# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8341 | 0 | 0.9993 | Mutagenesis and Resistance Development of Bacteria Challenged by Silver Nanoparticles. Because of their extremely broad spectrum and strong biocidal power, nanoparticles of metals, especially silver (AgNPs), have been widely applied as effective antimicrobial agents against bacteria, fungi, and so on. However, the mutagenic effects of AgNPs and resistance mechanisms of target cells remain controversial. In this study, we discover that AgNPs do not speed up resistance mutation generation by accelerating genome-wide mutation rate of the target bacterium Escherichia coli. AgNPs-treated bacteria also show decreased expression in quorum sensing (QS), one of the major mechanisms leading to population-level drug resistance in microbes. Nonetheless, these nanomaterials are not immune to resistance development by bacteria. Gene expression analysis, experimental evolution in response to sublethal or bactericidal AgNPs treatments, and gene editing reveal that bacteria acquire resistance mainly through two-component regulatory systems, especially those involved in metal detoxification, osmoregulation, and energy metabolism. Although these findings imply low mutagenic risks of nanomaterial-based antimicrobial agents, they also highlight the capacity for bacteria to evolve resistance. | 2022 | 36094196 |
| 9162 | 1 | 0.9993 | Joint effects of antibiotics and quorum sensing inhibitors on resistance development in bacteria. Quorum sensing inhibitors (QSIs) are promising alternatives to antibiotics. While QSIs have great application potential in a variety of fields, their joint effects with antibiotics on bacteria, especially on antibiotic resistance mutations, remain largely unexplored. Herein, we report the joint effects of four commonly used antibiotics and two QSIs on bacterial growth and resistance mutations in E. coli. It was found that QSIs presented antagonistic or additive effects with antibiotics on bacterial growth, and more importantly, QSIs exhibited an attenuating effect on antibiotic-induced resistance mutations. Further analysis demonstrated that antibiotics might enhance resistance mutations by promoting the expressions of rpoS, lexA and recA, while QSIs attenuated the mutations by promoting the expressions of mutS and uvrD. The present research provides a comprehensive understanding of the joint effects of antibiotics and QSIs on bacteria, which may benefit the risk assessment of their combined exposure. | 2021 | 34060581 |
| 9146 | 2 | 0.9993 | Emergence of microbial resistance against nanoparticles: Mechanisms and strategies. Antimicrobial nanoparticles have gained the status of a new generation of drugs that can kill bacterial pathogens by multiple means; however, nanoparticle resistance acquired by some bacterial pathogens has evoked a cause of concern. Several reports suggested that bacteria can develop nanoparticles, specifically metal nanoparticle resistance, by mechanisms: nanoparticle transformation-induced oxidative stress, membrane alterations, reversible adaptive resistance, irreversible modifications to cell division, and a change in bacterial motility and resistance. Surface properties, concentration and aggregation of nanoparticles, biofilm forming and metal exclusion capacity, and R plasmid and flagellin synthesis by bacteria are crucial factors in the development of nanoparticle resistance in bacteria. Studies reported the resistance reversal by modifying the surface corona of nanoparticles or inhibiting flagellin production by bacterial pathogens. Furthermore, strict regulation regarding the use and disposal of nano-waste across the globe, the firm knowledge of microbe-nanoparticle interaction, and the regulated disposal of nanoparticles in soil and water is required to prevent microbes from developing nanoparticle resistance. | 2023 | 36778867 |
| 8975 | 3 | 0.9992 | Targeting bacterial biofilm-related genes with nanoparticle-based strategies. Persistent infection caused by biofilm is an urgent in medicine that should be tackled by new alternative strategies. Low efficiency of classical treatments and antibiotic resistance are the main concerns of the persistent infection due to biofilm formation which increases the risk of morbidity and mortality. The gene expression patterns in biofilm cells differed from those in planktonic cells. One of the promising approaches against biofilms is nanoparticle (NP)-based therapy in which NPs with multiple mechanisms hinder the resistance of bacterial cells in planktonic or biofilm forms. For instance, NPs such as silver (Ag), zinc oxide (ZnO), titanium dioxide (TiO(2)), copper oxide (Cu), and iron oxide (Fe(3)O(4)) through the different strategies interfere with gene expression of bacteria associated with biofilm. The NPs can penetrate into the biofilm structure and affect the expression of efflux pump, quorum-sensing, and adhesion-related genes, which lead to inhibit the biofilm formation or development. Therefore, understanding and targeting of the genes and molecular basis of bacterial biofilm by NPs point to therapeutic targets that make possible control of biofilm infections. In parallel, the possible impact of NPs on the environment and their cytotoxicity should be avoided through controlled exposure and safety assessments. This study focuses on the biofilm-related genes that are potential targets for the inhibition of bacterial biofilms with highly effective NPs, especially metal or metal oxide NPs. | 2024 | 38841057 |
| 9144 | 4 | 0.9992 | Metal nanoparticles: understanding the mechanisms behind antibacterial activity. As the field of nanomedicine emerges, there is a lag in research surrounding the topic of nanoparticle (NP) toxicity, particularly concerned with mechanisms of action. The continuous emergence of bacterial resistance has challenged the research community to develop novel antibiotic agents. Metal NPs are among the most promising of these because show strong antibacterial activity. This review summarizes and discusses proposed mechanisms of antibacterial action of different metal NPs. These mechanisms of bacterial killing include the production of reactive oxygen species, cation release, biomolecule damages, ATP depletion, and membrane interaction. Finally, a comprehensive analysis of the effects of NPs on the regulation of genes and proteins (transcriptomic and proteomic) profiles is discussed. | 2017 | 28974225 |
| 8614 | 5 | 0.9992 | Polystyrene nanoparticles induce biofilm formation in Pseudomonas aeruginosa. In recent years, micro/nanoplastics have garnered widespread attention due to their ecological risks. In this study, we investigated the effects of polystyrene nanoparticles (PS-NPs) of different sizes on the growth and biofilm formation of Pseudomonas aeruginosa PAO1. The results demonstrated that exposure to certain concentrations of PS-NPs significantly promoted bacterial biofilm formation. Meanwhile, we comprehensively revealed its mechanism whereby PS-NPs induced oxidative stress and altered bacterial membrane permeability by contacting or penetrating bacterial membranes. To counteract the stimulation by PS-NPs and reduce their toxicity, bacteria enhanced biofilm formation by upregulating the expression of biofilm-related genes, increasing EPS and virulence factors secretion, and enhancing bacterial motility through the participation of the quorum sensing (QS) system. Additionally, we also found that exposure to PS-NPs enhanced bacterial antibiotic resistance, posing a challenge to antimicrobial therapy. Our study reveals the toxic effects of nanoplastics and the defense mechanisms of bacteria, which has important implications for the risk assessment and management of environmental nanoplastics. | 2024 | 38442601 |
| 9145 | 6 | 0.9992 | A mechanistic perspective on targeting bacterial drug resistance with nanoparticles. Bacterial infections are an important cause of mortality worldwide owing to the prevalence of drug resistant bacteria. Bacteria develop resistance against antimicrobial drugs by several mechanisms such as enzyme inactivation, reduced cell permeability, modifying target site or enzyme, enhanced efflux because of high expression of efflux pumps, biofilm formation or drug-resistance gene expression. New and alternative ways such as nanoparticle (NP) applications are being established to overcome the growing multidrug-resistance in bacteria. NPs have unique antimicrobial characteristics that make them appropriate for medical application to overcome antibiotic resistance. The proposed antibacterial mechanisms of NPs are cell membrane damage, changing cell wall penetration, reactive oxygen species (ROS) production, effect on DNA and proteins, and impact on biofilm formation. The present review mainly focuses on discussing various mechanisms of bacterial drug resistance and the applications of NPs as alternative antibacterial systems. Combination therapy of NPs and antibiotics as a novel approach in medicine towards antimicrobial resistance is also discussed. | 2021 | 33703979 |
| 8960 | 7 | 0.9991 | Pyraclostrobin induces multi-antibiotic resistance in Escherichia coli via quorum sensing: A new perspective. Antibiotic resistance seriously threatens to global public health, and non-antibiotic chemicals like pesticides can contribute to its development. Quorum sensing (QS) is an intercellular communication system that regulates group behavior and can potentially become a pathway for the development of antibiotic resistance. This study firstly discovered that exposure to pyraclostrobin at 0.5 mg/L activated QS, resulting in antibiotic resistance in Escherichia coli, with minimum inhibitory concentrations (MICs) increasing by up to 128-fold against tested antibiotics. Mechanistically, the high expression of the luxS gene induced by pyraclostrobin stress increased the level of the QS signal molecule (AI-2), leading to enhanced QS in antibiotic-resistant bacteria (ARB), thereby upregulating the expression of multidrug efflux pump genes (acrB and marA) and downregulating the expression of outer membrane porin genes (ompC and ompF). Meanwhile, using a QS inhibitor also increased the strains' antibiotic sensitivity. Additionally, pyraclostrobin exposure damaged cell membranes, induced oxidative stress, and caused gene mutations, further promoting multidrug resistance. Overall, the findings demonstrate that pyraclostrobin exposure can stimulate antibiotic resistance in Escherichia coli by activating QS and inducing gene mutations. Therefore, the rigorous application of fungicides is essential to retard the development of antibiotic resistance. | 2025 | 40544772 |
| 8345 | 8 | 0.9991 | Antibiotic Resistance via Bacterial Cell Shape-Shifting. Bacteria have evolved to develop multiple strategies for antibiotic resistance by effectively reducing intracellular antibiotic concentrations or antibiotic binding affinities, but the role of cell morphology in antibiotic resistance remains poorly understood. By analyzing cell morphological data for different bacterial species under antibiotic stress, we find that bacteria increase or decrease the cell surface-to-volume ratio depending on the antibiotic target. Using quantitative modeling, we show that by reducing the surface-to-volume ratio, bacteria can effectively reduce the intracellular antibiotic concentration by decreasing antibiotic influx. The model further predicts that bacteria can increase the surface-to-volume ratio to induce the dilution of membrane-targeting antibiotics, in agreement with experimental data. Using a whole-cell model for the regulation of cell shape and growth by antibiotics, we predict shape transformations that bacteria can utilize to increase their fitness in the presence of antibiotics. We conclude by discussing additional pathways for antibiotic resistance that may act in synergy with shape-induced resistance. | 2022 | 35616332 |
| 8626 | 9 | 0.9991 | Challenges Associated With the Use of Metal and Metal Oxide Nanoparticles as Antimicrobial Agents: A Review of Resistance Mechanisms and Environmental Implications. The use of metal and metal oxide nanoparticles has been suggested as a means of combating antibiotic-resistant bacteria (ARB). This is due to the ability of nanoparticles to target numerous sites inside the bacterial cell. Microbes can, however, develop a resistance to hazardous environments. Soil microorganisms have evolved resistance to specific metals in soil by employing alternative survival strategies, like those adopted against antibiotics. Because of this survival mechanism, bacteria have been able to develop defense mechanisms to deal with metallic nanoparticles. Resistance has evolved in human pathogens to therapies that use metallic nanoparticles, such as silver nanoparticles. Metallic nanoparticles and antibiotics have currently been proven to be ineffective against several infections. Due to these concerns, scientists are investigating whether nanoparticles might cause environmental harm and potentially breed microbes that are resistant to both inorganic and organic nanoparticles. The increased use of inorganic nanoparticles has thus been shown to result in contaminations in wastewater, facilitating horizontal gene transfer among bacterial populations. The resistance mechanism of metallic nanoparticles, role in antibiotic resistance, and a potential solution to the environment's toxicity from nanoparticles are all discussed in this review. | 2025 | 40711446 |
| 8342 | 10 | 0.9991 | Inflammatory immunity and bacteriological perspectives: A new direction for copper treatment of sepsis. Copper is an essential trace element for all aerobic organisms because of its unique biological functions. In recent years, researchers have discovered that copper can induce cell death through various regulatory mechanisms, thereby inducing inflammation. Efforts have also been made to alter the chemical structure of copper to achieve either anticancer or anti-inflammatory effects. The copper ion can exhibit bactericidal effects by interfering with the integrity of the cell membrane and promoting oxidative stress. Sepsis is a systemic inflammatory response caused by infection. Some studies have revealed that copper is involved in the pathophysiological process of sepsis and is closely related to its prognosis. During the infection of sepsis, the body may enhance the antimicrobial effect by increasing the release of copper. However, to avoid copper poisoning, all organisms have evolved copper resistance genes. Therefore, further analysis of the complex relationship between copper and bacteria may provide new ideas and research directions for the treatment of sepsis. | 2024 | 38692229 |
| 8337 | 11 | 0.9991 | Dynamic Boolean modelling reveals the influence of energy supply on bacterial efflux pump expression. Antimicrobial resistance (AMR) is a global health issue. One key factor contributing to AMR is the ability of bacteria to export drugs through efflux pumps, which relies on the ATP-dependent expression and interaction of several controlling genes. Recent studies have shown that significant cell-to-cell ATP variability exists within clonal bacterial populations, but the contribution of intrinsic cell-to-cell ATP heterogeneity is generally overlooked in understanding efflux pumps. Here, we consider how ATP variability influences gene regulatory networks controlling expression of efflux pump genes in two bacterial species. We develop and apply a generalizable Boolean modelling framework, developed to incorporate the dependence of gene expression dynamics on available cellular energy supply. Theoretical results show that differences in energy availability can cause pronounced downstream heterogeneity in efflux gene expression. Cells with higher energy availability have a superior response to stressors. Furthermore, in the absence of stress, model bacteria develop heterogeneous pulses of efflux pump gene expression which contribute to a sustained sub-population of cells with increased efflux expression activity, potentially conferring a continuous pool of intrinsically resistant bacteria. This modelling approach thus reveals an important source of heterogeneity in cell responses to antimicrobials and sheds light on potentially targetable aspects of efflux pump-related antimicrobial resistance. | 2022 | 35078338 |
| 8343 | 12 | 0.9991 | Bacterial Stress Responses as Potential Targets in Overcoming Antibiotic Resistance. Bacteria can be adapted to adverse and detrimental conditions that induce general and specific responses to DNA damage as well as acid, heat, cold, starvation, oxidative, envelope, and osmotic stresses. The stress-triggered regulatory systems are involved in bacterial survival processes, such as adaptation, physiological changes, virulence potential, and antibiotic resistance. Antibiotic susceptibility to several antibiotics is reduced due to the activation of stress responses in cellular physiology by the stimulation of resistance mechanisms, the promotion of a resistant lifestyle (biofilm or persistence), and/or the induction of resistance mutations. Hence, the activation of bacterial stress responses poses a serious threat to the efficacy and clinical success of antibiotic therapy. Bacterial stress responses can be potential targets for therapeutic alternatives to antibiotics. An understanding of the regulation of stress response in association with antibiotic resistance provides useful information for the discovery of novel antimicrobial adjuvants and the development of effective therapeutic strategies to control antibiotic resistance in bacteria. Therefore, this review discusses bacterial stress responses linked to antibiotic resistance in Gram-negative bacteria and also provides information on novel therapies targeting bacterial stress responses that have been identified as potential candidates for the effective control of Gram-negative antibiotic-resistant bacteria. | 2022 | 35889104 |
| 8974 | 13 | 0.9991 | Escherichia coli Bacteria Develop Adaptive Resistance to Antibacterial ZnO Nanoparticles. Antibacterial agents based on nanoparticles (NPs) have many important applications, e.g., for the textile industry, surface disinfection, wound dressing, water treatment, and food preservation. Because of their prevalent use it is important to understand whether bacteria could develop resistance to such antibacterial NPs similarly to the resistance that bacteria are known to develop to antibiotics. Here, it is reported that Escherichia coli (E. coli) develops adaptive resistance to antibacterial ZnO NPs after several days' exposure to the NPs. But, in contrast to antibiotics-resistance, the observed resistance to ZnO NPs is not stable-after several days without exposure to the NPs, the bacteria regain their sensitivity to the NPs' antibacterial properties. Based on the analyses it is suggested that the observed resistance is caused by changes in the shape of the bacteria and the expressions of membrane proteins. The findings provide insights into the response of bacteria to antibacterial NPs, which is important to elucidate for designing and evaluating the risk of applications based on antibacterial NPs. | 2018 | 33103858 |
| 8962 | 14 | 0.9991 | A Dietary Source of High Level of Fluoroquinolone Tolerance in mcr-Carrying Gram-Negative Bacteria. The emergence of antibiotic tolerance, characterized by the prolonged survival of bacteria following antibiotic exposure, in natural bacterial populations, especially in pathogens carrying antibiotic resistance genes, has been an increasing threat to public health. However, the major causes contributing to the formation of antibiotic tolerance and underlying molecular mechanisms are yet poorly understood. Herein, we show that potassium sorbate (PS), a widely used food additive, triggers a high level of fluoroquinolone tolerance in bacteria carrying mobile colistin resistance gene mcr. Mechanistic studies demonstrate that PS treatment results in the accumulation of intracellular fumarate, which activates bacterial two-component system and decreases the expression level of outer membrane protein OmpF, thereby reducing the uptake of ciprofloxacin. In addition, the supplementation of PS inhibits aerobic respiration, reduces reactive oxygen species production and alleviates DNA damage caused by bactericidal antibiotics. Furthermore, we demonstrate that succinate, an intermediate product of the tricarboxylic acid cycle, overcomes PS-mediated ciprofloxacin tolerance. In multiple animal models, ciprofloxacin treatment displays failure outcomes in PS preadministrated animals, including comparable survival and bacterial loads with the vehicle group. Taken together, our works offer novel mechanistic insights into the development of antibiotic tolerance and uncover potential risks associated with PS use. | 2023 | 37808177 |
| 8340 | 15 | 0.9991 | Iron-Induced Respiration Promotes Antibiotic Resistance in Actinomycete Bacteria. The bacterial response to antibiotics eliciting resistance is one of the key challenges in global health. Despite many attempts to understand intrinsic antibiotic resistance, many of the underlying mechanisms still remain elusive. In this study, we found that iron supplementation promoted antibiotic resistance in Streptomyces coelicolor. Iron-promoted resistance occurred specifically against bactericidal antibiotics, irrespective of the primary target of antibiotics. Transcriptome profiling revealed that some genes in the central metabolism and respiration were upregulated under iron-replete conditions. Iron supported the growth of S. coelicolor even under anaerobic conditions. In the presence of potassium cyanide, which reduces aerobic respiration of cells, iron still promoted respiration and antibiotic resistance. This suggests the involvement of a KCN-insensitive type of respiration in the iron effect. This phenomenon was also observed in another actinobacterium, Mycobacterium smegmatis. Taken together, these findings provide insight into a bacterial resistance strategy that mitigates the activity of bactericidal antibiotics whose efficacy accompanies oxidative damage by switching the respiration mode. IMPORTANCE A widely investigated mode of antibiotic resistance occurs via mutations and/or by horizontal acquisition of resistance genes. In addition to this acquired resistance, most bacteria exhibit intrinsic resistance as an inducible and adaptive response to different classes of antibiotics. Increasing attention has been paid recently to intrinsic resistance mechanisms because this may provide novel therapeutic targets that help rejuvenate the efficacy of the current antibiotic regimen. In this study, we demonstrate that iron promotes the intrinsic resistance of aerobic actinomycetes Streptomyces coelicolor and Mycobacterium smegmatis against bactericidal antibiotics. A surprising role of iron to increase respiration, especially in a mode of using less oxygen, appears a fitting strategy to cope with bactericidal antibiotics known to kill bacteria through oxidative damage. This provides new insights into developing antimicrobial treatments based on the availability of iron and oxygen. | 2022 | 35357210 |
| 9540 | 16 | 0.9991 | Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents. The worldwide escalation of bacterial resistance to conventional medical antibiotics is a serious concern for modern medicine. High prevalence of multidrug-resistant bacteria among bacteria-based infections decreases effectiveness of current treatments and causes thousands of deaths. New improvements in present methods and novel strategies are urgently needed to cope with this problem. Owing to their antibacterial activities, metallic nanoparticles represent an effective solution for overcoming bacterial resistance. However, metallic nanoparticles are toxic, which causes restrictions in their use. Recent studies have shown that combining nanoparticles with antibiotics not only reduces the toxicity of both agents towards human cells by decreasing the requirement for high dosages but also enhances their bactericidal properties. Combining antibiotics with nanoparticles also restores their ability to destroy bacteria that have acquired resistance to them. Furthermore, nanoparticles tagged with antibiotics have been shown to increase the concentration of antibiotics at the site of bacterium-antibiotic interaction, and to facilitate binding of antibiotics to bacteria. Likewise, combining nanoparticles with antimicrobial peptides and essential oils generates genuine synergy against bacterial resistance. In this article, we aim to summarize recent studies on interactions between nanoparticles and antibiotics, as well as other antibacterial agents to formulate new prospects for future studies. Based on the promising data that demonstrated the synergistic effects of antimicrobial agents with nanoparticles, we believe that this combination is a potential candidate for more research into treatments for antibiotic-resistant bacteria. | 2011 | 22029522 |
| 8339 | 17 | 0.9990 | Dynamical model of antibiotic responses linking expression of resistance genes to metabolism explains emergence of heterogeneity during drug exposures. Antibiotic responses in bacteria are highly dynamic and heterogeneous, with sudden exposure of bacterial colonies to high drug doses resulting in the coexistence of recovered and arrested cells. The dynamics of the response is determined by regulatory circuits controlling the expression of resistance genes, which are in turn modulated by the drug's action on cell growth and metabolism. Despite advances in understanding gene regulation at the molecular level, we still lack a framework to describe how feedback mechanisms resulting from the interdependence between expression of resistance and cell metabolism can amplify naturally occurring noise and create heterogeneity at the population level. To understand how this interplay affects cell survival upon exposure, we constructed a mathematical model of the dynamics of antibiotic responses that links metabolism and regulation of gene expression, based on the tetracycline resistancetetoperon inE. coli. We use this model to interpret measurements of growth and expression of resistance in microfluidic experiments, both in single cells and in biofilms. We also implemented a stochastic model of the drug response, to show that exposure to high drug levels results in large variations of recovery times and heterogeneity at the population level. We show that stochasticity is important to determine how nutrient quality affects cell survival during exposure to high drug concentrations. A quantitative description of how microbes respond to antibiotics in dynamical environments is crucial to understand population-level behaviors such as biofilms and pathogenesis. | 2024 | 38412523 |
| 9547 | 18 | 0.9990 | Confronting antibiotic-resistant pathogens: Distinctive drug delivery potentials of progressive nanoparticles. Antimicrobial resistance arises over time, usually due to genetic modifications. Global observations of high resistance rates to popular antibiotics used to treat common bacterial diseases, such as diarrhea, STIs, sepsis, and urinary tract infections, indicate that our supply of effective antibiotics is running low. The mechanisms of action of several antibiotic groups are covered in this review. Antimicrobials disrupt the development and metabolism of bacteria, leading to their eventual death. However, in recent years, microorganisms become resistant to the drugs. Bacteria encode resistant genes against antibiotics and inhibit the function of antibiotics by reducing the uptake of drugs, modifying the enzyme's active site, synthesizing enzymes to degrade antibiotics, and changing the structure of ribosomal subunits. Additionally, the methods of action of resistant bacteria against different kinds of antibiotics as well as their modes of action are discussed. Besides, the resistant pathogenic bacteria which get the most priority by World Health Organisation (WHO) for synthesizing new drugs, have also been incorporated. To overcome antimicrobial resistance, nanomaterials are used to increase the efficacy of antimicrobial drugs. Metallic, inorganic, and polymer-based nanoparticles once conjugated with antibacterial drugs, exhibit synergistic effects by increasing the efficacy of the drugs by inhibiting bacterial growth. Nanomaterial's toxic properties are proportional to their concentrations. Higher concentration nanomaterials are more toxic to the cells. In this review, the toxic properties of nanomaterials on lung cells, lymph nodes, and neuronal cells are also summarized. | 2024 | 38097117 |
| 8283 | 19 | 0.9990 | Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Bacteria encounter a myriad of potentially growth-compromising conditions in nature and in hosts of pathogenic bacteria. These 'stresses' typically elicit protective and/or adaptive responses that serve to enhance bacterial survivability. Because they impact upon many of the same cellular components and processes that are targeted by antimicrobials, adaptive stress responses can influence antimicrobial susceptibility. In targeting and interfering with key cellular processes, antimicrobials themselves are 'stressors' to which protective stress responses have also evolved. Cellular responses to nutrient limitation (nutrient stress), oxidative and nitrosative stress, cell envelope damage (envelope stress), antimicrobial exposure and other growth-compromising stresses, have all been linked to the development of antimicrobial resistance in Gram-negative bacteria - resulting from the stimulation of protective changes to cell physiology, activation of resistance mechanisms, promotion of resistant lifestyles (biofilms), and induction of resistance mutations. | 2012 | 22424589 |