LEAD - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
862800.9990Biofertilizer microorganisms accompanying pathogenic attributes: a potential threat. Application of biofertilizers containing living or dormant plant growth promoting bacterial cells is considered to be an ecofriendly alternative of chemical fertilizers for improved crop production. Biofertilizers opened myriad doors towards sustainable agriculture as they effectively reduce heavy use of chemical fertilizers and pesticides by keeping soils profuse in micro and macronutrients, regulating plant hormones and restraining infections caused by the pests present in soil without inflicting environmental damage. Generally, pathogenicity and biosafety testing of potential plant growth promoting bacteria (PGPB) are not performed, and the bacteria are reported to be beneficial solely on testing plant growth promoting characteristics. Unfortunately, some rhizosphere and endophytic PGPB are reported to be involved in various diseases. Such PGPB can also spread virulence and multidrug resistance genes carried by them through horizontal gene transfer to other bacteria in the environment. Therefore, deployment of such microbial populations in open fields could lead to disastrous side effects on human health and environment. Careless declaration of bacteria as PGPB is more pronounced in research publications. Here, we present a comprehensive report of declared PGPB which are reported to be pathogenic in other studies. This review also suggests the employment of some additional safety assessment protocols before reporting a bacteria as beneficial and product development.202235221573
914110.9989Metallic Nanoparticles-Friends or Foes in the Battle against Antibiotic-Resistant Bacteria? The rapid spread of antibiotic resistances among bacteria demands novel strategies for infection control, and metallic nanoparticles appear as promising tools because of their unique size and tunable properties that allow their antibacterial effects to be maximized. Furthermore, their diverse mechanisms of action towards multiple cell components have suggested that bacteria could not easily develop resistance against nanoparticles. However, research published over the last decade has proven that bacteria can indeed evolve stable resistance mechanisms upon continuous exposure to metallic nanoparticles. In this review, we summarize the currently known individual and collective strategies employed by bacteria to cope with metallic nanoparticles. Importantly, we also discuss the adverse side effects that bacterial exposure to nanoparticles may have on antibiotic resistance dissemination and that might constitute a challenge for the implementation of nanoparticles as antibacterial agents. Overall, studies discussed in this review point out that careful management of these very promising antimicrobials is necessary to preserve their efficacy for infection control.202133673231
953920.9989Materials for restoring lost Activity: Old drugs for new bugs. The escalation of bacterial resistance to conventional medical antibiotics is a serious concern worldwide. Improvements to current therapies are urgently needed to address this problem. The synergistic combination of antibiotics with other agents is a strategic solution to combat multi-drug-resistant bacteria. Although these combinations decrease the required high dosages and therefore, reduce the toxicity of both agents without compromising the bactericidal effect, they cannot stop the development of further resistance. Recent studies have shown certain elements restore the ability of antibiotics to destroy bacteria that have acquired resistance to them. Due to these synergistic activities, organic and inorganic molecules have been investigated with the goal of restoring antibiotics in new approaches that mitigate the risk of expanding resistance. Herein, we summarize recent studies that restore antibiotics once thought to be ineffective, but have returned to our armamentarium through innovative, combinatorial efforts. A special focus is placed on the mechanisms that allow the synergistic combinations to combat bacteria. The promising data that demonstrated restoration of antimicrobials, supports the notion to find more combinations that can combat antibiotic-resistant bacteria.202235461913
917530.9989Fitness Trade-Offs Resulting from Bacteriophage Resistance Potentiate Synergistic Antibacterial Strategies. Bacteria that cause life-threatening infections in humans are becoming increasingly difficult to treat. In some instances, this is due to intrinsic and acquired antibiotic resistance, indicating that new therapeutic approaches are needed to combat bacterial pathogens. There is renewed interest in utilizing viruses of bacteria known as bacteriophages (phages) as potential antibacterial therapeutics. However, critics suggest that similar to antibiotics, the development of phage-resistant bacteria will halt clinical phage therapy. Although the emergence of phage-resistant bacteria is likely inevitable, there is a growing body of literature showing that phage selective pressure promotes mutations in bacteria that allow them to subvert phage infection, but with a cost to their fitness. Such fitness trade-offs include reduced virulence, resensitization to antibiotics, and colonization defects. Resistance to phage nucleic acid entry, primarily via cell surface modifications, compromises bacterial fitness during antibiotic and host immune system pressure. In this minireview, we explore the mechanisms behind phage resistance in bacterial pathogens and the physiological consequences of acquiring phage resistance phenotypes. With this knowledge, it may be possible to use phages to alter bacterial populations, making them more tractable to current therapeutic strategies.202032094257
953340.9989The disparate effects of bacteriophages on antibiotic-resistant bacteria. Faced with the crisis of multidrug-resistant bacteria, bacteriophages, viruses that infect and replicate within bacteria, have been reported to have both beneficial and detrimental effects with respect to disease management. Bacteriophages (phages) have important ecological and evolutionary impacts on their bacterial hosts and have been associated with therapeutic use to kill bacterial pathogens, but can lead to the transmission of antibiotic resistance. Although the process known as transduction has been reported for many bacterial species by classic and modern genetic approaches, its contribution to the spread of antibiotic resistance in nature remains unclear. In addition, detailed molecular studies have identified phages residing in bacterial genomes, revealing unexpected interactions between phages and their bacterial hosts. Importantly, antibiotics can induce the production of phages and phage-encoded products, disseminating these viruses and virulence-related genes, which have dangerous consequences for disease severity. These unwanted side-effects of antibiotics cast doubt on the suitability of some antimicrobial treatments and may require new strategies to prevent and limit the selection for virulence. Foremost among these treatments is phage therapy, which could be used to treat many bacterial infectious diseases and confront the pressing problem of antibiotic resistance in pathogenic bacteria. This review discusses the interactions between bacteriophages, antibiotics, and bacteria and provides an integrated perspective that aims to inspire the development of successful antibacterial therapies.201830302018
943050.9989Mechanisms of antimicrobial resistance in biofilms. Most bacteria in nature exist in aggregated communities known as biofilms, and cells within a biofilm demonstrate major physiological changes compared to their planktonic counterparts. Biofilms are associated with many different types of infections which can have severe impacts on patients. Infections involving a biofilm component are often chronic and highly recalcitrant to antibiotic therapy as a result of intrinsic physical factors including extracellular matrix production, low growth rates, altered antibiotic target production and efficient exchange of resistance genes. This review describes the biofilm lifecycle, phenotypic characteristics of a biofilm, and contribution of matrix and persister cells to biofilms intrinsic tolerance to antimicrobials. We also describe how biofilms can evolve antibiotic resistance and transfer resistance genes within biofilms. Multispecies biofilms and the impacts of various interactions, including cooperation and competition, between species on tolerance to antimicrobials in polymicrobial biofilm communities are also discussed.202439364333
947760.9989The microbiome-shaping roles of bacteriocins. The microbiomes on human body surfaces affect health in multiple ways. They include not only commensal or mutualistic bacteria but also potentially pathogenic bacteria, which can enter sterile tissues to cause invasive infection. Many commensal bacteria produce small antibacterial molecules termed bacteriocins that have the capacity to eliminate specific colonizing pathogens; as such, bacteriocins have attracted increased attention as potential microbiome-editing tools. Metagenome-based and activity-based screening approaches have strongly expanded our knowledge of the abundance and diversity of bacteriocin biosynthetic gene clusters and the properties of a continuously growing list of bacteriocin classes. The dynamic acquisition, diversification or loss of bacteriocin genes can shape the fitness of a bacterial strain that is in competition with bacteriocin-susceptible bacteria. However, a bacteriocin can only provide a competitive advantage if its fitness benefit exceeds the metabolic cost of production, if it spares crucial mutualistic partner strains and if major competitors cannot develop resistance. In contrast to most currently available antibiotics, many bacteriocins have only narrow activity ranges and could be attractive agents for precision therapy and prevention of infections. A common scientific strategy involving multiple disciplines is needed to uncover the immense potential of microbiome-shaping bacteriocins.202134075213
954470.9989Nano-Strategies to Fight Multidrug Resistant Bacteria-"A Battle of the Titans". Infectious diseases remain one of the leading causes of morbidity and mortality worldwide. The WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. Therefore, the antibiotic resistance crisis is one of the most pressing issues in global public health. Associated with the rise in antibiotic resistance is the lack of new antimicrobials. This has triggered initiatives worldwide to develop novel and more effective antimicrobial compounds as well as to develop novel delivery and targeting strategies. Bacteria have developed many ways by which they become resistant to antimicrobials. Among those are enzyme inactivation, decreased cell permeability, target protection, target overproduction, altered target site/enzyme, increased efflux due to over-expression of efflux pumps, among others. Other more complex phenotypes, such as biofilm formation and quorum sensing do not appear as a result of the exposure of bacteria to antibiotics although, it is known that biofilm formation can be induced by antibiotics. These phenotypes are related to tolerance to antibiotics in bacteria. Different strategies, such as the use of nanostructured materials, are being developed to overcome these and other types of resistance. Nanostructured materials can be used to convey antimicrobials, to assist in the delivery of novel drugs or ultimately, possess antimicrobial activity by themselves. Additionally, nanoparticles (e.g., metallic, organic, carbon nanotubes, etc.) may circumvent drug resistance mechanisms in bacteria and, associated with their antimicrobial potential, inhibit biofilm formation or other important processes. Other strategies, including the combined use of plant-based antimicrobials and nanoparticles to overcome toxicity issues, are also being investigated. Coupling nanoparticles and natural-based antimicrobials (or other repurposed compounds) to inhibit the activity of bacterial efflux pumps; formation of biofilms; interference of quorum sensing; and possibly plasmid curing, are just some of the strategies to combat multidrug resistant bacteria. However, the use of nanoparticles still presents a challenge to therapy and much more research is needed in order to overcome this. In this review, we will summarize the current research on nanoparticles and other nanomaterials and how these are or can be applied in the future to fight multidrug resistant bacteria.201830013539
944180.9989Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. BACKGROUND: Antibiotic resistance is currently the most serious global threat to the effective treatment of bacterial infections. Antibiotic resistance has been established to adversely affect both clinical and therapeutic outcomes, with consequences ranging from treatment failures and the need for expensive and safer alternative drugs to the cost of higher rates of morbidity and mortality, longer hospitalization, and high-healthcare costs. The search for new antibiotics and other antimicrobials continues to be a pressing need in humanity's battle against bacterial infections. Antibiotic resistance appears inevitable, and there is a continuous lack of interest in investing in new antibiotic research by pharmaceutical industries. This review summarized some new strategies for tackling antibiotic resistance in bacteria. METHODS: To provide an overview of the recent research, we look at some new strategies for preventing resistance and/or reviving bacteria's susceptibility to already existing antibiotics. RESULTS: Substantial pieces of evidence suggest that antimicrobials interact with host immunity, leading to potent indirect effects that improve antibacterial activities and may result in more swift and complete bactericidal effects. A new class of antibiotics referred to as immuno-antibiotics and the targeting of some biochemical resistance pathway components including inhibition of SOS response and hydrogen sulfide as biochemical underlying networks of bacteria can be considered as new emerging strategies to combat antibiotic resistance in bacteria. CONCLUSION: This review highlighted and discussed immuno-antibiotics and inhibition of SOS response and hydrogen sulfide as biochemical underlying networks of bacteria as new weapons against antibiotic resistance in bacteria.202235949048
953490.9989Defining the Benefits of Antibiotic Resistance in Commensals and the Scope for Resistance Optimization. Antibiotic resistance is a major medical and public health challenge, characterized by global increases in the prevalence of resistant strains. The conventional view is that all antibiotic resistance is problematic, even when not in pathogens. Resistance in commensal bacteria poses risks, as resistant organisms can provide a reservoir of resistance genes that can be horizontally transferred to pathogens or may themselves cause opportunistic infections in the future. While these risks are real, we propose that commensal resistance can also generate benefits during antibiotic treatment of human infection, by promoting continued ecological suppression of pathogens. To define and illustrate this alternative conceptual perspective, we use a two-species mathematical model to identify the necessary and sufficient ecological conditions for beneficial resistance. We show that the benefits are limited to species (or strain) interactions where commensals suppress pathogen growth and are maximized when commensals compete with, rather than prey on or otherwise exploit pathogens. By identifying benefits of commensal resistance, we propose that rather than strictly minimizing all resistance, resistance management may be better viewed as an optimization problem. We discuss implications in two applied contexts: bystander (nontarget) selection within commensal microbiomes and pathogen treatment given polymicrobial infections. IMPORTANCE Antibiotic resistance is commonly viewed as universally costly, regardless of which bacterial cells express resistance. Here, we derive an opposing logic, where resistance in commensal bacteria can lead to reductions in pathogen density and improved outcomes on both the patient and public health scales. We use a mathematical model of commensal-pathogen interactions to define the necessary and sufficient conditions for beneficial resistance, highlighting the importance of reciprocal ecological inhibition to maximize the benefits of resistance. More broadly, we argue that determining the benefits as well as the costs of resistances in human microbiomes can transform resistance management from a minimization to an optimization problem. We discuss applied contexts and close with a review of key resistance optimization dimensions, including the magnitude, spectrum, and mechanism of resistance.202336475750
8626100.9989Challenges Associated With the Use of Metal and Metal Oxide Nanoparticles as Antimicrobial Agents: A Review of Resistance Mechanisms and Environmental Implications. The use of metal and metal oxide nanoparticles has been suggested as a means of combating antibiotic-resistant bacteria (ARB). This is due to the ability of nanoparticles to target numerous sites inside the bacterial cell. Microbes can, however, develop a resistance to hazardous environments. Soil microorganisms have evolved resistance to specific metals in soil by employing alternative survival strategies, like those adopted against antibiotics. Because of this survival mechanism, bacteria have been able to develop defense mechanisms to deal with metallic nanoparticles. Resistance has evolved in human pathogens to therapies that use metallic nanoparticles, such as silver nanoparticles. Metallic nanoparticles and antibiotics have currently been proven to be ineffective against several infections. Due to these concerns, scientists are investigating whether nanoparticles might cause environmental harm and potentially breed microbes that are resistant to both inorganic and organic nanoparticles. The increased use of inorganic nanoparticles has thus been shown to result in contaminations in wastewater, facilitating horizontal gene transfer among bacterial populations. The resistance mechanism of metallic nanoparticles, role in antibiotic resistance, and a potential solution to the environment's toxicity from nanoparticles are all discussed in this review.202540711446
9190110.9989Phage-based biocontrol strategies and their application in agriculture and aquaculture. Meeting global food demands for a growing human population with finite natural resources is a major challenge. Aquaculture and agriculture are critical to satisfy food requirements, yet suffer significant losses from bacterial diseases. Therefore, there is an urgent need to develop novel antimicrobial strategies, which is heightened by increasing antibiotic resistance. Bacteriophages (phages) are viruses that specifically infect bacteria, and phage-derived therapies are promising treatments in the fight against bacterial diseases. Here, we describe multiple ways that phages and phage-based technologies can be used as antimicrobials. Antimicrobial activity can be achieved through lysis of targeted bacteria by virulent phages or lytic enzymes. Alternatively, phages can be engineered for the delivery of lethal genes and other cargoes to kill bacteria and to manipulate the bacterial response to conventional antibiotics. We also briefly highlight research exploring phages as potential biocontrol agents with examples from agriculture and aquaculture.201830514766
9538120.9988The Mechanism of Bacterial Resistance and Potential Bacteriostatic Strategies. Bacterial drug resistance is rapidly developing as one of the greatest threats to human health. Bacteria will adopt corresponding strategies to crack the inhibitory effect of antibiotics according to the antibacterial mechanism of antibiotics, involving the mutation of drug target, secreting hydrolase, and discharging antibiotics out of cells through an efflux pump, etc. In recent years, bacteria are found to constantly evolve new resistance mechanisms to antibiotics, including target protective protein, changes in cell morphology, and so on, endowing them with multiple defense systems against antibiotics, leading to the emergence of multi-drug resistant (MDR) bacteria and the unavailability of drugs in clinics. Correspondingly, researchers attempt to uncover the mystery of bacterial resistance to develop more convenient and effective antibacterial strategies. Although traditional antibiotics still play a significant role in the treatment of diseases caused by sensitive pathogenic bacteria, they gradually lose efficacy in the MDR bacteria. Therefore, highly effective antibacterial compounds, such as phage therapy and CRISPER-Cas precision therapy, are gaining an increasing amount of attention, and are considered to be the treatments with the moist potential with regard to resistance against MDR in the future. In this review, nine identified drug resistance mechanisms are summarized, which enhance the retention rate of bacteria under the action of antibiotics and promote the distribution of drug-resistant bacteria (DRB) in the population. Afterwards, three kinds of potential antibacterial methods are introduced, in which new antibacterial compounds exhibit broad application prospects with different action mechanisms, the phage therapy has been successfully applied to infectious diseases caused by super bacteria, and the CRISPER-Cas precision therapy as a new technology can edit drug-resistant genes in pathogenic bacteria at the gene level, with high accuracy and flexibility. These antibacterial methods will provide more options for clinical treatment, and will greatly alleviate the current drug-resistant crisis.202236139994
9374130.9988Mathematical modelling of antibiotic interaction on evolution of antibiotic resistance: an analytical approach. BACKGROUND: The emergence and spread of antibiotic-resistant pathogens have led to the exploration of antibiotic combinations to enhance clinical effectiveness and counter resistance development. Synergistic and antagonistic interactions between antibiotics can intensify or diminish the combined therapy's impact. Moreover, these interactions can evolve as bacteria transition from wildtype to mutant (resistant) strains. Experimental studies have shown that the antagonistically interacting antibiotics against wildtype bacteria slow down the evolution of resistance. Interestingly, other studies have shown that antibiotics that interact antagonistically against mutants accelerate resistance. However, it is unclear if the beneficial effect of antagonism in the wildtype bacteria is more critical than the detrimental effect of antagonism in the mutants. This study aims to illuminate the importance of antibiotic interactions against wildtype bacteria and mutants on the deacceleration of antimicrobial resistance. METHODS: To address this, we developed and analyzed a mathematical model that explores the population dynamics of wildtype and mutant bacteria under the influence of interacting antibiotics. The model investigates the relationship between synergistic and antagonistic antibiotic interactions with respect to the growth rate of mutant bacteria acquiring resistance. Stability analysis was conducted for equilibrium points representing bacteria-free conditions, all-mutant scenarios, and coexistence of both types. Numerical simulations corroborated the analytical findings, illustrating the temporal dynamics of wildtype and mutant bacteria under different combination therapies. RESULTS: Our analysis provides analytical clarification and numerical validation that antibiotic interactions against wildtype bacteria exert a more significant effect on reducing the rate of resistance development than interactions against mutants. Specifically, our findings highlight the crucial role of antagonistic antibiotic interactions against wildtype bacteria in slowing the growth rate of resistant mutants. In contrast, antagonistic interactions against mutants only marginally affect resistance evolution and may even accelerate it. CONCLUSION: Our results emphasize the importance of considering the nature of antibiotic interactions against wildtype bacteria rather than mutants when aiming to slow down the acquisition of antibiotic resistance.202438426146
9471140.9988Systematic analysis of putative phage-phage interactions on minimum-sized phage cocktails. The application of bacteriophages as antibacterial agents has many benefits in the "post-antibiotic age". To increase the number of successfully targeted bacterial strains, phage cocktails, instead of a single phage, are commonly formulated. Nevertheless, there is currently no consensus pipeline for phage cocktail development. Thus, although large cocktails increase the spectrum of activity, they could produce side effects such as the mobilization of virulence or antibiotic resistance genes. On the other hand, coinfection (simultaneous infection of one host cell by several phages) might reduce the potential for bacteria to evolve phage resistance, but some antagonistic interactions amongst phages might be detrimental for the outcome of phage cocktail application. With this in mind, we introduce here a new method, which considers the host range and each individual phage-host interaction, to design the phage mixtures that best suppress the target bacteria while minimizing the number of phages to restrict manufacturing costs. Additionally, putative phage-phage interactions in cocktails and phage-bacteria networks are compared as the understanding of the complex interactions amongst bacteriophages could be critical in the development of realistic phage therapy models in the future.202235165352
9440150.9988The Case against Antibiotics and for Anti-Virulence Therapeutics. Although antibiotics have been indispensable in the advancement of modern medicine, there are downsides to their use. Growing resistance to broad-spectrum antibiotics is leading to an epidemic of infections untreatable by first-line therapies. Resistance is exacerbated by antibiotics used as growth factors in livestock, over-prescribing by doctors, and poor treatment adherence by patients. This generates populations of resistant bacteria that can then spread resistance genes horizontally to other bacterial species, including commensals. Furthermore, even when antibiotics are used appropriately, they harm commensal bacteria leading to increased secondary infection risk. Effective antibiotic treatment can induce bacterial survival tactics, such as toxin release and increasing resistance gene transfer. These problems highlight the need for new approaches to treating bacterial infection. Current solutions include combination therapies, narrow-spectrum therapeutics, and antibiotic stewardship programs. These mediate the issues but do not address their root cause. One emerging solution to these problems is anti-virulence treatment: preventing bacterial pathogenesis instead of using bactericidal agents. In this review, we discuss select examples of potential anti-virulence targets and strategies that could be developed into bacterial infection treatments: the bacterial type III secretion system, quorum sensing, and liposomes.202134683370
9581160.9988Lateral gene transfer, bacterial genome evolution, and the Anthropocene. Lateral gene transfer (LGT) has significantly influenced bacterial evolution since the origins of life. It helped bacteria generate flexible, mosaic genomes and enables individual cells to rapidly acquire adaptive phenotypes. In turn, this allowed bacteria to mount strong defenses against human attempts to control their growth. The widespread dissemination of genes conferring resistance to antimicrobial agents has precipitated a crisis for modern medicine. Our actions can promote increased rates of LGT and also provide selective forces to fix such events in bacterial populations. For instance, the use of selective agents induces the bacterial SOS response, which stimulates LGT. We create hotspots for lateral transfer, such as wastewater systems, hospitals, and animal production facilities. Conduits of gene transfer between humans and animals ensure rapid dissemination of recent transfer events, as does modern transport and globalization. As resistance to antibacterial compounds becomes universal, there is likely to be increasing selection pressure for phenotypes with adverse consequences for human welfare, such as enhanced virulence, pathogenicity, and transmission. Improved understanding of the ecology of LGT could help us devise strategies to control this fundamental evolutionary process.201727706829
9604170.9988Extreme Antibiotic Persistence via Heterogeneity-Generating Mutations Targeting Translation. Antibiotic persistence, the noninherited tolerance of a subpopulation of bacteria to high levels of antibiotics, is a bet-hedging phenomenon with broad clinical implications. Indeed, the isolation of bacteria with substantially increased persistence rates from chronic infections suggests that evolution of hyperpersistence is a significant factor in clinical therapy resistance. However, the pathways that lead to hyperpersistence and the underlying cellular states have yet to be systematically studied. Here, we show that laboratory evolution can lead to increase in persistence rates by orders of magnitude for multiple independently evolved populations of Escherichia coli and that the driving mutations are highly enriched in translation-related genes. Furthermore, two distinct adaptive mutations converge on concordant transcriptional changes, including increased population heterogeneity in the expression of several genes. Cells with extreme expression of these genes showed dramatic differences in persistence rates, enabling isolation of subpopulations in which a substantial fraction of cells are persisters. Expression analysis reveals coherent regulation of specific pathways that may be critical to establishing the hyperpersistence state. Hyperpersister mutants can thus enable the systematic molecular characterization of this unique physiological state, a critical prerequisite for developing antipersistence strategies.IMPORTANCE Bacterial persistence is a fascinating phenomenon in which a small subpopulation of bacteria becomes phenotypically tolerant to lethal antibiotic exposure. There is growing evidence that populations of bacteria in chronic clinical infections develop a hyperpersistent phenotype, enabling a substantially larger subpopulation to survive repeated antibiotic treatment. The mechanisms of persistence and modes of increasing persistence rates remain largely unknown. Here, we utilized experimental evolution to select for Escherichia coli mutants that have more than a thousandfold increase in persistence rates. We discovered that a variety of individual mutations to translation-related processes are causally involved. Furthermore, we found that these mutations lead to population heterogeneity in the expression of specific genes. We show that this can be used to isolate populations in which the majority of bacteria are persisters, thereby enabling systems-level characterization of this fascinating and clinically significant microbial phenomenon.202031964772
9377180.9988Experimental Evolution of the TolC-Receptor Phage U136B Functionally Identifies a Tail Fiber Protein Involved in Adsorption through Strong Parallel Adaptation. Bacteriophages have received recent attention for their therapeutic potential to treat antibiotic-resistant bacterial infections. One particular idea in phage therapy is to use phages that not only directly kill their bacterial hosts but also rely on particular bacterial receptors, such as proteins involved in virulence or antibiotic resistance. In such cases, the evolution of phage resistance would correspond to the loss of those receptors, an approach termed evolutionary steering. We previously found that during experimental evolution, phage U136B can exert selection pressure on Escherichia coli to lose or modify its receptor, the antibiotic efflux protein TolC, often resulting in reduced antibiotic resistance. However, for TolC-reliant phages like U136B to be used therapeutically, we also need to study their own evolutionary potential. Understanding phage evolution is critical for the development of improved phage therapies as well as the tracking of phage populations during infection. Here, we characterized phage U136B evolution in 10 replicate experimental populations. We quantified phage dynamics that resulted in five surviving phage populations at the end of the 10-day experiment. We found that phages from all five surviving populations had evolved higher rates of adsorption on either ancestral or coevolved E. coli hosts. Using whole-genome and whole-population sequencing, we established that these higher rates of adsorption were associated with parallel molecular evolution in phage tail protein genes. These findings will be useful in future studies to predict how key phage genotypes and phenotypes influence phage efficacy and survival despite the evolution of host resistance. IMPORTANCE Antibiotic resistance is a persistent problem in health care and a factor that may help maintain bacterial diversity in natural environments. Bacteriophages ("phages") are viruses that specifically infect bacteria. We previously discovered and characterized a phage called U136B, which infects bacteria through TolC. TolC is an antibiotic resistance protein that helps bacteria pump antibiotics out of the cell. Over short timescales, phage U136B can be used to evolutionarily "steer" bacterial populations to lose or modify the TolC protein, sometimes reducing antibiotic resistance. In this study, we investigate whether U136B itself evolves to better infect bacterial cells. We discovered that the phage can readily evolve specific mutations that increase its infection rate. This work will be useful for understanding how phages can be used to treat bacterial infections.202337191555
9531190.9988How to Evaluate Non-Growing Cells-Current Strategies for Determining Antimicrobial Resistance of VBNC Bacteria. Thanks to the achievements in sanitation, hygiene practices, and antibiotics, we have considerably improved in our ongoing battle against pathogenic bacteria. However, with our increasing knowledge about the complex bacterial lifestyles and cycles and their plethora of defense mechanisms, it is clear that the fight is far from over. One of these resistance mechanisms that has received increasing attention is the ability to enter a dormancy state termed viable but non-culturable (VBNC). Bacteria that enter the VBNC state, either through unfavorable environmental conditions or through potentially lethal stress, lose their ability to grow on standard enrichment media, but show a drastically increased tolerance against antimicrobials including antibiotics. The inability to utilize traditional culture-based methods represents a considerable experimental hurdle to investigate their increased antimicrobial resistance and impedes the development and evaluation of effective treatments or interventions against bacteria in the VBNC state. Although experimental approaches were developed to detect and quantify VBNCs, only a few have been utilized for antimicrobial resistance screening and this review aims to provide an overview of possible methodological approaches.202133530321