# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3497 | 0 | 0.9462 | Biomarkers of antibiotic resistance genes during seasonal changes in wastewater treatment systems. To evaluate the seasonal distribution of antibiotic resistance genes (ARGs) and explore the reason for their patterns in different seasons and different systems, two wastewater treatment systems were selected and analyzed using high-throughput qPCR. Linear discriminant analysis (LDA) effect size (LEfSe) was used to discover the differential ARGs (biomarkers) and estimate the biomarkers' effect size. We found that the total absolute abundances of ARGs in inflows and excess sludge samples had no obvious seasonal fluctuations, while those in winter outflow samples decreased in comparison with the inflow samples. Eleven differentially abundant ARGs (biomarker genes, BmGs) (aadA5-02, aac-6-II, cmlA1-01, cmlA1-02, blaOXA10-02, aadA-02, tetX, aadA1, ereA, qacEΔ1-01, and blaTEM) in summer samples and 10 BmGs (tet-32, tetA-02, aacC2, vanC-03, aac-6-I1, tetE, ermB, mefA, tnpA - 07, and sul2) in winter samples were validated. According to 16S rRNA gene sequencing, the relative abundance of bacteria at the phylum level exhibited significant seasonal changes in outflow water (OW), and biomarker bacteria (BmB) were discovered at the family (or genus) level. Synechococcus and vadinCA02 are BmB in summer, and Trichococcus, Lactococcus, Pelosinus, Janthinobacterium, Nitrosomonadaceae and Sterolibacterium are BmB in winter. In addition, BmB have good correlations with BmGs in the same season, which indicates that bacterial community changes drive different distributions of ARGs during seasonal changes and that LEfSe is an acute and effective method for finding significantly different ARGs and bacteria between two or more classes. In conclusion, this study demonstrated the seasonal changes of BmGs and BmB at two wastewater treatment systems. | 2018 | 29169020 |
| 8113 | 1 | 0.9437 | Fate of antibiotic resistance genes in mesophilic and thermophilic anaerobic digestion of chemically enhanced primary treatment (CEPT) sludge. Anaerobic digestion (AD) of chemically enhanced primary treatment (CEPT) sludge and non-CEPT (conventional sedimentation) sludge were comparatively operated under mesophilic and thermophilic conditions. The highest methane yield (692.46±0.46mL CH(4)/g VS(removed) in CEPT sludge) was observed in mesophilic AD of CEPT sludge. Meanwhile, thermophilic conditions were more favorable for the removal of total antibiotic resistance genes (ARGs). In this study, no measurable difference in the fates and removal of ARGs and class 1 integrin-integrase gene (intI1) was observed between treated non-CEPT and CEPT sludge. However, redundancy analysis indicated that shifts in bacterial community were primarily accountable for the variations in ARGs and intI1. Network analysis further revealed potential host bacteria for ARGs and intI1. | 2017 | 28797965 |
| 3539 | 2 | 0.9433 | Exposure Levels of Airborne Fungi, Bacteria, and Antibiotic Resistance Genes in Cotton Farms during Cotton Harvesting and Evaluations of N95 Respirators against These Bioaerosols. The USA is the third-leading cotton-producing country worldwide and cotton farming is common in the state of Georgia. Cotton harvest can be a significant contributor to airborne microbial exposures to farmers and nearby rural communities. The use of respirators or masks is one of the viable options for reducing organic dust and bioaerosol exposures among farmers. Unfortunately, the OSHA Respiratory Protection Standard (29 CFR Part 1910.134) does not apply to agricultural workplaces and the filtration efficiency of N95 respirators was never field-tested against airborne microorganisms and antibiotic resistance genes (ARGs) during cotton harvesting. This study addressed these two information gaps. Airborne culturable microorganisms were sampled using an SAS Super 100 Air Sampler in three cotton farms during cotton harvesting, and colonies were counted and converted to airborne concentrations. Genomic DNA was extracted from air samples using a PowerSoil(®) DNA Isolation Kit. A series of comparative critical threshold (2(-ΔΔCT)) real-time PCR was used to quantify targeted bacterial (16S rRNA) genes and major ARGs. Two N95 facepiece respirator models (cup-shaped and pleated) were evaluated for their protection against culturable bacteria and fungi, total microbial load in terms of surface ATP levels, and ARGs using a field experimental setup. Overall, culturable microbial exposure levels ranged between 10(3) and 10(4) CFU/m(3) during cotton harvesting, which was lower when compared with bioaerosol loads reported earlier during other types of grain harvesting. The findings suggested that cotton harvesting works can release antibiotic resistance genes in farm air and the highest abundance was observed for phenicol. Field experimental data suggested that tested N95 respirators did not provide desirable >95% protections against culturable microorganisms, the total microbial load, and ARGs during cotton harvesting. | 2023 | 37375063 |
| 3538 | 3 | 0.9430 | Amoxicillin Increased Functional Pathway Genes and Beta-Lactam Resistance Genes by Pathogens Bloomed in Intestinal Microbiota Using a Simulator of the Human Intestinal Microbial Ecosystem. Antibiotics are frequently used to treat bacterial infections; however, they affect not only the target pathogen but also commensal gut bacteria. They may cause the dysbiosis of human intestinal microbiota and consequent metabolic alterations, as well as the spreading of antibiotic resistant bacteria and antibiotic resistance genes (ARGs). In vitro experiments by simulator of the human intestinal microbial ecosystem (SHIME) can clarify the direct effects of antibiotics on different regions of the human intestinal microbiota, allowing complex human microbiota to be stably maintained in the absence of host cells. However, there are very few articles added the antibiotics into this in vitro model to observe the effects of antibiotics on the human intestinal microbiota. To date, no studies have focused on the correlations between the bloomed pathogens caused by amoxicillin (AMX) exposure and increased functional pathway genes as well as ARGs. This study investigated the influence of 600 mg day(-1) AMX on human intestinal microbiota using SHIME. The impact of AMX on the composition and function of the human intestinal microbiota was revealed by 16S rRNA gene sequencing and high-throughput quantitative PCR. The results suggested that: (i) AMX treatment has tremendous influence on the overall taxonomic composition of the gut microbiota by increasing the relative abundance of Klebsiella [linear discriminant analysis (LDA) score = 5.26] and Bacteroides uniformis (LDA score = 4.75), as well as taxonomic diversity (Simpson, P = 0.067, T-test; Shannon, P = 0.061, T-test), and decreasing the members of Parabacteroides (LDA score = 4.18), Bifidobacterium (LDA score = 4.06), and Phascolarctobacterium (LDA score = 3.95); (ii) AMX exposure significantly enhanced the functional pathway genes and beta-lactam resistance genes, and the bloomed pathogens were strongly correlated with the metabolic and immune system diseases gene numbers (R = 0.98, P < 0.001) or bl2_len and bl2be_shv2 abundance (R = 0.94, P < 0.001); (iii) the changes caused by AMX were "SHIME-compartment" different with more significant alteration in ascending colon, and the effects were permanent, which could not be restored after 2-week AMX discontinuance. Overall results demonstrated negative side-effects of AMX, which should be considered for AMX prescription. | 2020 | 32582117 |
| 7054 | 4 | 0.9426 | Effective removal of antibiotic resistance genes and potential links with archaeal communities during vacuum-type composting and positive-pressure composting. As a major reservoir of antibiotics, animal manure contributes a lot to the augmented environmental pressure of antibiotic resistance genes (ARGs). This might be the first study to explore the effects of different ventilation types on the control of ARGs and to identify the relationships between archaeal communities and ARGs during the composting of dairy manure. Several ARGs were quantified via Real-time qPCR and microbial communities including bacteria and archaea were analyzed by High-throughput sequencing during vacuum-type composting (VTC) and positive-pressure composting (PPC). The total detected ARGs and class I integrase gene (intI1) under VTC were significantly lower than that under PPC during each stage of the composting (p<0.001). The relative abundance of potential human pathogenic bacteria (HPB) which were identified based on sequencing information and correlation analysis decreased by 74.6% and 91.4% at the end of PPC and VTC, respectively. The composition of archaeal communities indicated that methane-producing archaea including Methanobrevibacter, Methanocorpusculum and Methanosphaera were dominant throughout the composting. Redundancy analysis suggested that Methanobrevibacter and Methanocorpusculum were positively correlated with all of the detected ARGs. Network analysis determined that the possible hosts of ARGs were different under VTC and PPC, and provided new sights about potential links between archaea and ARGs. Our results showed better performance of VTC in reducing ARGs and potential HPB and demonstrated that some archaea could also be influential hosts of ARGs, and caution the risks of archaea carrying ARGs. | 2020 | 31892399 |
| 7059 | 5 | 0.9425 | Composting reduces the risks of antibiotic resistance genes in maize seeds posed by gentamicin fermentation waste. Using high-throughput quantitative PCR and next generation sequencing, the impact of land application of raw and composted gentamicin fermentation waste (GFW) on antibiotic resistance genes (ARGs) in maize seeds was studied in a three-year field trial. The raw and composted GFW changed both the bacterial community composition and the ARGs diversity in the maize seeds compared to non-amended controls and chemical fertilizer. The abundance of ARGs after raw GFW amendment was significantly higher than other treatments because of a high abundance of aadA1, qacEdeltal and aph(2')-Id-02; probably induced by gentamicin selection pressure in maize tissues. Meanwhile, the potential host of these three ARGs, pathogenic bacteria Tenacibaculum, also increased significantly in maize seeds after the application of raw GFW. But our result proved that composting could weaken the risk posed by GFW. We further reveal that the key biotic driver for shaping the ARG profiles in maize seeds is bacterial community followed by heavy metal resistance genes, and ARGs are more likely located on bacterial chromosomes. Our findings provide new insight into ARGs dispersal mechanism in maize seeds after long-term GFW application, demonstrate the potential benefits of composting the GFW to reduce risks as well as the potential efficient management method to GFW. | 2023 | 36736399 |
| 8067 | 6 | 0.9418 | Enhanced control of sulfonamide resistance genes and host bacteria during thermophilic aerobic composting of cow manure. Traditional composting has already shown a certain effect in eliminating antibiotic residues, antibiotic-resistant bacteria (ARBs), and antibiotic resistance genes (ARGs). It is worth noting that the rebounding of ARGs and the succession of the bacterial community during conventional aerobic composting are still serious threats. Considering the probable risk, improved and adaptable technologies are urgently needed to control antibiotic resistance efficiently. This study monitored how thermophilic aerobic composting affected the ARGs, as well as the bacterial diversity during the composting of cow manure spiked with sulfamethoxazole (SMX) at different concentrations. Results showed that the degradation of SMX was enhanced during thermophilic aerobic composting (control > SMX25 > SMX50 > SMX100) and was no longer detected after 20 days of composting. High temperature or heat significantly stimulated the rebounding of certain genes. After 35 days, the abundance of detected genes (sul2, sulA, dfrA7, and dfrA1) significantly decreased (p < 0.05) in control and antibiotic-spiked treatments, except for sul1. The addition of three concentrations of SMX elicited a sharp effect on bacterial diversity, and microbial structure in SMX25 led to significant differences with others (p < 0.05). The network analysis revealed more rigorous interactions among ARGs and abundant genera, suggesting that the host of ARGs potentially increased at low concentrations of SMX. Especially, genera g_norank_f__Beggiatoaceae, Ruminiclostridium, Caldicoprobacter, g_norank_o_MBA03, Hydrogenispora, and Ruminiclostridium_1 were major potential hosts for sul1. In conclusion, the rebounding of ARGs could be intermitted partially, and more efficient control of antibiotic resistance could be achieved in the thermophilic composting compared to conventional methods. | 2021 | 33582626 |
| 7073 | 7 | 0.9418 | Fecal Indicator Bacteria and Antibiotic Resistance Genes in Storm Runoff from Dairy Manure and Compost-Amended Vegetable Plots. Given the presence of antibiotics and resistant bacteria in livestock manures, it is important to identify the key pathways by which land-applied manure-derived soil amendments potentially spread resistance. The goal of this field-scale study was to identify the effects of different types of soil amendments (raw manure from cows treated with cephapirin and pirlimycin, compost from antibiotic-treated or antibiotic-free cows, or chemical fertilizer only) and crop type (lettuce [ L.] or radish [ L.]) on the transport of two antibiotic resistance genes (ARGs; 1 and ) via storm runoff from six naturally occurring storms. Concurrent quantification of sediment and fecal indicator bacteria (FIB; and enterococci) in runoff permitted comparison to traditional agricultural water quality targets that may be driving factors of ARG presence. Storm characteristics (total rainfall volume, storm duration, etc.) significantly influenced FIB concentration (two-way ANOVA, < 0.05), although both effects from individual storm events (Kruskal-Wallis, < 0.05) and vegetative cover influenced sediment levels. Composted and raw manure-amended plots both yielded significantly higher 1 and B levels in runoff for early storms, at least 8 wk following initial planting, relative to fertilizer-only or unamended barren plots. There was no significant difference between 1 or B levels in runoff from plots treated with compost derived from antibiotic-treated versus antibiotic-free dairy cattle. Our findings indicate that agricultural fields receiving manure-derived amendments release higher quantities of these two "indicator" ARGs in runoff, particularly during the early stages of the growing season, and that composting did not reduce effects of ARG loading in runoff. | 2019 | 31589689 |
| 8726 | 8 | 0.9417 | CRISPR-dCpf1 mediated whole genome crRNA inhibition library for high-throughput screening of growth characteristic genes in Bacillus amyloliquefaciens LB1ba02. Bacillus amyloliquefaciens LB1ba02 is generally recognized as food safe (GRAS) microbial host and important enzyme-producing strain in the industry. However, autolysis affects the growth of bacteria, further affecting the yield of target products. Besides, the restriction-modification system, existed in B. amyloliquefaciens LB1ba02, results in a low transformation efficiency, which further leads to a lack of high-throughput screening tools. Here, we constructed a genome-wide crRNA inhibition library based on the CRISPR/dCpf1 system and high-throughput screening of related genes affecting the cell growth and autolysis using flow cytometry in B. amyloliquefaciens LB1ba02. The whole genome crRNA library was first validated for resistance to the toxic chemical 5-fluorouracil, and then used for validation of essential genes. In addition, seven gene loci (oppD, flil, tuaA, prmA, sigO, hslU, and GE03231) that affect the growth characteristics of LB1ba02 were screened. Among them, the Opp system had the greatest impact on growth. When the expression of operon oppA-oppB-oppC-oppD-oppF was inhibited, the cell growth difference was most significant. Inhibition of other sites could also promote rapid growth of bacteria to varying degrees; however, inhibition of GE03231 site accelerated cell autolysis. Therefore, the whole genome crRNA inhibition library is well suited for B. amyloliquefaciens LB1ba02 and can be further applied to high-throughput mining of other functional genes. | 2023 | 37802457 |
| 8723 | 9 | 0.9416 | Unraveling the Basis of Neonicotinoid Resistance in Whitefly Species Complex: Role of Endosymbiotic Bacteria and Insecticide Resistance Genes. Bemisia tabaci (whitefly) is one of the most detrimental agricultural insect pests and vectors of many plant viruses distributed worldwide. Knowledge of the distribution patterns and insecticide resistance of this cryptic species is crucial for its management. In this study, genetic variation of mitochondrial cytochrome oxidase subunit 1 (MtCoI) gene of B. tabaci was analyzed followed by a study of the infection profile of various endosymbionts in 26 whitefly populations collected from West Bengal, India. Phylogenetic analysis revealed Asia I as the major cryptic species (65.38%), followed by Asia II 5, China 3, and Asia II 7, which were diversified into 20 different haplotypes. In addition to the primary endosymbiont (C. poriera), each of the four whitefly species showed a variable population of three secondary endosymbionts, majorly Arsenophonus with the highest infection rate (73.07%), followed by Wolbachia and Rickettsia. Further phylogenetic analyses revealed the presence of two subgroups of Arsenophonus, viz., A1 and A2, and one each in Wolbachia (W1) and Rickettsia (R3). Resistance to thiamethoxam, imidacloprid, and acetamiprid insecticides was analyzed for a clear picture of pesticide resistance status. The highest susceptibility was noted toward thiamethoxam (LC(50) = 5.36 mg/L), followed by imidacloprid and acetamiprid. The whitefly population from Purulia and Hooghly districts bearing Asia II 7 and Asia II 5 cryptic species, respectively, shows maximum resistance. The differences in mean relative titer of four symbiotic bacteria among field populations varied considerably; however, a significant positive linear correlation was observed between the resistance level and relative titer of Arsenophonus and Wolbachia in the case of imidacloprid and thiamethoxam, while only Wolbachia was found in case of acetamiprid. Expression analysis demonstrated differential upregulation of insecticide resistance genes with Purulia and Hooghly populations showing maximally upregulated P450 genes. Moreover, thiamethoxam and imidacloprid resistance ratio (RR) showed a significant correlation with CYP6CM1, CYP6DZ7, and CYP4C64 genes, while acetamiprid RR correlated with CYP6CX1, CYP6DW2, CYP6DZ7, and CYP4C64 genes. Taken together, these findings suggested that P450 mono-oxygenase and symbiotic bacteria together affected whitefly resistance to neonicotinoids. Hence, a symbiont-oriented management programme could be a better alternative to control or delay resistance development in whitefly and can be used for pesticide clean-up in an agricultural field. | 2022 | 35814684 |
| 7743 | 10 | 0.9415 | Integrated meta-omics study on rapid tylosin removal mechanism and dynamics of antibiotic resistance genes during aerobic thermophilic fermentation of tylosin mycelial dregs. For efficient treatment of tylosin mycelial dregs (TMDs), rapid tylosin removal mechanism and dynamics of ARGs during TMDs fermentation were investigated using integrated meta-omics (genomics, metaproteomics and metabolomics) and qPCR approaches. The results showed that over 86% of tylosin was degraded on day 7 regardless of the type of bulking agents. The rapid removal of tylosin was mainly attributed to de-mycarose reaction (GH3) and esterase hydrolysis (C7MYQ7) of Saccharomonospora, and catalase-peroxidase oxidation of Bacillus (A0A077JB13). In addition, the moisture content and mobile genetic elements were vital to control the rebound of ARGs. The removal efficiency of antibiotic resistant bacteria (Streptomyces, Pseudomonas, norank_f__Sphingobacteriaceae, and Paenalcaligenes) and Intl1 (98.8%) in fermentation treatment TC21 with corncob as the bulking agent was significantly higher than that in other three treatments (88.3%). Thus, appropriate bulking agents could constrain the abundance of antibiotic resistant bacteria and Intl1, which is crucial to effectively reduce the resistance. | 2022 | 35307520 |
| 8110 | 11 | 0.9411 | Removal of chlortetracycline and antibiotic resistance genes in soil by earthworms (epigeic Eisenia fetida and endogeic Metaphire guillelmi). The impacts of two ecological earthworms on the removal of chlortetracycline (CTC, 0.5 and 15 mg kg(-1)) and antibiotic resistance genes (ARGs) in soil were explored through the soil column experiments. The findings showed that earthworm could significantly accelerate the degradation of CTC and its metabolites (ECTC) in soil (P < 0.05), with epigeic Eisenia fetida promoting degradation rapidly and endogeic Metaphire guillelmi exhibiting a slightly better elimination effect. Earthworms alleviated the abundances of tetR, tetD, tetPB, tetG, tetA, sul1, TnpA, ttgB and intI1 in soil, with the total relative abundances of ARGs decreasing by 35.0-44.2% in earthworm treatments at the 28th day of cultivation. High throughput sequencing results displayed that the structure of soil bacteria community was modified apparently with earthworm added, and some possible CTC degraders, Aeromonas, Flavobacterium and Luteolibacter, were promoted by two kinds of earthworms. Redundancy analysis demonstrated that the reduction of CTC residues, Actinobacteria, Acidobacteria and Gemmatimonadetes owing to earthworm stimulation was responsible for the removal of ARGs and intI1 in soil. Additionally, intI1 declined obviously in earthworm treatments, which could weaken the risk of horizontal transmission of ARGs. Therefore, earthworm could restore the CTC-contaminated soil via enhancing the removal of CTC, its metabolites and ARGs. | 2021 | 33798888 |
| 8094 | 12 | 0.9411 | Additive quality influences the reservoir of antibiotic resistance genes during chicken manure composting. Aerobic composting is commonly used to dispose livestock manure and is an efficient way to reduce antibiotic resistance genes (ARGs). Here, the effects of different quality substrates on the fate of ARGs were assessed during manure composting. Results showed that the total relative abundances of ARGs and intI1 in additive treatments were lower than that in control, and high quality treatment with low C/N ratio and lignin significantly decreased the relative abundance of tetW, ermB, ermC, sul1 and sul2 at the end of composting. Additionally, higher quality treatment reduced the relative abundances of some pathogens such as Actinomadura and Pusillimonas, and some thermotolerant degrading-related bacteria comprising Pseudogracilibacillus and Sinibacillus on day 42, probably owing to the change of composting properties in piles. Structural equation models (SEMs) further verified that the physiochemical properties of composting were the dominant contributor to the variations in ARGs and they could also indirectly impact ARGs by influencing bacterial community and the abundance of intI1. Overall, these findings indicated that additives with high quality reduced the reservoir of antibiotic resistance genes of livestock manure compost. | 2021 | 34139628 |
| 6905 | 13 | 0.9410 | The hot air circulation ventilation composting system removes antibiotic resistance genes through competitive inhibition by core bacteria. Livestock manure is a significant reservoir of antibiotic resistance genes (ARGs). Aerobic composting technology can produce mature compost while effectively removing ARGs. In this study, we developed an energy-saving and emission-reducing hot air circulating ventilated composting technology (HACV), which had no adverse effects on the composting process or compost maturity. The HACV composting altered bacterial communities, primarily driven by heterogeneous selection among deterministic factors (65 %). Specifically, it increased the complexity of bacterial networks and promoted the colonization of high-temperature-tolerant bacteria, such as Erysipelothrix, Oceanobacillus and unclassified_f_Bacillaceae. Topological analysis revealed that core bacteria primarily functioned as connectors in composting, serving as important ARGs hosts and facilitating their spread in conventional composting. Among these, a core pathogenic bacterium (Corynebacterium) carried and transmitted ARGs with higher risks. In contrast, although the number of core bacteria (Bacillus, Oceanobacillus, Caldicoprobacter, Saccharomonospora, and Lactobacillus) increased during HACV composting, these bacteria were not potential hosts of the target ARGs. This contributed to the removal of aadE by 80.49 %. Consequently, compared to conventional composting, HACV composting was more effective at controlling risky ARGs, particularly aac(6')-Ib-cr and sul1. Furthermore, the ARGs removal mechanism primarily involved inhibiting horizontal gene transfer (HGT) in HACV composting, attributed to competition between core bacteria and ARGs hosts. In summary, HACV composting effectively promotes ARGs removal and reduces the risk of bacterial resistance. ENVIRONMENTAL IMPLICATION: In this study, we developed an energy-saving and emission-reducing hot air circulation ventilation composting technology (HACV), which effectively removes antibiotic resistance genes (ARGs). The HACV system maintained composting efficiency and maturity while driving bacterial community succession through deterministic processes (heterogeneous selection). HACV composting increased the colonization of core bacteria in the microbial network. Acting as connectors, the core bacteria are not hosts of ARGs in the HACV system, inhibiting horizontal gene transfer (HGT) and remove ARGs through competition with host bacteria. | 2025 | 40682888 |
| 8118 | 14 | 0.9409 | Effects of biocontrol Bacillus and fermentation bacteria additions on the microbial community, functions and antibiotic resistance genes of prickly ash seed oil meal-biochar compost. This study evaluated the effects of biocontrol Bacillus and fermenting bacteria addition on the microbial community, metabolic functions and antibiotic resistance genes (ARGs) of new prickly ash seed oil meal (PSOM)-biochar composting. The results showed that the addition of Bacillus subtilis and fermentation bacteria significantly increased the NH(4)(+)-N, bacterial abundance and fungal diversity of compost while decreasing the relative abundances (RAs) of carbon metabolism genes in mature compost. NH(4)(+)-N was significantly correlated with microbial abundance and diversity, and its increase was closely related to microbial amino acid metabolism. The addition of biocontrol and fermenting bacteria changed the RAs of ARGs, which was caused by changes in the potential hosts Proteobacteria, Bacteroidota and Firmicutes in the compost. Consequently, adding Bacillus and fermenting bacteria into PSOM to make composting was suggested as an effective method to promote nutrient transformation, regulate microbial activity and decrease RAs of tetracycline and vancomycin ARGs. | 2021 | 34339999 |
| 8115 | 15 | 0.9409 | Effects of reductive soil disinfestation on potential pathogens and antibiotic resistance genes in soil. Reductive soil disinfestation (RSD) is commonly employed for soil remediation in greenhouse cultivation. However, its influence on antibiotic resistance genes (ARGs) in soil remains uncertain. This study investigated the dynamic changes in soil communities, potential bacterial pathogens, and ARG profiles under various organic material treatments during RSD, including distillers' grains, potato peel, peanut vine, and peanut vine combined with charcoal. Results revealed that applying diverse organic materials in RSD significantly altered bacterial community composition and diminished the relative abundance of potential bacterial pathogens (P < 0.05). The relative abundance of high-risk ARGs decreased by 10.7%-30.6% after RSD treatments, the main decreased ARG subtypes were AAC(3)_Via, dfrA1, ErmB, lnuB, aadA. Actinobacteria was the primary host of ARGs and was suppressed by RSD. Soil physicochemical properties, such as total nitrogen, soil pH, total carbon, were crucial factors affecting ARG profiles. Our findings demonstrated that RSD treatment inhibited pathogenic bacteria and could be an option for reducing high-risk ARG proliferation in soil. | 2025 | 39306413 |
| 6921 | 16 | 0.9409 | Impacts of Chemical and Organic Fertilizers on the Bacterial Communities, Sulfonamides and Sulfonamide Resistance Genes in Paddy Soil Under Rice-Wheat Rotation. The responses of sulfonamides, sulfonamide-resistance genes (sul) and soil bacterial communities to different fertilization regimes were investigated by performing a field experiment using paddy soil with no fertilizer applied, chemical fertilizer applied, organic fertilizer applied, and combination of chemical and organic fertilizer applied. Applying organic fertilizer increased the bacterial community diversity and affected the bacterial community composition. Eutrophic bacteria (Bacteroidetes, Gemmatimonadetes, and Proteobacteria) were significantly enriched by applying organic fertilizer. It was also found organic fertilizer application increased sulfamethazine content and the relative abundances of sul1 and sul2 in the soil. In contrast, applying chemical fertilizer significantly increased the abundance of Nitrospirae, Parcubacteria, and Verrucomicrobia and caused no obvious changes on sul. Correlation analysis indicated that sul enrichment was associated with the increases in sulfamethazine content and potential hosts (e.g., Novosphingobium and Rhodoplanes) population. The potential ecological risks of antibiotics in paddy soil with organic fertilizer applied cannot be ignored. | 2022 | 36547725 |
| 7646 | 17 | 0.9408 | Assessment of Bacterial Community and Other Microorganism Along the Lam Takhong Watercourse, Nakhon Ratchasima, Thailand. Lam Takhong, a vital watercourse in Nakhon Ratchasima province, Thailand, supports agricultural, recreational, and urban activities. Originating in a national park, it flows through urban areas before discharging into a dam and running off via the sluice gate. While water quality monitoring is routine, microbial community data have never been reported. This study assesses the microorganism diversity and functional genes in Lam Takhong watercourse using a shotgun sequencing metagenomics approach. Water samples were collected from the upstream, midstream, and downstream sections. The midstream area exhibited the highest abundance of fecal coliform bacteria, plankton, and benthos, suggesting elevated pollution levels. Genes related to metabolism, particularly carbohydrate and amino acid pathways, were predominant. Proteobacteria was the most abundant phylum found in the water, with Limnohabitans as the dominant planktonic bacteria. Bacteria such as Staphylococcus, Mycobacterium, Escherichia, Pseudomonas, Enterococcus, Neisseria, Streptomyces, and Salmonella were detected, along with antibiotic resistance genes, raising public health concerns. These findings emphasize the need for microbial monitoring in the Lam Takhong to determine the potential water quality bioindicator and prevent potential disease spread through the water system. | 2025 | 40244481 |
| 7993 | 18 | 0.9407 | Magnetic biochar/quaternary phosphonium salt reduced antibiotic resistome and pathobiome on pakchoi leaves. Antibiotic resistance genes (ARGs) and human pathogenic bacteria (HPB) in leafy vegetable is a matter of concern as they can be transferred from soil, atmosphere, and foliar sprays, and poses a potential risk to public health. While traditional disinfection technologies are effective in reducing the presence of ARGs and HPB in soil. A new technology, foliar spraying with magnetic biochar/quaternary ammonium salt (MBQ), was demonstrated and applied to the leaf surface. High-throughput quantitative PCR targeting 96 valid ARGs and 16 S rRNA sequencing were used to assess its efficacy in reducing ARGs and HPB. The results showed that spraying MBQ reduced 97.0 ± 0.81% of "high-risk ARGs", associated with seven classes of antibiotic resistance in pakchoi leaves within two weeks. Water washing could further reduce "high-risk ARGs" from pakchoi leaves by 19.8%- 24.6%. The relative abundance of HPB closely related to numerous ARGs was reduced by 15.2 ± 0.23% with MBQ application. Overall, this study identified the potential risk of ARGs from leafy vegetables and clarified the significant implications of MBQ application for human health as it offers a promising strategy for reducing ARGs and HPB in leafy vegetables. | 2023 | 37639796 |
| 7996 | 19 | 0.9407 | A sludge bulking wastewater treatment plant with an oxidation ditch-denitrification filter in a cold region: bacterial community composition and antibiotic resistance genes. Bacterial community structure of activated sludge directly affects the stable operation of WWTPS, and these bacterial communities may carry a variety of antibiotic resistance genes (ARGs), which is a threat to the public health. This study employed 16S rRNA gene sequencing and metagenomic sequencing to investigate the bacterial community composition and the ARGs in a sludge bulking oxidation ditch-denitrification filter WWTP in a cold region. The results showed that Trichococcus (20.34%), Blautia (7.72%), and Faecalibacterium (3.64%) were the main bacterial genera in the influent. The relative abundances of norank_f_Saprospiraceae and Candidatus_Microthrix reached 10.24% and 8.40%, respectively, in bulking sludge, and those of norank_f_Saprospiraceae and Candidatus_Microthrix decreased to 6.56 and 7.10% after the anaerobic tank, indicating that the anaerobic tank had an inhibitory effect on filamentous bacteria. After 20 mJ/cm(2) UV disinfection, about 540 bacterial genera, such as Romboutsia (7.99%), Rhodoferax (7.98%), and Thermomonas (4.13%), could still be detected in the effluent. The ARGs were 345.11 ppm in the influent and 11.20 ppm in the effluent; 17 subtypes, such as sul1, msrE, aadA5, ErmF, and tet(A), could be detected throughout the entire process. These ARG subtypes were persistent ARGs with a high health risk. Network analysis indicated that the changes in filamentous bacteria norank_f_Saprospiraceae abundance mainly contributed to the abundance shift of MexB, and Acinetobacter mainly increased the abundance of drfA1. These results above will provide theoretical support for the sludge bulking and ARGs controls of WWTPs in cold regions. | 2023 | 36495431 |