred and transported in metal-contaminated streams. Temporal dynamics were not directly correlated to a suite of physicochemical parameters, suggesting that tolerance patterns within microhabitats are linked to a complex interaction of the physicochemical characteristics of the stream.200617064270
8714120.9975Tales from the tomb: the microbial ecology of exposed rock surfaces. Although a broad diversity of eukaryotic and bacterial taxa reside on rock surfaces where they can influence the weathering of rocks and minerals, these communities and their contributions to mineral weathering remain poorly resolved. To build a more comprehensive understanding of the diversity, ecology and potential functional attributes of microbial communities living on rock, we sampled 149 tombstones across three continents and analysed their bacterial and eukaryotic communities via marker gene and shotgun metagenomic sequencing. We found that geographic location and climate were important factors structuring the composition of these communities. Moreover, the tombstone-associated microbial communities varied as a function of rock type, with granite and limestone tombstones from the same cemeteries harbouring taxonomically distinct microbial communities. The granite and limestone-associated communities also had distinct functional attributes, with granite-associated bacteria having more genes linked to acid tolerance and chemotaxis, while bacteria on limestone were more likely to be lichen associated and have genes involved in photosynthesis and radiation resistance. Together these results indicate that rock-dwelling microbes exhibit adaptations to survive the stresses of the rock surface, differ based on location, climate and rock type, and seem pre-disposed to different ecological strategies (symbiotic versus free-living lifestyles) depending on the rock type.201829235707
9712130.9975Diverse events have transferred genes for edible seaweed digestion from marine to human gut bacteria. Humans harbor numerous species of colonic bacteria that digest fiber polysaccharides in commonly consumed terrestrial plants. More recently in history, regional populations have consumed edible macroalgae seaweeds containing unique polysaccharides. It remains unclear how extensively gut bacteria have adapted to digest these nutrients. Here, we show that the ability of gut bacteria to digest seaweed polysaccharides is more pervasive than previously appreciated. Enrichment-cultured Bacteroides harbor previously discovered genes for seaweed degradation, which have mobilized into several members of this genus. Additionally, other examples of marine bacteria-derived genes, and their mobile DNA elements, are involved in gut microbial degradation of seaweed polysaccharides, including genes in gut-resident Firmicutes. Collectively, these results uncover multiple separate events that have mobilized the genes encoding seaweed-degrading-enzymes into gut bacteria. This work further underscores the metabolic plasticity of the human gut microbiome and global exchange of genes in the context of dietary selective pressures.202235240043
7682140.9975Soil Amoebae Are Unexpected Hotspots of Environmental Antibiotics and Antibiotic Resistance Genes. Antibiotic resistance poses a significant threat to human health. While most studies focus on bacteria, interactions between antibiotics and other crucial microbial groups like protists remain uncertain. This study investigates how protists interact with antibiotics and examines how these interactions impact the fate of resistance genes. It reveals that amoebae exhibit high resistance to eight high-risk environmental antibiotics, accumulating significant quantities within their cells. Wild amoeboid strains from distant locations carry substantial antibiotic resistance genes (ARGs) and metal resistance genes (MRGs), with significant heterogeneity within a single species. Amoeboid symbionts and pathogens predominantly carry these genes. Paraburkholderia symbionts have reduced genomes and fewer resistance genes compared to free-living strains, while amoeba-endogenous Stenotrophomonas maltophilia does not exhibit a significantly reduced genome size. This suggests that the amoeboid hosts serve as a temporary medium facilitating its transmission. In summary, the study unveils that soil amoebae represent unexpected hotspots for antibiotics and resistance genes. Future research should assess the effects of antibiotics on often-overlooked protists and explore their role in spreading ARGs and MRGs in ecosystems. Incorporating protists into broader antibiotic resistance research is recommended, highlighting their significance within a One Health perspective.202439584452
7684150.9975Trophic level and proteobacteria abundance drive antibiotic resistance levels in fish from coastal New England. BACKGROUND: The natural marine environment represents a vast reservoir of antimicrobial resistant bacteria. The wildlife that inhabits this environment plays an important role as the host to these bacteria and in the dissemination of resistance. The relationship between host diet, phylogeny, and trophic level and the microbiome/resistome in marine fish is not fully understood. To further explore this relationship, we utilize shotgun metagenomic sequencing to define the gastrointestinal tract microbiomes of seven different marine vertebrates collected in coastal New England waters. RESULTS: We identify inter and intraspecies differences in the gut microbiota of these wild marine fish populations. Furthermore, we find an association between antibiotic resistance genes and host dietary guild, which suggests that higher trophic level organisms have a greater abundance of resistance genes. Additionally, we demonstrate that antibiotic resistance gene burden is positively correlated with Proteobacteria abundance in the microbiome. Lastly, we identify dietary signatures within the gut of these fish and find evidence of possible dietary selection for bacteria with specific carbohydrate utilization potential. CONCLUSIONS: This work establishes a link between host lifestyle/dietary guild, and microbiome composition and the abundance of antibiotic resistance genes within the gastrointestinal tract of marine organisms. We expand the current understanding of marine organism-associated microbial communities and their role as reservoirs of antimicrobial resistance genes.202336879316
7495160.9975Determining the contribution of stream morphometry and microbial extracellular polymeric substances in the spread patterns of antimicrobial resistance. Bacteria that have antimicrobial resistance (AMR) are emerging global bio-pollutants owing to their dissemination through food, animals, and the environment. However, few studies have combined the internal factors related to bacterial physiology with external factors-specifically morphometric river analysis-to demonstrate the effects on the spread of AMR. Extracellular polymeric substances (EPS) within the biofilm matrix form unique micro-ecosystems that can influence the physiology and genetics of resistant bacteria and their associated genes. We investigated whether AMR dissemination associated with EPS production is significantly related to meteorological factors, stream morphology, and land use and land cover. By using a geographic information system, we explored resistant Escherichia coli bacteria and genes in diverse riverine habitats, water columns, sediment beds, and rock surfaces of the Yasu River, the largest stream flowing into Lake Biwa, Japan's largest freshwater lake. EPS production in sediment and rock beds resulted in a significant increase in the abundance of resistant bacteria and genes. However, this was quickly altered by precipitation and stream flow dynamics. Land use had a greater impact than stream length or stream density, providing a better understanding of how AMR is disseminated in the environment.202540972342
8648170.9975Host-specific assembly of phycosphere microbiome and enrichment of the associated antibiotic resistance genes: Integrating species of microalgae hosts, developmental stages and water contamination. Phytoplankton-bacteria interactions profoundly impact ecosystem function and biogeochemical cycling, while their substantial potential to carry and disseminate antibiotic resistance genes (ARGs) poses a significant threat to global One Health. However, the ecological paradigm behind the phycosphere assembly of microbiomes and the carrying antibiotic resistomes remains unclear. Our field investigation across various freshwater ecosystems revealed a substantial enrichment of bacteria and ARGs within microalgal niches. Taking account of the influence for species of microalgae hosts, their developmental stages and the stress of water pollution, we characterized the ecological processes governing phycosphere assembly of bacterial consortia and enrichment of the associated ARGs. By inoculating 6 axenic algal hosts with two distinct bacterial consortia from a natural river and the phycosphere of Scenedesmus acuminatus, we observed distinct phycosphere bacteria recruitment among different algal species, yet consistency within the same species. Notably, a convergent bacterial composition was established for the same algae species for two independent inoculations, demonstrating host specificity in phycosphere microbiome assembly. Host-specific signature was discernible as early as the algal lag phase and more pronounced as the algae developed, indicating species types of algae determined mutualism between the bacterial taxa and hosts. The bacteria community dominated the shaping of ARG profiles within the phycosphere and the host-specific phycosphere ARG enrichment was intensified with the algae development. The polluted water significantly stimulated host's directional selection on phycosphere bacterial consortia and increased the proliferation antibiotic resistome. These consortia manifested heightened beneficial functionality, enhancing microalgal adaptability to contamination stress.202540349825
7679180.9975The High Risk of Bivalve Farming in Coastal Areas With Heavy Metal Pollution and Antibiotic-Resistant Bacteria: A Chilean Perspective. Anthropogenic pollution has a huge impact on the water quality of marine ecosystems. Heavy metals and antibiotics are anthropogenic stressors that have a major effect on the health of the marine organisms. Although heavy metals are also associate with volcanic eruptions, wind erosion or evaporation, most of them come from industrial and urban waste. Such contamination, coupled to the use and subsequent misuse of antimicrobials in aquatic environments, is an important stress factor capable of affecting the marine communities in the ecosystem. Bivalves are important ecological components of the oceanic environments and can bioaccumulate pollutants during their feeding through water filtration, acting as environmental sentinels. However, heavy metals and antibiotics pollution can affect several of their physiologic and immunological processes, including their microbiome. In fact, heavy metals and antibiotics have the potential to select resistance genes in bacteria, including those that are part of the microbiota of bivalves, such as Vibrio spp. Worryingly, antibiotic-resistant phenotypes have been shown to be more tolerant to heavy metals, and vice versa, which probably occurs through co- and cross-resistance pathways. In this regard, a crucial role of heavy metal resistance genes in the spread of mobile element-mediated antibiotic resistance has been suggested. Thus, it might be expected that antibiotic resistance of Vibrio spp. associated with bivalves would be higher in contaminated environments. In this review, we focused on co-occurrence of heavy metal and antibiotic resistance in Vibrio spp. In addition, we explore the Chilean situation with respect to the contaminants described above, focusing on the main bivalves-producing region for human consumption, considering bivalves as potential vehicles of antibiotic resistance genes to humans through the ingestion of contaminated seafood.202235463633
6440190.9975Fate and transport of biological microcontaminants bound to microplastics in the soil environment. Microplastics, fragmented plastic particles with a maximum dimension <5 mm, are an emerging contaminant of concern that can also serve as a vector of other chemical and biological contaminants. Compared to chemical contaminants, the potential of microplastics to adsorb biological microcontaminants such as antibiotic resistance genes, small interference RNAs, and pathogenic viruses is not well understood. Many current microplastic studies are based in the aquatic environment (freshwater, seawater, and wastewater), even though the terrestrial environment is considered both an important sink and source of microplastics. Microplastics co-occur with biological microcontaminants in many terrestrial environments including agricultural soils, where biosolids containing both contaminants are often applied as a soil amendment. Recent research suggests that microplastics in these environments can increase gene persistence and flow, which could have unintended downstream consequences for environmental microbiome health and resilience. Antibiotic resistance genes and silencing RNAs bound to microplastics, for example, have the potential to increase resistance and alter gene expression in environmental bacteria, respectively. This review evaluates the sources and pathways of microplastics and biological microcontaminants in the terrestrial environment as well as potential sorption mechanisms that can encourage long-range transport and persistence. Novel sources of biological microcontaminants are considered, and the role of microplastics in promoting the persistence and flow of biological microcontaminants evaluated. Finally, future research directions are suggested to increase understanding of the mechanisms that drive the fate and transport of microplastic-biological microcontaminant complexes in the terrestrial environment and better inform risk management.202337247742