# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8821 | 0 | 0.9345 | Aromatics valorization to polyhydroxyalkanoate by the ligninolytic bacteria isolated from soil sample. Polyhydroxyalkanoates (PHA) are ecofriendly alternatives to conventional plastics due to their biodegradable nature. However, the high production cost limits their applications. Exploring novel bacteria with ligninolytic potential would be crucial to advance cost-effective PHA synthesis. The current study aims to unveil soil bacteria capable of aromatics valorization to PHA. Considering this, six aromatics resistance bacteria from a soil sample were isolated through culture acclimatization strategy and their growth was analyzed in various lignin model compounds. Ralstonia sp. BPSS-1 and Arthrobacter sp. BPSS-3 presented high-cell-densities in 4-hydroxybenzoic acid (4-HBA) and benzoate, respectively. Fluorescence microscopy confirmed the strains to be PHA positive and were subsequently evaluated for PHA synthesis from 4-HBA and benzoate at a concentration of 2 g L(-1) in a nitrogen-limited M9 medium. However, applying a co-feeding strategy by the integration of 4-HBA and benzoate further increased the substrates consumption efficiency, biomass and PHA titer compared to single carbon sources. The maximum dry cell weight (DCW) and PHA yield by Ralstonia sp. BPSS-1 through the substrate co-feeding under optimized fermentation conditions was 0.69 ± 0.03, and 0.4 ± 0.02 g L(-1), respectively. The draft genome analysis confirmed the genes involved in aromatic degradation. Besides, the proposed metabolic pathway was validated by studying the expression level of key genes, analyzing key intermediates and associated enzymes activities. The FTIR, (1)H NMR and GC-MS determined the PHA functional group, chemical structure and monomers analysis, respectively. Overall, the current study highlighted the aromatic valorization potential of newly isolated PHA producing bacteria for sustainable biomanufacturing. | 2025 | 40032105 |
| 523 | 1 | 0.9331 | Sulfide-carbonate-mineralized functional bacterial consortium for cadmium removal in flue gas. Sulfide-carbonate-mineralized functional bacterial consortium was constructed for flue gas cadmium biomineralization. A membrane biofilm reactor (MBfR) using the bacterial consortium containing sulfate reducing bacteria (SRB) and denitrifying bacteria (DNB) was investigated for flue gas cadmium (Cd) removal. Cadmium removal efficiency achieved 90%. The bacterial consortium containing Citrobacter, Desulfocurvus and Stappia were dominated for cadmium resistance-nitrate-sulfate reduction. Under flue gas cadmium stress, ten cadmium resistance genes (czcA, czcB, czcC, czcD, cadA, cadB, cadC, cueR, copZ, zntA), and seven genes related to sulfate reduction, increased in abundance; whereas others, nine genes related to denitrification, decreased, indicating that cadmium stress was advantageous to sulfate reduction in the competition with denitrification. A bacterial consortium could capable of simultaneously cadmium resistance, sulfate reduction and denitrification. Microbial induced carbonate precipitation (MICP) and biological adsorption process would gradually yield to sulfide-mineralized process. Flue gas cadmium could transform to Cd-EPS, cadmium carbonate (CdCO(3)) and cadmium sulfide (CdS) bioprecipitate. The functional bacterial consortium was an efficient and eco-friendly bifunctional bacterial consortium for sulfide-carbonate-mineralized of cadmium. This provides a green and low-carbon advanced treatment technology using sulfide-carbonate-mineralized functional bacterial consortium for the removal of cadmium or other hazardous heavy metal contaminants in flue gas. | 2024 | 39019186 |
| 7829 | 2 | 0.9311 | Insights into capture-inactivation/oxidation of antibiotic resistance bacteria and cell-free antibiotic resistance genes from waters using flexibly-functionalized microbubbles. The spread of antibiotic resistance in the aquatic environment severely threatens the public health and ecological security. This study investigated simultaneously capturing and inactivating/oxidizing the antibiotic resistant bacteria (ARB) and cell-free antibiotic resistance genes (ARGs) in waters by flexibly-functionalized microbubbles. The microbubbles were obtained by surface-modifying the bubbles with coagulant (named as coagulative colloidal gas aphrons, CCGAs) and further encapsulating ozone in the gas core (named as coagulative colloidal ozone aphrons, CCOAs). CCGAs removed 92.4-97.5% of the sulfamethoxazole-resistant bacteria in the presence of dissolved organic matter (DOM), and the log reduction of cell-free ARGs (particularly, those encoded in plasmid) reached 1.86-3.30. The ozone release from CCOAs led to efficient in-situ oxidation: 91.2% of ARB were membrane-damaged and inactivated. In the municipal wastewater matrix, the removal of ARB increased whilst that of cell-free ARGs decreased by CCGAs with the DOM content increasing. The ozone encapsulation into CCGAs reinforced the bubble performance. The predominant capture mechanism should be electrostatic attraction between bubbles and ARB (or cell-free ARGs), and DOM enhanced the sweeping and bridging effect. The functionalized microbubble technology can be a promising and effective barrier for ARB and cell-free ARGs with shortened retention time, lessened chemical doses and simplified treatment unit. | 2022 | 35063836 |
| 22 | 3 | 0.9308 | A plant growth-promoting bacteria Priestia megaterium JR48 induces plant resistance to the crucifer black rot via a salicylic acid-dependent signaling pathway. Xanthomonas campestris pv. campestris (Xcc)-induced black rot is one of the most serious diseases in cruciferous plants. Using beneficial microbes to control this disease is promising. In our preliminary work, we isolated a bacterial strain (JR48) from a vegetable field. Here, we confirmed the plant-growth-promoting (PGP) effects of JR48 in planta, and identified JR48 as a Priestia megaterium strain. We found that JR48 was able to induce plant resistance to Xcc and prime plant defense responses including hydrogen peroxide (H(2)O(2)) accumulation and callose deposition with elevated expression of defense-related genes. Further, JR48 promoted lignin biosynthesis and raised accumulation of frees salicylic acid (SA) as well as expression of pathogenesis-related (PR) genes. Finally, we confirmed that JR48-induced plant resistance and defense responses requires SA signaling pathway. Together, our results revealed that JR48 promotes plant growth and induces plant resistance to the crucifer black rot probably through reinforcing SA accumulation and response, highlighting its potential as a novel biocontrol agent in the future. | 2022 | 36438094 |
| 7830 | 4 | 0.9306 | Cascade capture, oxidization and inactivation for removing multi-species pollutants, antimicrobial resistance and pathogenicity from hospital wastewater. As reservoirs of pathogens, antimicrobial resistant microorganisms and a wide variety of pollutants, hospital wastewaters (HWWs) need to be effectively treated before discharge. This study employed the functionalized colloidal microbubble technology as one-step fast HWW treatment. Inorganic coagulant (monomeric Fe(III)-coagulant or polymeric Al(III)-coagulant) and ozone were used as surface-decorator and gaseous core modifier, respectively. The Fe(III)- or Al(III)-modified colloidal gas (or, ozone) microbubbles (Fe(III)-CCGMBs, Fe(III)-CCOMBs, Al(III)-CCGMBs and Al(III)-CCOMBs) were constructed. Within 3 min, CCOMBs decreased COD(Cr) and fecal coliform concentration to the levels meeting the national discharge standard for medical organization. Regrowth of bacteria was inhibited and biodegradability of organics was increased after the simultaneous oxidation and cell-inactivation process. The metagenomics analysis further reveals that Al(III)-CCOMBs performed best in capturing the virulence genes, antibiotic resistance genes and their potential hosts. The horizontal transfer of those harmful genes could be effectively hampered thanks to the removal of mobile genetic elements. Interestingly, the virulence factors of adherence, micronutrient uptake/acquisition and phase invasion could facilitate the interface-dominated capture. Featured as cascade processes of capture, oxidation and inactivation in the one-step operation, the robust Al(III)-CCOMB treatment is recommended for the HWW treatment and the protection of downstream aquatic environment. | 2023 | 37269564 |
| 23 | 5 | 0.9306 | Ectopic expression of Hrf1 enhances bacterial resistance via regulation of diterpene phytoalexins, silicon and reactive oxygen species burst in rice. Harpin proteins as elicitor derived from plant gram negative bacteria such as Xanthomonas oryzae pv. oryzae (Xoo), Erwinia amylovora induce disease resistance in plants by activating multiple defense responses. However, it is unclear whether phytoalexin production and ROS burst are involved in the disease resistance conferred by the expression of the harpin(Xoo) protein in rice. In this article, ectopic expression of hrf1 in rice enhanced resistance to bacterial blight. Accompanying with the activation of genes related to the phytoalexin biosynthesis pathway in hrf1-transformed rice, phytoalexins quickly and consistently accumulated concurrent with the limitation of bacterial growth rate. Moreover, the hrf1-transformed rice showed an increased ability for ROS scavenging and decreased hydrogen peroxide (H(2)O(2)) concentration. Furthermore, the localization and relative quantification of silicon deposition in rice leaves was detected by scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometer (EDS). Finally, the transcript levels of defense response genes increased in transformed rice. These results show a correlation between Xoo resistance and phytoalexin production, H(2)O(2), silicon deposition and defense gene expression in hrf1-transformed rice. These data are significant because they provide evidence for a better understanding the role of defense responses in the incompatible interaction between bacterial disease and hrf1-transformed plants. These data also supply an opportunity for generating nonspecific resistance to pathogens. | 2012 | 22970151 |
| 514 | 6 | 0.9305 | The organoarsenical biocycle and the primordial antibiotic methylarsenite. Arsenic is the most pervasive environmental toxic substance. As a consequence of its ubiquity, nearly every organism has genes for resistance to inorganic arsenic. In bacteria these genes are found largely in bacterial arsenic resistance (ars) operons. Recently a parallel pathway for synthesis and degradation of methylated arsenicals has been identified. The arsM gene product encodes the ArsM (AS3MT in animals) As(iii) S-adenosylmethionine methyltransferase that methylates inorganic trivalent arsenite in three sequential steps to methylarsenite MAs(iii), dimethylarsenite (DMAs(iii) and trimethylarsenite (TMAs(iii)). MAs(iii) is considerably more toxic than As(iii), and we have proposed that MAs(iii) was a primordial antibiotic. Under aerobic conditions these products are oxidized to nontoxic pentavalent arsenicals, so that methylation became a detoxifying pathway after the atmosphere became oxidizing. Other microbes have acquired the ability to regenerate MAs(v) by reduction, transforming it again into toxic MAs(iii). Under this environmental pressure, MAs(iii) resistances evolved, including the arsI, arsH and arsP genes. ArsI is a C-As bond lyase that demethylates MAs(iii) back to less toxic As(iii). ArsH re-oxidizes MAs(iii) to MAs(v). ArsP actively extrudes MAs(iii) from cells. These proteins confer resistance to this primitive antibiotic. This oscillation between MAs(iii) synthesis and detoxification is an essential component of the arsenic biogeocycle. | 2016 | 27730229 |
| 8552 | 7 | 0.9303 | Sustainable material platforms for multi-log removal of antibiotic-resistant bacteria and genes from wastewater: A review. Antibiotic-resistant bacteria (ARB) and the associated resistance genes (ARGs) are now recognized as emerging contaminants that can disseminate via wastewater streams, posing significant risks to both human and ecosystem health. Conventional physicochemical treatment approaches (e.g., chlorination, ozonation, advanced oxidation processes) typically suppress these contaminants but may also result in the formation of hazardous by-products. This critical review comprehensibly evaluates bio-based and other sustainable materials designed for the removal of ARB and ARGs from aqueous environments. The materials are systematically categorized into (i) biopolymers and their composites (chitosan, alginate, cellulose), (ii) carbon-rich adsorbents and (photo-)catalysts (biochar, activated carbon, graphene), (iii) metal- and semiconductor-based nanomaterials, and (iv) nature-based treatment solutions (constructed wetlands, soil-aquifer treatment, clay sorbents). Observed log-reduction value range from 2 to 7 for ARB with platforms such as zinc oxide/activated-carbon alginate beads, Fe/N-doped biochars, and graphene-supramolecular-porphyrin hybrids demonstrating high multifunctional efficacy. Mechanistic studies reveal that removal involves synergistic adsorption, photodynamic or Fenton-like oxidation, cell-membrane disruption, and inhibition of horizontal gene transfer. This review emphasizes the advancing potential of sustainable material solutions for mitigating antibiotic resistance and highlights the urgent need to develop scalable, environmentally sustainable treatment methods for protecting water resources and public health. | 2025 | 40763861 |
| 7853 | 8 | 0.9299 | Natural pyrite and ascorbic acid co-enhance periodate activation for inactivation of antibiotic resistant bacteria and inhibition of resistance genes transmission: A green disinfection process dominated by singlet oxygen. The transmission of antibiotic resistance genes (ARGs) and the propagation of antibiotic resistant bacteria (ARB) threaten public health security and human health, and greener and more efficient disinfection technologies are expected to be discovered for wastewater treatment. In this study, natural pyrite and ascorbic acid (AA) were proposed as environmental-friendly activator and reductant for periodate (PI) activation to inactivate ARB. The disinfection treatment of PI/pyrite/AA system could inactivate 5.62 log ARB within 30 min, and the lower pH and higher PI and natural pyrite dosage could further boost the disinfection efficiency. The (1)O(2) and SO(4)(•-) were demonstrated to be crucial for the inactivation of ARB in PI/pyrite/AA system. The disinfection process destroyed the morphological structure of ARB, inducing oxidative stress and stimulating the antioxidant system. The PI/pyrite/AA system effectively reduced the intracellular and extracellular DNA concentration and ARGs abundance, inhibiting the propagation of ARGs. The presence of AA facilitated the activation of PI with natural pyrite and significantly increased the concentration of Fe(2+) in solution. The reusability of natural pyrite, the safety of the disinfection by-products and the inhibition of ARB regeneration indicated the application potential of PI/pyrite/AA system in wastewater disinfection. | 2024 | 39038380 |
| 8754 | 9 | 0.9291 | Detoxifying bacterial genes for deoxynivalenol epimerization confer durable resistance to Fusarium head blight in wheat. Fusarium head blight (FHB) and the presence of mycotoxin deoxynivalenol (DON) pose serious threats to wheat production and food safety worldwide. DON, as a virulence factor, is crucial for the spread of FHB pathogens on plants. However, germplasm resources that are naturally resistant to DON and DON-producing FHB pathogens are inadequate in plants. Here, detoxifying bacteria genes responsible for DON epimerization were used to enhance the resistance of wheat to mycotoxin DON and FHB pathogens. We characterized the complete pathway and molecular basis leading to the thorough detoxification of DON via epimerization through two sequential reactions in the detoxifying bacterium Devosia sp. D6-9. Epimerization efficiently eliminates the phytotoxicity of DON and neutralizes the effects of DON as a virulence factor. Notably, co-expressing of the genes encoding quinoprotein dehydrogenase (QDDH) for DON oxidation in the first reaction step, and aldo-keto reductase AKR13B2 for 3-keto-DON reduction in the second reaction step significantly reduced the accumulation of DON as virulence factor in wheat after the infection of pathogenic Fusarium, and accordingly conferred increased disease resistance to FHB by restricting the spread of pathogenic Fusarium in the transgenic plants. Stable and improved resistance was observed in greenhouse and field conditions over multiple generations. This successful approach presents a promising avenue for enhancing FHB resistance in crops and reducing mycotoxin contents in grains through detoxification of the virulence factor DON by exogenous resistance genes from microbes. | 2024 | 38593377 |
| 8633 | 10 | 0.9289 | Bacterial interactions with arsenic: Metabolic pathways, resistance mechanisms, and bioremediation approaches. Arsenic contamination in natural waters is one of the biggest threats to human health, mainly due to its carcinogenic potential. Given its toxicity, nearly all organisms have evolved to develop an arsenic resistance mechanism. Conventional techniques of arsenic remediation suffer from various limitations of their applicability, cost and/or chemical intensive nature. In past few decades, bioremediation has emerged as a potential alternative to the conventional techniques. Microbial bioremediation, bacteria in particular, offers an eco-friendly and sustainable alternative, owing to its inherent metabolic capabilities to transform, immobilize or volatilize arsenic. Diverse biochemical pathways involving oxidation of As(III) to As(V), reduction of As(V) under anaerobic respiration or detoxification, methylation and demethylation, bioleaching and biomineralization into insoluble forms are essential mechanisms for arsenic remediation. These transformations, detoxification and resistance are regulated by specific genetic systems, including the ars operon, aio, arr and arsM, accessory genes such as arsR, arsB, acr3, arsC and arsP. The metabolic regulation of arsenic detoxification involves complex cofactor-dependent enzyme systems and environmental signal-responsive transcriptional control. Integrated approaches such as immobilization of bacteria on biochar or their encapsulation have also been known to enhance stability, reusability and stress tolerance. However, bioremediation is a very complex process due to the interrelationship of various influences such as, presence of specific microorganisms, nutrients and environmental factors. Therefore, it is of utmost importance to understand the bacterial interactions with arsenic for the development of bioremediation technologies. This review article tries to discuss the current status of arsenic bioremediation using bacteria, its field applications, challenges and future perspectives. It also includes the strengths, weaknesses, opportunities, threats (SWOT) analysis to assess the merits and demerits of using bacteria for bioremediation of arsenic. | 2025 | 41043264 |
| 38 | 11 | 0.9289 | Alginate Oligosaccharide (AOS) induced resistance to Pst DC3000 via salicylic acid-mediated signaling pathway in Arabidopsis thaliana. Alginate Oligosaccharide (AOS) is a natural biological carbohydrate extracted from seaweed. In our study, Arabidopsis thaliana was used to evaluate the AOS-induced resistance to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Resistance was vitally enhanced at 25 mg/L in wild type (WT), showing the decreased disease index and bacteria colonies, burst of ROS and NO, high transcription expression of resistance genes PR1 and increased content of salicylic acid (SA). In SA deficient mutant (sid2), AOS-induced disease resistance dropped obviously compared to WT. The disease index was significantly higher than WT and the expression of recA and avrPtoB are two and four times lower than WT, implying that AOS induces disease resistance injecting Pst DC3000 after three days treatment by arousing the SA pathway. Our results provide a reference for the profound research and application of AOS in agriculture. | 2019 | 31521273 |
| 7828 | 12 | 0.9289 | Simultaneous elimination of antibiotic-resistant bacteria and antibiotic resistance genes by different Fe-N co-doped biochars activating peroxymonosulfate: The key role of pyridine-N and Fe-N sites. The coexistence of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in the environment poses a potential threat to public health. In our study, we have developed a novel advanced oxidation process for simultaneously removing ARGs and ARB by two types of iron and nitrogen-doped biochar derived from rice straw (FeN-RBC) and sludge (FeN-SBC). All viable ARB (approximately 10(8) CFU mL(-1)) was inactivated in the FeN-RBC/ peroxymonosulfate (PMS) system within 40 min and did not regrow after 48 h even in real water samples. Flow cytometry identified 96.7 % of dead cells in the FeN-RBC/PMS system, which verified the complete inactivation of ARB. Thorough disinfection of ARB was associated with the disruption of cell membranes and intracellular enzymes related to the antioxidant system. Whereas live bacteria (approximately 200 CFU mL(-1)) remained after FeN-SBC/PMS treatment. Intracellular and extracellular ARGs (tetA and tetB) were efficiently degraded in the FeN-RBC/PMS system. The production of active species, primarily •OH, SO(4)(•-) and Fe (IV), as well as electron transfer, were essential to the effective disinfection of FeN-RBC/PMS. In comparison with FeN-SBC, the better catalytic performance of FeN-RBC was mainly ascribed to its higher amount of pyridine-N and Fe(0), and more reactive active sites (such as CO group and Fe-N sites). Density functional theory calculations indicated the greater adsorption energy and Bader charge, more stable Fe-O bond, more easily broken OO bond in FeN-RBC/PMS, which demonstrated the stronger electron transfer capacity between FeN-RBC and PMS. To encapsulate, our study provided an efficient and dependable method for the simultaneous elimination of ARGs and ARB in water. | 2024 | 38669989 |
| 8189 | 13 | 0.9288 | Engineering nanoparticles to silence bacterial communication. The alarming spread of bacterial resistance to traditional antibiotics has warranted the study of alternative antimicrobial agents. Quorum sensing (QS) is a chemical cell-to-cell communication mechanism utilized by bacteria to coordinate group behaviors and establish infections. QS is integral to bacterial survival, and therefore provides a unique target for antimicrobial therapy. In this study, silicon dioxide nanoparticles (Si-NP) were engineered to target the signaling molecules [i.e., acylhomoserine lactones (HSLs)] used for QS in order to halt bacterial communication. Specifically, when Si-NP were surface functionalized with β-cyclodextrin (β-CD), then added to cultures of bacteria (Vibrio fischeri), whose luminous output depends upon HSL-mediated QS, the cell-to-cell communication was dramatically reduced. Reductions in luminescence were further verified by quantitative polymerase chain reaction (qPCR) analyses of luminescence genes. Binding of HSLs to Si-NPs was examined using nuclear magnetic resonance (NMR) spectroscopy. The results indicated that by delivering high concentrations of engineered NPs with associated quenching compounds, the chemical signals were removed from the immediate bacterial environment. In actively-metabolizing cultures, this treatment blocked the ability of bacteria to communicate and regulate QS, effectively silencing and isolating the cells. Si-NPs provide a scaffold and critical stepping-stone for more pointed developments in antimicrobial therapy, especially with regard to QS-a target that will reduce resistance pressures imposed by traditional antibiotics. | 2015 | 25806030 |
| 8195 | 14 | 0.9287 | Comparative proteomics reveals essential mechanisms for osmotolerance in Gluconacetobacter diazotrophicus. Plant growth-promoting bacteria are a promising alternative to improve agricultural sustainability. Gluconacetobacter diazotrophicus is an osmotolerant bacterium able to colonize several plant species, including sugarcane, coffee, and rice. Despite its biotechnological potential, the mechanisms controlling such osmotolerance remain unclear. The present study investigated the key mechanisms of resistance to osmotic stress in G. diazotrophicus. The molecular pathways regulated by the stress were investigated by comparative proteomics, and proteins essential for resistance were identified by knock-out mutagenesis. Proteomics analysis led to identify regulatory pathways for osmotic adjustment, de novo saturated fatty acids biosynthesis, and uptake of nutrients. The mutagenesis analysis showed that the lack of AccC protein, an essential component of de novo fatty acid biosynthesis, severely affected G. diazotrophicus resistance to osmotic stress. Additionally, knock-out mutants for nutrients uptake (Δtbdr and ΔoprB) and compatible solutes synthesis (ΔmtlK and ΔotsA) became more sensitive to osmotic stress. Together, our results identified specific genes and mechanisms regulated by osmotic stress in an osmotolerant bacterium, shedding light on the essential role of cell envelope and extracytoplasmic proteins for osmotolerance. | 2021 | 33035671 |
| 7873 | 15 | 0.9287 | Wheat straw pyrochar more efficiently decreased enantioselective uptake of dinotefuran by lettuce and dissemination of antibiotic resistance genes than hydrochar in an agricultural soil. Remediation of soils pollution caused by dinotefuran, a chiral pesticide, is indispensable for ensuring human food security. In comparison with pyrochar, the effect of hydrochar on enantioselective fate of dinotefuran, and antibiotic resistance genes (ARGs) profiles in the contaminated soils remain poorly understood. Therefore, wheat straw hydrochar (SHC) and pyrochar (SPC) were prepared at 220 and 500 °C, respectively, to investigate their effects and underlying mechanisms on enantioselective fate of dinotefuran enantiomers and metabolites, and soil ARG abundance in soil-plant ecosystems using a 30-day pot experiment planted with lettuce. SPC showed a greater reduction effect on the accumulation of R- and S-dinotefuran and metabolites in lettuce shoots than SHC. This was mainly resulted from the lowered soil bioavailability of R- and S-dinotefuran due to adsorption/immobilization by chars, together with the char-enhanced pesticide-degrading bacteria resulted from increased soil pH and organic matter content. Both SPC and SHC efficiently reduced ARG levels in soils, owing to lowered abundance of ARG-carrying bacteria and declined horizontal gene transfer induced by decreased dinotefuran bioavailability. The above results provide new insights for optimizing char-based sustainable technologies to mitigate pollution of dinotefuran and spread of ARGs in agroecosystems. | 2023 | 36996986 |
| 7833 | 16 | 0.9287 | Defect-Rich Cu(2)O Nanospheres as a Fenton-Like Catalyst for Cu(III) Generation: Enhanced Inactivation of Antibiotic-Resistant Bacteria and Genes. Cupryl species (Cu(III)) are promising oxidants for degrading recalcitrant organic contaminants and harmful microorganisms in water. In this study, defect-rich cuprous oxide (D-Cu(2)O) nanospheres (NSs) are introduced as a Fenton-like catalyst to generate Cu(III) for the inactivation of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). D-Cu(2)O, in the presence of H(2)O(2), achieved inactivation efficiencies 3.2, 3.0, and 2.4 times higher than those of control Cu(2)O for ARB, extracellular ARGs (e-ARGs), and intracellular ARGs (i-ARGs), respectively. Experimental evidence from oxidant scavenging tests, Cu(III)-periodate complexation assays, electron paramagnetic resonance (EPR), and in situ Raman spectroscopy confirmed that D-Cu(2)O significantly enhanced Cu(III) generation when reacting with H(2)O(2) compared to control Cu(2)O. Density functional theory (DFT) calculations further revealed that unsaturated copper atoms in D-Cu(2)O enhance H(2)O(2) adsorption by improving the structural accessibility of adjacent oxygen atoms. This facilitates electron transfer processes and promotes subsequent Cu(III) generation. The D-Cu(2)O/H(2)O(2) system demonstrated excellent reusability, maintaining a 4-log reduction of ARB over five cycles, and proved effective across various water matrices and microbial species. These findings highlight the potential of the D-Cu(2)O/H(2)O(2) system, driven by defect engineering, as a robust platform for enhancing water safety and advancing sustainable disinfection technologies. | 2025 | 40795282 |
| 8553 | 17 | 0.9286 | Unveiling the power of nanotechnology: a novel approach to eliminating antibiotic-resistant bacteria and genes from municipal effluent. The increasing global population and declining freshwater resources have heightened the urgency of ensuring safe and accessible water supplies.Query The persistence of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) in municipal effluents poses a significant public health threat, exacerbated by the widespread use of antibiotics and the inadequate removal of contaminants in wastewater treatment facilities. Conventional treatment methods often fail to eliminate these emerging pollutants, facilitating their entry into agricultural systems and natural water bodies, thereby accelerating the spread of antimicrobial resistance. To address these challenges, interdisciplinary strategies in water treatment are essential. Nanotechnology has emerged as a promising approach due to its unique physicochemical properties, biocompatibility, and high efficiency in detecting and removing biological and chemical contaminants. Various nanomaterials, including graphene-based structures, Carbon nanotubes (CNTs), noble metal nanoparticles (gold (Au) and silver (Ag)), silicon and chitosan-based nanomaterials, as well as titanium and Zinc oxide (ZnO) nanomaterials, demonstrate potent antimicrobial effects. Moreover, nanosensors and photocatalysts utilizing these nanomaterials enable precise detection and effective degradation of ARB and ARGs in wastewater. This review examines the mechanisms by which nanotechnology-based materials can mitigate the risks associated with antibiotic resistance in urban effluents, focusing on their applications in pathogen detection, pollutant removal, and wastewater treatment. By integrating nanotechnology into existing treatment frameworks, we can significantly enhance the efficiency of water purification processes, ultimately contributing to global water security and the protection of public health. | 2025 | 40512401 |
| 6008 | 18 | 0.9286 | Photopolymerized keratin-PGLa hydrogels for antibiotic resistance reversal and enhancement of infectious wound healing. Infectious wounds have become serious challenges for both treatment and management in clinical practice, so development of new antibiotics has been considered an increasingly difficult task. Here, we report the design and synthesis of keratin 31 (K31)-peptide glycine-leucine-amide (PGLa) photopolymerized hydrogels to rescue the antibiotic activity of antibiotics for infectious wound healing promotion. K31-PGLa displayed an outstanding synergistic effect with commercial antibiotics against drug-resistant bacteria by down-regulating the synthesis genes of efflux pump. Furthermore, the photopolymerized K31-PGLa/PEGDA hydrogels effectively suppressed drug-resistant bacteria growth and enhanced skin wound closure in murine. This study provided a promising alternative strategy for infectious wound treatment. | 2023 | 37810750 |
| 8772 | 19 | 0.9284 | The role of drought response genes and plant growth promoting bacteria on plant growth promotion under sustainable agriculture: A review. Drought is a major stressor that poses significant challenges for agricultural practices. It becomes difficult to meet the global demand for food crops and fodder. Plant physiology, physico-chemistry and morphology changes in plants like decreased photosynthesis and transpiration rate, overproduction of reactive oxygen species, repressed shoot and root shoot growth and modified stress signalling pathways by drought, lead to detrimental impacts on plant development and output. Coping with drought stress requires a variety of adaptations and mitigation techniques. Crop yields could be effectively increased by employing plant growth-promoting rhizobacteria (PGPR), which operate through many mechanisms. These vital microbes colonise the rhizosphere of crops and promote drought resistance by producing exopolysaccharides (EPS), 1-aminocyclopropane-1-carboxylate (ACC) deaminase and phytohormones including volatile compounds. The upregulation or downregulation of stress-responsive genes causes changes in root architecture due to acquiring drought resistance. Further, PGPR induces osmolyte and antioxidant accumulation. Another key feature of microbial communities associated with crops includes induced systemic tolerance and the production of free radical-scavenging enzymes. This review is focused on detailing the role of PGPR in assisting plants to adapt to drought stress. | 2024 | 39002396 |