LINEAGES - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
179300.9947Comparative Genome Analysis of an Extensively Drug-Resistant Isolate of Avian Sequence Type 167 Escherichia coli Strain Sanji with Novel In Silico Serotype O89b:H9. Extensive drug resistance (XDR) is an escalating global problem. Escherichia coli strain Sanji was isolated from an outbreak of pheasant colibacillosis in Fujian province, China, in 2011. This strain has XDR properties, exhibiting sensitivity to carbapenems but no other classes of known antibiotics. Whole-genome sequencing revealed a total of 32 known antibiotic resistance genes, many associated with insertion sequence 26 (IS26) elements. These were found on the Sanji chromosome and 2 of its 6 plasmids, pSJ_255 and pSJ_82. The Sanji chromosome also harbors a type 2 secretion system (T2SS), a type 3 secretion system (T3SS), a type 6 secretion system (T6SS), and several putative prophages. Sanji and other ST167 strains have a previously uncharacterized O-antigen (O89b) that is most closely related to serotype O89 as determined on the basis of analysis of the wzm-wzt genes and in silico serotyping. This O89b-antigen gene cluster was also found in the genomes of a few other pathogenic sequence type 617 (ST617) and ST10 complex strains. A time-scaled phylogeny inferred from comparative single nucleotide variant analysis indicated that development of these O89b-containing lineages emerged about 30 years ago. Comparative sequence analysis revealed that the core genome of Sanji is nearly identical to that of several recently sequenced strains of pathogenic XDR E. coli belonging to the ST167 group. Comparison of the mobile elements among the different ST167 genomes revealed that each genome carries a distinct set of multidrug resistance genes on different types of plasmids, indicating that there are multiple paths toward the emergence of XDR in E. coli. IMPORTANCE E. coli strain Sanji is the first sequenced and analyzed genome of the recently emerged pathogenic XDR strains with sequence type ST167 and novel in silico serotype O89b:H9. Comparison of the genomes of Sanji with other ST167 strains revealed distinct sets of different plasmids, mobile IS elements, and antibiotic resistance genes in each genome, indicating that there exist multiple paths toward achieving XDR. The emergence of these pathogenic ST167 E. coli strains with diverse XDR capabilities highlights the difficulty of preventing or mitigating the development of XDR properties in bacteria and points to the importance of better understanding of the shared underlying virulence mechanisms and physiology of pathogenic bacteria.201930834329
179410.9936Insights into the evolution of gene organization and multidrug resistance from Klebsiella pneumoniae plasmid pKF3-140. Plasmid-mediated transfer of drug-resistance genes among various bacterial species is considered one of the most important mechanisms for the spread of multidrug resistance. To gain insights into the evolution of gene organization and antimicrobial resistance in clinical bacterial samples, a complete plasmid genome of Klebsiella pneumoniae pKF3-140 is determined, which has a circular chromosome of 147,416bp in length. Among the 203 predicted genes, 142 have function assignment and about 50 appear to be involved in plasmid replication, maintenance, conjugative transfer, iron acquisition and transport, and drug resistance. Extensive comparative genomic analyses revealed that pKF3-140 exhibits a rather low sequence similarity and structural conservation with other reported K. pneumoniae plasmids. In contrast, the overall organization of pKF3-140 is highly similar to Escherichia coli plasmids p1ESCUM and pUTI89, which indicates the possibility that K. pneumoniae pKF3-140 may have a potential origin in E. coli. Meanwhile, interestingly, several drug resistant genes show high similarity to the plasmid pU302L in Salmonella enterica serovar Typhimurium U302 strain G8430 and the plasmid pK245 in K. pneumoniae. This mosaic pattern of sequence similarities suggests that pKF3-140 might have arisen from E. coli and acquired the resistance genes from a variety of enteric bacteria and underscores the importance of a further understanding of horizontal gene transfer among enteric bacteria.201323402892
183420.9935Multiple host colonization and differential expansion of multidrug-resistant ST25-Acinetobacter baumannii clades. The Acinetobacter baumannii clonal lineage ST25 has been identified in humans and animals and found associated with outbreaks globally. To highlight possible similarities among ST25 A. baumannii of animal and human origins and to gather clues on the dissemination and evolution of the ST25 lineage, we conducted a phylogenetic analysis on n = 106 human and n = 35 animal A. baumannii ST25 genomes, including 44 sequenced for this study. Resistance genes and their genetic background were analyzed, as well. ST25 genomes are clustered into four clades: two are widespread in South America, while the other two are largely distributed in Europe, Asia and America. One particular clade was found to include the most recent strains and the highest number of acquired antibiotic resistance genes. OXA-23-type carbapenemase was the most common. Other resistance genes such as bla(NDM-1), bla(PER-7), and armA were found embedded in complex chromosomal regions present in human isolates. Genomic similarity among multidrug resistant ST25 isolates of either animal or human origin was revealed, suggesting cross-contaminations between the two sectors. Tracking the clonal complex ST25 between humans and animals should provide new insights into the mode of dissemination of these bacteria, and should help defining strategies for preserving global health.202338071225
515830.9934Distinct adaptation and epidemiological success of different genotypes within Salmonella enterica serovar Dublin. Salmonella Dublin is a host-adapted, invasive nontyphoidal Salmonella (iNTS) serovar that causes bloodstream infections in humans and demonstrates increasing prevalence of antimicrobial resistance (AMR). Using a global dataset of 1303 genomes, coupled with in vitro assays, we examined the evolutionary, resistance, and virulence characteristics of S. Dublin. Our analysis revealed strong geographical associations between AMR profiles and plasmid types, with highly resistant isolates confined predominantly to North America, linked to IncC plasmids co-encoding AMR and heavy metal resistance. By contrast, Australian isolates were largely antimicrobial-susceptible, reflecting differing AMR pressures. We identified two phylogenetically distinct Australian lineages, ST10 and ST74, with a small number of ST10 isolates harbouring a novel hybrid plasmid encoding both AMR and mercuric resistance. Whereas the ST10 lineage remains globally dominant, the ST74 lineage was less prevalent. ST74 exhibited unique genomic features including a larger pan genome compared to ST10 and the absence of key virulence loci, including Salmonella pathogenicity island (SPI)-19 which encodes a type VI secretion system (T6SS). Despite these genomic differences, the ST74 lineage displayed enhanced intracellular replication in human macrophages and induced less pro-inflammatory responses compared with ST10, suggesting alternative virulence strategies that may support systemic dissemination of ST74. The Vi antigen was absent in all ST10 and ST74 genomes, highlighting challenges for serotyping and vaccine development, and has implications for current diagnostic and control strategies for S. Dublin infections. Collectively, this study represents the most comprehensive investigation of S. Dublin to date and, importantly, has revealed distinct adaptations of two genotypes within the same serovar, leading to different epidemiological success. The regional emergence and evolution of distinct S. Dublin lineages highlight the need to understand the divergence of intra-serovar virulence mechanisms which may impact the development of effective control measures against this important global pathogen.202540560760
506540.9933Locus of Heat Resistance (LHR) in Meat-Borne Escherichia coli: Screening and Genetic Characterization. Microbial resistance to processing treatments poses a food safety concern, as treatment tolerant pathogens can emerge. Occasional foodborne outbreaks caused by pathogenic Escherichia coli have led to human and economic losses. Therefore, this study screened for the extreme heat resistance (XHR) phenotype as well as one known genetic marker, the locus of heat resistance (LHR), in 4,123 E. coli isolates from diverse meat animals at different processing stages. The prevalences of XHR and LHR among the meat-borne E. coli were found to be 10.3% and 11.4%, respectively, with 19% agreement between the two. Finished meat products showed the highest LHR prevalence (24.3%) compared to other processing stages (0 to 0.6%). None of the LHR(+)E. coli in this study would be considered pathogens based on screening for virulence genes. Four high-quality genomes were generated by whole-genome sequencing of representative LHR(+) isolates. Nine horizontally acquired LHRs were identified and characterized, four plasmid-borne and five chromosomal. Nine newly identified LHRs belong to ClpK1 LHR or ClpK2 LHR variants sharing 61 to 68% nucleotide sequence identity, while one LHR appears to be a hybrid. Our observations suggest positive correlation between the number of LHR regions present in isolates and the extent of heat resistance. The isolate exhibiting the highest degree of heat resistance possessed four LHRs belonging to three different variant groups. Maintenance of as many as four LHRs in a single genome emphasizes the benefits of the LHR in bacterial physiology and stress response.IMPORTANCE Currently, a "multiple-hurdle" approach based on a combination of different antimicrobial interventions, including heat, is being utilized during meat processing to control the burden of spoilage and pathogenic bacteria. Our recent study (M. Guragain, G. E. Smith, D. A. King, and J. M. Bosilevac, J Food Prot 83:1438-1443, 2020, https://doi.org/10.4315/JFP-20-103) suggests that U.S. beef cattle harbor Escherichia coli that possess the locus of heat resistance (LHR). LHR seemingly contributes to the global stress tolerance in bacteria and hence poses a food safety concern. Therefore, it is important to understand the distribution of the LHRs among meat-borne bacteria identified at different stages of different meat processing systems. Complete genome sequencing and comparative analysis of selected heat-resistant bacteria provide a clearer understanding of stress and heat resistance mechanisms. Further, sequencing data may offer a platform to gain further insights into the genetic background that provides optimal bacterial tolerance against heat and other processing treatments.202133483306
520050.9932Whole genome sequencing of the multidrug-resistant Chryseobacterium indologenes isolated from a patient in Brazil. Chryseobacterium indologenes is a non-glucose-fermenting Gram-negative bacillus. This emerging multidrug resistant opportunistic nosocomial pathogen can cause severe infections in neonates and immunocompromised patients. This study aimed to present the first detailed draft genome sequence of a multidrug-resistant C. indologenes strain isolated from the cerebrospinal fluid of an infant hospitalized at the Neonatal Intensive Care Unit of Brazilian Tertiary Hospital. We first analyzed the susceptibility of C. indologenes strain to different antibiotics using the VITEK 2 system. The strain demonstrated an outstanding resistance to all the antibiotic classes tested, including β-lactams, aminoglycosides, glycylcycline, and polymyxin. Next, C. indologenes was whole-genome-sequenced, annotated using Prokka and Rapid Annotation using Subsystems Technology (RAST), and screened for orthologous groups (EggNOG), gene ontology (GO), resistance genes, virulence genes, and mobile genetic elements using different software tools. The draft genome contained one circular chromosome of 4,836,765 bp with 37.32% GC content. The genomic features of the chromosome present numerous genes related to cellular processes that are essential to bacteria. The MDR C. indologenes revealed the presence of genes that corresponded to the resistance phenotypes, including genes to β-lactamases (bla (IND-13), bla (CIA-3), bla (TEM-116), bla (OXA-209), bla (VEB-15)), quinolone (mcbG), tigecycline (tet(X6)), and genes encoding efflux pumps which confer resistance to aminoglycosides (RanA/RanB), and colistin (HlyD/TolC). Amino acid substitutions related to quinolone resistance were observed in GyrA (S83Y) and GyrB (L425I and K473R). A mutation that may play a role in the development of colistin resistance was detected in lpxA (G68D). Chryseobacterium indologenes isolate harbored 19 virulence factors, most of which were involved in infection pathways. We identified 13 Genomic Islands (GIs) and some elements associated with one integrative and conjugative element (ICEs). Other elements linked to mobile genetic elements (MGEs), such as insertion sequence (ISEIsp1), transposon (Tn5393), and integron (In31), were also present in the C. indologenes genome. Although plasmids were not detected, a ColRNAI replicon type and the most resistance genes detected in singletons were identified in unaligned scaffolds. We provided a wide range of information toward the understanding of the genomic diversity of C. indologenes, which can contribute to controlling the evolution and dissemination of this pathogen in healthcare settings.202235966843
156060.9932Comprehensive genome data analysis establishes a triple whammy of carbapenemases, ICEs and multiple clinically relevant bacteria. Carbapenemases inactivate most β-lactam antibiotics, including carbapenems, and have frequently been reported among Enterobacteriaceae, Acinetobacter spp. and Pseudomonas spp. Traditionally, the horizontal gene transfer of carbapenemase-encoding genes (CEGs) has been linked to plasmids. However, given that integrative and conjugative elements (ICEs) are possibly the most abundant conjugative elements among prokaryotes, we conducted an in silico analysis to ascertain the likely role of ICEs in the spread of CEGs among all bacterial genomes (n=182 663). We detected 17 520 CEGs, of which 66 were located within putative ICEs among several bacterial species (including clinically relevant bacteria, such as Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli). Most CEGs detected within ICEs belong to the IMP, NDM and SPM metallo-beta-lactamase families, and the serine beta-lactamase KPC and GES families. Different mechanisms were likely responsible for acquisition of these genes. The majority of CEG-bearing ICEs belong to the MPF(G), MPF(T) and MPF(F) classes and often encode resistance to other antibiotics (e.g. aminoglycosides and fluoroquinolones). This study provides a snapshot of the different CEGs associated with ICEs among available bacterial genomes and sheds light on the underappreciated contribution of ICEs to the spread of carbapenem resistance globally.202032841111
156370.9931Intra- and Interspecies Spread of a Novel Conjugative Multidrug Resistance IncC Plasmid Coharboring bla(OXA-181) and armA in a Cystic Fibrosis Patient. A novel multidrug resistance conjugative 177,859-bp IncC plasmid pJEF1-OXA-181 coharboring the carbapenemase-coding bla(OXA181) and the aminoglycoside resistance 16S rRNA methyltransferase-coding armA genes was detected in two unrelated Escherichia coli gut isolates of ST196 and ST648, as well as two ST35 Klebsiella pneumoniae gut and sputum isolates of a cystic fibrosis patient. The armA gene was located within the antimicrobial resistance island ARI-A and the bla(OXA181) gene, which was preceded by IS903 and ISEcp1Δ was inserted within the transfer genes region without affecting conjugation ability. Comparative plasmid analysis with other related IncC plasmids showed the presence of bla(OXA181), as well as its integration site, are thus far unique for these types of plasmids. This study illustrates the potential of a promiscuous multidrug resistance plasmid to acquire antibiotic resistance genes and to disseminate in the gut of the same host. IMPORTANCE Colocalization of carbapenemases and aminoglycoside resistance 16S rRNA methylases on a multidrug resistance conjugative plasmid poses a serious threat to public health. Here, we describe the novel IncC plasmid pJEF1-OXA-181 cocarrying bla(OXA-181) and armA as well as several other antimicrobial resistance genes (ARGs) in different Enterobacterales isolates of the sputum and gut microbiota of a cystic fibrosis patient. IncC plasmids are conjugative, promiscuous elements which can incorporate accessory antimicrobial resistance islands making them key players in ARGs spread. This plasmid was thus far unique among IncC plasmids to contain a bla(OXA-181) which was integrated in the transfer gene region without affecting its conjugation ability. This study highlights that new plasmids may be introduced into a hospital through different species hosted in one single patient. It further emphasizes the need of continuous surveillance of multidrug-resistant bacteria in patients at risk to avoid spread of such plasmids in the health care system.202236154665
492680.9931Complete Assembly of Escherichia coli Sequence Type 131 Genomes Using Long Reads Demonstrates Antibiotic Resistance Gene Variation within Diverse Plasmid and Chromosomal Contexts. The incidence of infections caused by extraintestinal Escherichia coli (ExPEC) is rising globally, which is a major public health concern. ExPEC strains that are resistant to antimicrobials have been associated with excess mortality, prolonged hospital stays, and higher health care costs. E. coli sequence type 131 (ST131) is a major ExPEC clonal group worldwide, with variable plasmid composition, and has an array of genes enabling antimicrobial resistance (AMR). ST131 isolates frequently encode the AMR genes bla(CTX-M-14), bla(CTX-M-15), and bla(CTX-M-27), which are often rearranged, amplified, and translocated by mobile genetic elements (MGEs). Short DNA reads do not fully resolve the architecture of repetitive elements on plasmids to allow MGE structures encoding bla(CTX-M) genes to be fully determined. Here, we performed long-read sequencing to decipher the genome structures of six E. coli ST131 isolates from six patients. Most long-read assemblies generated entire chromosomes and plasmids as single contigs, in contrast to more fragmented assemblies created with short reads alone. The long-read assemblies highlighted diverse accessory genomes with bla(CTX-M-15), bla(CTX-M-14), and bla(CTX-M-27) genes identified in three, one, and one isolates, respectively. One sample had no bla(CTX-M) gene. Two samples had chromosomal bla(CTX-M-14) and bla(CTX-M-15) genes, and the latter was at three distinct locations, likely transposed by the adjacent MGEs: ISEcp1, IS903B, and Tn2 This study showed that AMR genes exist in multiple different chromosomal and plasmid contexts, even between closely related isolates within a clonal group such as E. coli ST131.IMPORTANCE Drug-resistant bacteria are a major cause of illness worldwide, and a specific subtype called Escherichia coli ST131 causes a significant number of these infections. ST131 bacteria become resistant to treatments by modifying their DNA and by transferring genes among one another via large packages of genes called plasmids, like a game of pass-the-parcel. Tackling infections more effectively requires a better understanding of what plasmids are being exchanged and their exact contents. To achieve this, we applied new high-resolution DNA sequencing technology to six ST131 samples from infected patients and compared the output to that of an existing approach. A combination of methods shows that drug resistance genes on plasmids are highly mobile because they can jump into ST131's chromosomes. We found that the plasmids are very elastic and undergo extensive rearrangements even in closely related samples. This application of DNA sequencing technologies illustrates at a new level the highly dynamic nature of ST131 genomes.201931068432
153590.9930Complete Genome Sequencing of Acinetobacter baumannii AC1633 and Acinetobacter nosocomialis AC1530 Unveils a Large Multidrug-Resistant Plasmid Encoding the NDM-1 and OXA-58 Carbapenemases. Carbapenem-resistant Acinetobacter spp. are considered priority drug-resistant human-pathogenic bacteria. The genomes of two carbapenem-resistant Acinetobacter spp. clinical isolates obtained from the same tertiary hospital in Terengganu, Malaysia, namely, A. baumannii AC1633 and A. nosocomialis AC1530, were sequenced. Both isolates were found to harbor the carbapenemase genes bla(NDM-1) and bla(OXA-58) in a large (ca. 170 kb) plasmid designated pAC1633-1 and pAC1530, respectively, that also encodes genes that confer resistance to aminoglycosides, sulfonamides, and macrolides. The two plasmids were almost identical except for the insertion of ISAba11 and an IS4 family element in pAC1633-1, and ISAba11 along with relBE toxin-antitoxin genes flanked by inversely orientated pdif (XerC/XerD) recombination sites in pAC1530. The bla(NDM-1) gene was encoded in a Tn125 composite transposon structure flanked by ISAba125, whereas bla(OXA-58) was flanked by ISAba11 and ISAba3 downstream and a partial ISAba3 element upstream within a pdif module. The presence of conjugative genes in plasmids pAC1633-1/pAC1530 and their discovery in two distinct species of Acinetobacter from the same hospital are suggestive of conjugative transfer, but mating experiments failed to demonstrate transmissibility under standard laboratory conditions. Comparative sequence analysis strongly inferred that pAC1633-1/pAC1530 was derived from two separate plasmids in an IS1006-mediated recombination or transposition event. A. baumannii AC1633 also harbored three other plasmids designated pAC1633-2, pAC1633-3, and pAC1633-4. Both pAC1633-3 and pAC1633-4 are cryptic plasmids, whereas pAC1633-2 is a 12,651-bp plasmid of the GR8/GR23 Rep3-superfamily group that encodes the tetA(39) tetracycline resistance determinant in a pdif module.IMPORTANCE Bacteria of the genus Acinetobacter are important hospital-acquired pathogens, with carbapenem-resistant A. baumannii listed by the World Health Organization as the one of the top priority pathogens. Whole-genome sequencing of carbapenem-resistant A. baumannii AC1633 and A. nosocomialis AC1530, which were isolated from the main tertiary hospital in Terengganu, Malaysia, led to the discovery of a large, ca. 170-kb plasmid that harbored genes encoding the New Delhi metallo-β-lactamase-1 (NDM-1) and OXA-58 carbapenemases alongside genes that conferred resistance to aminoglycosides, macrolides, and sulfonamides. The plasmid was a patchwork of multiple mobile genetic elements and comparative sequence analysis indicated that it may have been derived from two separate plasmids through an IS1006-mediated recombination or transposition event. The presence of such a potentially transmissible plasmid encoding resistance to multiple antimicrobials warrants vigilance, as its spread to susceptible strains would lead to increasing incidences of antimicrobial resistance.202133504662
845100.9930Variants of β-lactamase-encoding genes are disseminated by multiple genetically distinct lineages of bloodstream Escherichia coli. BACKGROUND: Escherichia coli is a major cause of bloodstream infections (BSI), which can lead to life-threatening organ dysfunction. We determined the genomic characteristics of E. coli implicated in BSI and the spread of antimicrobial resistance (AMR). METHODS: We carried out in vitro antimicrobial susceptibility testing and whole genome sequencing of 557 E. coli isolates recovered from BSI at Dartmouth-Hitchcock Medical Center, USA. RESULTS: We identify at least 119 previously recognized sequence types (ST), of which five STs (ST69, ST73, ST95, ST127, ST131) altogether represent 50% of the bloodstream E. coli population. Of the 142 distinct serotypes detected, the most common are O25:H4 and O1:H7. A total of 62 acquired genes are associated with resistance to at least 13 antimicrobial classes. These include the β-lactamase gene families bla(TEM), bla(SHV), bla(OXA), bla(CTX-M), and bla(CMY), which together can be further classified into 15 variants, including seven genes encoding extended-spectrum β-lactamases (ESBL). A total of 210/557 genomes carry at least one bla gene, with bla(TEM-1) being the most prevalent variant. ESBL-related genes are frequently detected in ST131 genomes. Four virulence operons related to iron uptake are differentially distributed among the five dominant STs. The putative IncF-type plasmid is often associated with genes related to AMR and iron uptake. Estimation of core and accessory genome similarity identifies 12 presumptive epidemiological linkages that span anywhere between 2-18 months. CONCLUSIONS: Multiple but genetically distinct E. coli lineages similarly cause BSI and shape AMR dissemination, emphasizing the opportunistic nature of E. coli in invasive infections.202540595425
4556110.9930Genomic analysis of diverse environmental Acinetobacter isolates identifies plasmids, antibiotic resistance genes, and capsular polysaccharides shared with clinical strains. Acinetobacter baumannii, an important pathogen known for its widespread antibiotic resistance, has been the focus of extensive research within its genus, primarily involving clinical isolates. Consequently, data on environmental A. baumannii and other Acinetobacter species remain limited. Here, we utilized Illumina and Nanopore sequencing to analyze the genomes of 10 Acinetobacter isolates representing 6 different species sourced from aquatic environments in South Australia. All 10 isolates were phylogenetically distinct compared to clinical and other non-clinical Acinetobacter strains, often tens of thousands of single-nucleotide polymorphisms from their nearest neighbors. Despite the genetic divergence, we identified pdif modules (sections of mobilized DNA) carrying clinically important antimicrobial resistance genes in species other than A. baumannii, including carbapenemase oxa58, tetracycline resistance gene tet(39), and macrolide resistance genes msr(E)-mph(E). These pdif modules were located on plasmids with high sequence identity to those circulating in globally distributed A. baumannii ST1 and ST2 clones. The environmental A. baumannii isolate characterized here (SAAb472; ST350) did not possess any native plasmids; however, it could capture two clinically important plasmids (pRAY and pACICU2) with high transfer frequencies. Furthermore, A. baumannii SAAb472 possessed virulence genes and a capsular polysaccharide type analogous to clinical strains. Our findings highlight the potential for environmental Acinetobacter species to acquire and disseminate clinically important antimicrobial resistance genes, underscoring the need for further research into the ecology and evolution of this important genus.IMPORTANCEAntimicrobial resistance (AMR) is a global threat to human, animal, and environmental health. Studying AMR in environmental bacteria is crucial to understand the emergence and dissemination of resistance genes and pathogens, and to identify potential reservoirs and transmission routes. This study provides novel insights into the genomic diversity and AMR potential of environmental Acinetobacter species. By comparing the genomes of aquatic Acinetobacter isolates with clinical and non-clinical strains, we revealed that they are highly divergent yet carry pdif modules that encode resistance to antibiotics commonly used in clinical settings. We also demonstrated that an environmental A. baumannii isolate can acquire clinically relevant plasmids and carries virulence factors similar to those of hospital-associated strains. These findings suggest that environmental Acinetobacter species may serve as reservoirs and vectors of clinically important genes. Consequently, further research is warranted to comprehensively understand the ecology and evolution of this genus.202438206028
1655120.9930Genomic analysis of Escherichia coli circulating in the Brazilian poultry sector. Escherichia coli are gut commensal bacteria and opportunistic pathogens, and the emergence of antimicrobial resistance threatens the safety of the food chain. To know the E. coli strains circulating in the Brazilian poultry sector is important since the country corresponds to a significant chicken meat production. Thus, we analyzed 90 publicly genomes available in a database using web-based tools. Genomic analysis revealed that sul alleles were the most detected resistance genes, followed by aadA, bla(CTX-M), and dfrA. Plasmids of the IncF family were important, followed by IncI1-Iα, Col-like, and p0111. Genes of specific metabolic pathways that contribute to virulence (terC and gad) were predominant, followed by sitA, traT, and iss. Additionally, pap, usp, vat, sfa/foc, ibeA, cnf1, eae, and sat were also predicted. In this regard, 11 E. coli were characterized as avian pathogenic E. coli and one as atypical enteropathogenic E. coli. Phylogenetic analysis confirmed the predominant occurrence of B1 but also A, D, B2, F, E, G, C, and Clade I phylogroups, whereas international clones ST38, ST73, ST117, ST155, and ST224 were predicted among 53 different sequence types identified. Serotypes O6:H1 and:H25 were prevalent, and fimH31 and fimH32 were the most representatives among the 36 FimH types detected. Finally, single nucleotide polymorphisms-based phylogenetic analysis confirmed high genomic diversity among E. coli strains. While international E. coli clones have adapted to the Brazilian poultry sector, the virulome background of these strains support a pathogenic potential to humans and animals, with lineages carrying resistance genes that can lead to hard-to-treat infections.202235864380
2468130.9930Characterization of Pseudomonas kurunegalensis by Whole-Genome Sequencing from a Clinical Sample: New Challenges in Identification. Backgoround: The genus Pseudomonas encompasses metabolically versatile bacteria widely distributed in diverse environments, including clinical settings. Among these, Pseudomonas kurunegalensis is a recently described environmental species with limited clinical characterization. Objective and Methods: In this study, we report the genomic and phenotypic characterization of a P. kurunegalensis isolate, Pam1317368, recovered from a catheterized urine sample of a post-renal transplant patient without symptoms of urinary tract infection. Initial identification by MALDI-TOF MS misclassified the isolate as Pseudomonas monteilii. Whole-genome sequencing and average nucleotide identity (ANI) analysis (≥95%) confirmed its identity as P. kurunegalensis. The methodology included genomic DNA extraction, Illumina sequencing, genome assembly, ANI calculation, antimicrobial susceptibility testing, resistance gene identification and phylogenetic analysis. Results: Antimicrobial susceptibility testing revealed multidrug resistance, including carbapenem resistance mediated by the metallo-β-lactamase gene VIM-2. Additional resistance determinants included genes conferring resistance to fluoroquinolones and aminoglycosides. Phylogenetic analysis placed the isolate within the P. kurunegalensis clade, closely related to environmental strains. Conclusions: Although the clinical significance of this finding remains unclear, the presence of clinically relevant resistance genes in an environmental Pseudomonas species isolated from a human sample highlights the value of genomic surveillance and accurate species-level identification in clinical microbiology.202540700237
1855140.9930High Genetic Diversity of Carbapenem-Resistant Acinetobacter baumannii Isolates Recovered in Nigerian Hospitals in 2016 to 2020. Acinetobacter baumannii causes difficult-to-treat infections mostly among immunocompromised patients. Clinically relevant A. baumannii lineages and their carbapenem resistance mechanisms are sparsely described in Nigeria. This study aimed to characterize the diversity and genetic mechanisms of carbapenem resistance among A. baumannii strains isolated from hospitals in southwestern Nigeria. We sequenced the genomes of all A. baumannii isolates submitted to Nigeria's antimicrobial resistance surveillance reference laboratory between 2016 and 2020 on an Illumina platform and performed in silico genomic characterization. Selected strains were sequenced using the Oxford Nanopore technology to characterize the genetic context of carbapenem resistance genes. The 86 A. baumannii isolates were phylogenetically diverse and belonged to 35 distinct Oxford sequence types ((oxf)STs), 16 of which were novel, and 28 Institut Pasteur STs ((pas)STs). Thirty-eight (44.2%) isolates belonged to none of the known international clones (ICs). Over 50% of the isolates were phenotypically resistant to 10 of 12 tested antimicrobials. The majority (n = 54) of the isolates were carbapenem resistant, particularly the IC7 ((pas)ST25; 100%) and IC9 ((pas)ST85; >91.7%) strains. bla(OXA-23) (34.9%) and bla(NDM-1) (27.9%) were the most common carbapenem resistance genes detected. All bla(OXA-23) genes were carried on Tn2006 or Tn2006-like transposons. Our findings suggest that a 10-kb Tn125 composite transposon is the primary means of bla(NDM-1) dissemination. Our findings highlight an increase in bla(NDM-1) prevalence and the widespread transposon-facilitated dissemination of carbapenemase genes in diverse A. baumannii lineages in southwestern Nigeria. We make the case for improving surveillance of these pathogens in Nigeria and other understudied settings. IMPORTANCE Acinetobacter baumannii bacteria are increasingly clinically relevant due to their propensity to harbor genes conferring resistance to multiple antimicrobials, as well as their ability to persist and disseminate in hospital environments and cause difficult-to-treat nosocomial infections. Little is known about the molecular epidemiology and antimicrobial resistance profiles of these organisms in Nigeria, largely due to limited capacity for their isolation, identification, and antimicrobial susceptibility testing. Our study characterized the diversity and antimicrobial resistance profiles of clinical A. baumannii in southwestern Nigeria using whole-genome sequencing. We also identified the key genetic elements facilitating the dissemination of carbapenem resistance genes within this species. This study provides key insights into the clinical burden and population dynamics of A. baumannii in hospitals in Nigeria and highlights the importance of routine whole-genome sequencing-based surveillance of this and other previously understudied pathogens in Nigeria and other similar settings.202337067411
2470150.9929Whole-genome sequencing of Klebsiella pneumoniae MDR circulating in a pediatric hospital setting: a comprehensive genome analysis of isolates from Guayaquil, Ecuador. BACKGROUND: Klebsiella pneumoniae is the major cause of nosocomial infections worldwide and is related to a worsening increase in Multidrug-Resistant Bacteria (MDR) and virulence genes that seriously affect immunosuppressed patients, long-stay intensive care patients, elderly individuals, and children. Whole-Genome Sequencing (WGS) has resulted in a useful strategy for characterizing the genomic components of clinically important bacteria, such as K. pneumoniae, enabling them to monitor genetic changes and understand transmission, highlighting the risk of dissemination of resistance and virulence associated genes in hospitals. In this study, we report on WGS 14 clinical isolates of K. pneumoniae from a pediatric hospital biobank of Guayaquil, Ecuador. RESULTS: The main findings revealed pronounced genetic heterogeneity among the isolates. Multilocus sequencing type ST45 was the predominant lineage among non-KPC isolates, whereas ST629 was found more frequently among KPC isolates. Phylogenetic analysis suggested local transmission dynamics. Comparative genomic analysis revealed a core set of 3511 conserved genes and an open pangenome in neonatal isolates. The diversity of MLSTs and capsular types, and the high genetic diversity among these isolates indicate high intraspecific variability. In terms of virulence factors, we identified genes associated with adherence, biofilm formation, immune evasion, secretion systems, multidrug efflux pump transporters, and a notably high number of genes related to iron uptake. A large number of these genes were detected in the ST45 isolate, whereas iron uptake yersiniabactin genes were found exclusively in the non-KPC isolates. We observed high resistance to commonly used antibiotics and determined that these isolates exhibited multidrug resistance including β-lactams, aminoglycosides, fluoroquinolones, quinolones, trimetropins, fosfomycin and macrolides; additionally, resistance-associated point mutations and cross-resistance genes were identified in all the isolates. We also report the first K. pneumoniae KPC-3 gene producers in Ecuador. CONCLUSIONS: Our WGS results for clinical isolates highlight the importance of MDR in neonatal K. pneumoniae infections and their genetic diversity. WGS will be an imperative strategy for the surveillance of K. pneumoniae in Ecuador, and will contribute to identifying effective treatment strategies for K. pneumoniae infections in critical units in patients at stratified risk.202439367302
1395160.9929Emerging Multidrug-Resistant Hybrid Pathotype Shiga Toxin-Producing Escherichia coli O80 and Related Strains of Clonal Complex 165, Europe. Enterohemorrhagic Escherichia coli serogroup O80, involved in hemolytic uremic syndrome associated with extraintestinal infections, has emerged in France. We obtained circularized sequences of the O80 strain RDEx444, responsible for hemolytic uremic syndrome with bacteremia, and noncircularized sequences of 35 O80 E. coli isolated from humans and animals in Europe with or without Shiga toxin genes. RDEx444 harbored a mosaic plasmid, pR444_A, combining extraintestinal virulence determinants and a multidrug resistance-encoding island. All strains belonged to clonal complex 165, which is distantly related to other major enterohemorrhagic E. coli lineages. All stx-positive strains contained eae-ξ, ehxA, and genes characteristic of pR444_A. Among stx-negative strains, 1 produced extended-spectrum β-lactamase, 1 harbored the colistin-resistance gene mcr1, and 2 possessed genes characteristic of enteropathogenic and pyelonephritis E. coli. Because O80-clonal complex 165 strains can integrate intestinal and extraintestinal virulence factors in combination with diverse drug-resistance genes, they constitute dangerous and versatile multidrug-resistant pathogens.201830457551
5159170.9929Microevolution of Monophasic Salmonella Typhimurium during Epidemic, United Kingdom, 2005-2010. Microevolution associated with emergence and expansion of new epidemic clones of bacterial pathogens holds the key to epidemiologic success. To determine microevolution associated with monophasic Salmonella Typhimurium during an epidemic, we performed comparative whole-genome sequencing and phylogenomic analysis of isolates from the United Kingdom and Italy during 2005-2012. These isolates formed a single clade distinct from recent monophasic epidemic clones previously described from North America and Spain. The UK monophasic epidemic clones showed a novel genomic island encoding resistance to heavy metals and a composite transposon encoding antimicrobial drug resistance genes not present in other Salmonella Typhimurium isolates, which may have contributed to epidemiologic success. A remarkable amount of genotypic variation accumulated during clonal expansion that occurred during the epidemic, including multiple independent acquisitions of a novel prophage carrying the sopE gene and multiple deletion events affecting the phase II flagellin locus. This high level of microevolution may affect antigenicity, pathogenicity, and transmission.201626982594
1566180.9929Accumulation of Antibiotic Resistance Genes in Carbapenem-Resistant Acinetobacter baumannii Isolates Belonging to Lineage 2, Global Clone 1, from Outbreaks in 2012-2013 at a Tehran Burns Hospital. The worldwide distribution of carbapenem-resistant Acinetobacter baumannii (CRAB) has become a global concern, particularly in countries where antibiotic prescription is not tightly regulated. However, knowledge of the genomic aspects of CRAB from many parts of the world is still limited. Here, 50 carbapenem-resistant A. baumannii isolates recovered at a single hospital in Tehran, Iran, during several outbreaks in 2012 and 2013 were found to be resistant to multiple antibiotics. They were examined using PCR mapping and multilocus sequence typing (MLST). All Iranian strains belonged to sequence type 328 in the Institut Pasteur MLST scheme (ST328(IP)), a single-locus variant of ST81(IP,) and all Iranian strains contained two carbapenem resistance genes, oxa23 and oxa24. The oxa23 gene is in the transposon Tn2006 in AbaR4, which interrupts the chromosomal comM gene. Phylogenetic analysis using whole-genome sequence (WGS) data for 9 isolates showed that they belonged to the same clade, designated the ST81/ST328 clade, within lineage 2 of global clone 1 (GC1). However, there were two groups that included either KL13 or KL18 at the K locus (KL) for capsular polysaccharide synthesis and either a tet39 or an aadB resistance gene, respectively. The genetic context of the resistance genes was determined, and the oxa24 (OXA-72 variant) and tet39 (tetracycline resistance) genes were each in a pdif module in different plasmids. The aadB gene cassette (which encodes gentamicin, kanamycin, and tobramycin resistance) was harbored by pRAY*, and the aphA6 gene (which encodes amikacin resistance) and sul2 gene (which encodes sulfamethoxazole resistance) were each harbored by a different plasmid. The sequences obtained here will underpin future studies of GC1 CRAB strains from the Middle East region.IMPORTANCE Carbapenem-resistant Acinetobacter baumannii strains are among the most critical antibiotic-resistant bacteria causing hospital-acquired infections and treatment failures. The global spread of two clones has been responsible for the bulk of the resistance, in particular, carbapenem resistance. However, there is a substantial gap in our knowledge of which clones and which specific lineages within each clone are circulating in many parts of the world, including Africa and the Middle East region. This is the first genomic analysis of carbapenem-resistant A. baumannii strains from Iran. All the isolates, from a single hospital, belonged to lineage 2 of global clone 1 (GC1) but fell into two groups distinguished by genes in the locus for capsule biosynthesis. The analysis suggests a potential origin of multiply antibiotic-resistant lineage 2 in the Middle East region and highlights the ongoing evolution of carbapenem-resistant GC1 A. baumannii strains. It will enhance future studies on the local and global GC1 population structure.202032269158
9875190.9929Antibiotic Resistance in Vibrio cholerae: Mechanistic Insights from IncC Plasmid-Mediated Dissemination of a Novel Family of Genomic Islands Inserted at trmE. Cholera remains a formidable disease, and reports of multidrug-resistant strains of the causative agent Vibrio cholerae have become common during the last 3 decades. The pervasiveness of resistance determinants has largely been ascribed to mobile genetic elements, including SXT/R391 integrative conjugative elements, IncC plasmids, and genomic islands (GIs). Conjugative transfer of IncC plasmids is activated by the master activator AcaCD whose regulatory network extends to chromosomally integrated GIs. MGIVchHai6 is a multidrug resistance GI integrated at the 3' end of trmE (mnmE or thdF) in chromosome 1 of non-O1/non-O139 V. cholerae clinical isolates from the 2010 Haitian cholera outbreak. In the presence of an IncC plasmid expressing AcaCD, MGIVchHai6 excises from the chromosome and transfers at high frequency. Herein, the mechanism of mobilization of MGIVchHai6 GIs by IncC plasmids was dissected. Our results show that AcaCD drives expression of GI-borne genes, including xis and mobI(M) , involved in excision and mobilization. A 49-bp fragment upstream of mobI(M) was found to serve as the minimal origin of transfer (oriT) of MGIVchHai6. The direction of transfer initiated at oriT was determined using IncC plasmid-driven mobilization of chromosomal markers via MGIVchHai6. In addition, IncC plasmid-encoded factors, including the relaxase TraI, were found to be required for GI transfer. Finally, in silico exploration of Gammaproteobacteria genomes identified 47 novel related and potentially AcaCD-responsive GIs in 13 different genera. Despite sharing conserved features, these GIs integrate at trmE, yicC, or dusA and carry a diverse cargo of genes involved in phage resistance.IMPORTANCE The increasing association of the etiological agent of cholera, Vibrio cholerae serogroup O1 and O139, with multiple antibiotic resistance threatens to deprive health practitioners of this effective tool. Drug resistance in cholera results mainly from acquisition of mobile genetic elements. Genomic islands conferring multidrug resistance and mobilizable by IncC conjugative plasmids were reported to circulate in non-O1/non-O139 V. cholerae clinical strains isolated from the 2010 Haitian cholera outbreak. As these genomic islands can be transmitted to pandemic V. cholerae serogroups, their mechanism of transmission needed to be investigated. Our research revealed plasmid- and genomic island-encoded factors required for the resistance island excision, mobilization, and integration, as well as regulation of these functions. The discovery of related genomic islands carrying diverse phage resistance genes but lacking antibiotic resistance-conferring genes in a wide range of marine dwelling bacteria suggests that these elements are ancient and recently acquired drug resistance genes.202032848007